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2. The Theory of Special Relativity

Abstract
Albert Einstein (1879-1955) published his first work on relativity in 1905, the same year in which he
published remarkable papers on Brownian motion and the photoelectric effect. At the time he did this work,
he was a patent examiner in the Swiss Patent Office. He was awarded the Nobel Prize for physics in 1921 "for
his services to the theory of physics, and especially for his discovery of the law of the photoelectric effect." He
became a professor of physics at several German universities, and in 1916, he took a position at the Kaiser
Wilhelm Institute in Berlin.

As the Nazi party became powerful and finally took control of the country, Einstein became a target of the
Nazi's anti-Jewish campaign. He left Germany with regret and found sanctuary in the United States. In 1933
he became a permanent staff member at the Institute for Advanced Studies at Princeton. He remained at that
post for the rest of his life.

Einstein proposed a solution to the puzzle posed by the Michelson-Morley results, and that work has come to
be known as the theory of special relativity. Einstein's solution came as a surprise to most physicists because it
was based not upon some strange new principle, but upon two postulates that would have been conceded by
nearly all and upon a careful scrutiny of some accepted concepts. [excerpt]
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Albert Einstein (1879--1955) published his first work on 
relAiijdJtjLLn_.19Q5, the same year in whiclS'^e published remark-
_able papers on Brcuraian motion and the photoelectric effectV ' 
At the time he did this worK"̂  ̂ He was a patent examiner iir~the 
Swiss Patent Office. He was awarded the Nobel Prize for physics 
in 1921 "for his services to the theory of physics, and espe
cially for his discovery of the law of the photoelectric effect." 
He became a professor of physics at several German universities, 
and in 1916, he took a position at the Kaiser Wilhelm Institute 
in Berlin. 

powerful„and final 1 y took control 
of the coujitxy. Einstein became a target of the NazPs antT-
JewisJi-canijiaiea. He lelO%CTggy'"irtB''l'feirretr-aTad' fou 
ary in the Unite,d_jSIii3Ej©s In 1933 he iiecame a permanent staff 
member"aTTThe Institute for Advanced Studies at Princeton. He 
remained at that post for the rest of his life, 

Einstein proposed a solution to the puzzle posed by the 
Michelson-Morley results, and that work has come to be known as 
the theory of special relativity. Einstein's sr>intir>n !̂ «= 
a surprise to mo,st nhvsirists-, because it was nr>+ iipr.n 

strange new principle, but upon two that wmiiH 
Utiyri been ooncaded by nearly all and jn""" T r-avpful scrutiny of 
soffig accepted r.nnr,f!Trfis.. . 

The two postulates are: 

(1) The velQcxty of light in a vacuum is the same—ln-all 
coordinate systems that lyjth ponstant velnrlt.y rfifativA to 
each othef^ " 

(2) All__lawS_ejL_aature are the sama in all rr>r>T'Hi nat«a gyg_ 
tem^ that move with constant velocity par>h 

TM--fĵ st__M--these_ is._̂ lm]aly-.the acceptancĵ ol Jt.he xesults 
of the^Michelsoh-Morleyexperiment. The second was not com-

witb Einstein, Hewton,Jiaying made the same statement 
with reference tp mechanlrai laws. The new st̂ lemaiit-uneans. tĥ t' 
noexperiment of any kind, (including electromagnetic experiments) 
can tell us whether we are at rest or moving with constant 
velocity, since the very form of our mathematicai equations ex
pressingour physical laws must remai«^-4iie-_aame in all systems 
with constant relative velocity. This is often referred to as 
th¥-coHdition of invariance. 

A simple thought-experiment will give us an idea of the 
way Einstein was thinking and show us how he brought sotne of our 
long-standing concepts into serious question. 

Imagine a room in a moving train, a lamp in the center of 
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the room, and on one side wall a window large enough to allow 
someone outside the train to see the entire room. Now imagine 
that as the train passes a man standing on the embankment, 
another man on the train turns the lamp on and off quickly. We 
ask the two men to describe what they see. 

Th^man on the train savs that the light traveling^-from 
the center of the room, with equal veXoQi|;x,,in j®^ll directions 
fê hes" the front and back walls of the room simuitaneausly, 
since the walls are equidistant from the lamp. 

The man on the embankmerit-agrees tba.t.,.the^.llfi^.t travel 
with ̂ e^s^ in ail- direxjtioja Further, 
w3rt1r~tEe man on the train as to.,th® velocity of the light. We 
surely expected this from the first of Einstein's postulates, 
which is just the Michelson-Morley result. But—the- man the 
emban^ent aa^rs furtJier that while the lifrht was traveling from 
t!̂  lamp to the walls, thjg„ fxQja±-JBtall--JS«'AS_±ryI5̂  
Yrom the 1ight andl 1^© walL.was rushing to meet the light. 
Thus he observed that the light reached the back wall before it 
reached the front wall. The situation as seen by the two men 
is shown in Figure IV. 

The results of our thought-experiment may seem innocuous 
enough, but if we examine them we will discover something start
ling. What the.man on the train observed to be simultaneous, 
the man on the embankment observed to be not simultaneous. Now, 
who is right? Did the light reach the front and back walls of 
the room simultaneously, or did it not? Before we leap to an
swer the question, we should look carefully at what we mean by 
the words "simultaneous," "sooner," and "later." 

These words had an absolute meaning when our equations 
taking us from one coordinate system to another were the Gali
lean transformations. What appeared to be simultaneous events 
in one coordinate system would be inferred to be simultaneous 
in all coordinate systems. By "inferred" we mean the following. 
Suppose the two events were TiTght . flashes ajEiButEiŜ  
some measured time interval Jpetweejci our seeing the two flashes. 
If we could how measure the distance to^ea^cJ^ e^^ent. then knowing 

Figure IV. Two views of a light pulse: 
(a) as seen by the man in the train 
and (b) as seen by the man on the 
embankment. 
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the velocity of light we_iiQiilii~xiateJOBine whethex̂ he_:tEQ.-gvfiats 
OCcurlTeS simultaneous^. If we concluded that the two events 
v^e~"srmlinTaheous7 tHen if~TRe Galilean transforpiatir>T^g 
vaXiTd, we would be certain that anyone el§§^jKho..§J^..jth^^ flashes 
wox3fIjg~f 1 s" infer that the fj.Jjsliiei3̂ dcciirred simultaneoû FT"' ̂ ut 
our^ thought-experiment with men in and out of the train might 
well make us suspicious of the concept of simultaneity as de-

^ rived from the Galilean transformations. 

The following is essentially the way Einstein approached 
the problem. First we ask, ''What_is__a-~clxic^^ Einstein an
swered , " We unders 19,nd, by,--A. -cloek -soffliEtHlBgr w4iieh j)jy)jyLldes-„a 
series oyoTi+c iirhigLh„^n hi<a f^mintiari " Any physical system 
that provides an occurrence that can be repeated exactly may be 
used as a clock. We can take the interval between the start 
and the end of the occurrence as the unit of time. By counting 
the number of occurrences in our standard system, we can meas
ure time intervals and associate the words "sooner" and "later" 
with the smaller and larger numbers registered by the clock. 
Th«a eji-pth's mfftiort^J^ovides—clocks.. The time asso
ciated with one rotation about its axis is the day, and the time 
associated with the interval required for the earth to make one. 
circuit about the sun is the year. Even an hourglass fits our 
description, since by counting the number of times the glass is 
turned we can measure the elapsed time in hours. Today we have 
clocks based upon particular vibrations that occur in certain 
molecules. 

Suppose that we have two clocks at different locations in 
some coordinate system. How can we be certain that these clocks 
are synchronized, in other words that they are showing exactly 
the same time and that they are running at the same rate? If 
we are at different distances from the two clocks, then even 
synchronized clocks would appear to read different times,.since 
light would take a longer time reaching us from one of the two. 
This difficulty is overcome simply, if we stand at a point equi
distant from the two clocks. Then if the clocks always shojjf 
the ŝ e._tlnieĵ  we gaii-us£...,them to d̂ ignaBiZZIIiiZZtlEeŝ ^̂ Â ^̂ v̂Mch 
events occur at the two clock locations. We now repeat this 
process, putting clocks at as many points as we care to. Since 
we are only doing this in our imaginations at present, we might 
as well put a clock at every point in our coordinate system. 
We are thus assured that all of our clocks are at rest in our 
coordinate system and that they are all synchronized. The time 
at which an event occurs in our system will be given by the 
clock located at the position at which the event occurs. We 
can stand in one place in our coordinate system and take note 
of an event and the time of its occurrence without making any 
correction for the velocity of lijght, in other words for the 
time light takes to reach us from the event. 

We have done nothing that does violence to the Galilean 
transformations. We have simply made things more convenient 
than would be the case were we to have but one clock which 
would necessitate corrections for our distances from that clock 
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and from the event we were observing. We have been quite care
ful though, and our care may even appear to be excessive at 
this point. One might ask, "Why did you not svnchronize-^11 
your clocks_ajLJtH'x»--Jf^§xy_^nearbyIpointsr.l|^^ 
'syneffif^ized clocks, and then distribute them to the various 
poinTs3Sl4̂ 5utIaQordi rep̂ ^̂ ^̂ ^̂  
knaw, jyha. t e f feet mat ion wou 1 d have on the ra^te-a£-Brhich tba 
clocks run, so we avoid any possible oversight bv placing our 
clocks as wê  hayje.,, 

In a completely similar way, we can put clocks in all co
ordinate systems which move at coh^tant velocity relative to 
the first system. We are assured, by our definition of simul
taneity and by our procedure for plachg the clocks, that all 
the clocks in a given coordinate system are synchronized. We 
now ask, "Are the clocj^ in one of these systems synchronized 
with those ̂ n anptSer'^" ~ 

Newton would have, answered "Yes" unhesitatingly. In fact, 
he would be certain that a single_c f^rToTE' 
sj^STem^ ,"^OTTie beXieved and stated that "Absolute7 true , and 
mathematical time; of"ItSelf, and from its own nature^ flows 
e to any thing .§3dLernal, " (see Chapter 
VIII, p. 58). But Newton did not Know of the Michelson-Morley 
experiment, and his prediction would have been based upon the 
Galilean transformation. But we have seen that these two, the 
Michelson-Morley result and the Galilean transformations, can
not be reconciled. Further, we have seen that our thought-
experiment about the train suggests that the idea of simulta
neity may be more subtle than Newton had believed. We should 
not close our minds to the possibility that the clocks in two 
coordinate systems moving with constant velocity relative to 
each other may not be synchronized, in other words that they 
may not be running at the same rate. Possibly the frequency at 
which our clock mechanisms operate would be different when the 
clocks have different velocities relative to an observer. 

WlJth~tihe Newtonian concept of simuLtajnelty brought into 
guestion, other concepts must be reexamined carefully. For ex
ample, how do we measure the length of.-an object? Imagine an 
object to be at rest in our coordinate system. We note the 
points in this coordinate system that coincide with the ends of 
the object, and then we measure the distance between these two 
points. For this we have a rod of defined length (one yard 
one meteiT, et^ J, and we count the number of times we can lav 
thi§_iiCKLjB-Odt the. straight line connecting the- two 
£ô nĵ s» The number we get is defined a§ ,the length.-Ql_tiie 
object JLn-IwHat cEdose. As we shall see, this pgo-
cessmay be very complex and itself requires considerable anal
ysis., but w¥ sKiiir hot e^ the details here. 

We now ask, "How shall we measjare the length nf 
that is moving rel^iye~To us?" We must mark the positions of 

ends of tlie object in our coordinate system, but these 
positions must be marked simultaneously. We can do this, if we 
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have synchronized clocks at these two points. We then measure 
the distance between these points in our coordinate system in 
the manner prescribed above. 

Now, if we measure the length of an ob.ject both when it is 
at rest and when it is in moFion feXative tn r.nnrdi nate 
^gsa^nT^d'o we get the sam^ number^or "tKenfength in each ca^? 
^ewto^ 1^ tivim^^jr should be care"fiaT"at 

date not to give a quick reply to questions such as this 
on the basis of what we might call common sense. There is 
nothing in the world to tell us how to answer this question 
without making a careful experimental analysis. And even then, 
we should be careful to note that our reply may have validity 
only in the range covered by our experiments. 

Another example arises in measuring the mass of an object. 
The mass of an objecJ;,JL^^ to its weighj^ai a n 
ToeatlQn on the earth's surface,. Further, the body with the 
greater mass exhibits a gi'^eater resistance to a change in its 
velocity. The greater the mass of an object, the greater the 
force required to change the object's velocity by a given 
amount in a given time. This latter property that mass meas
ures is part of Newton's second law of motion. We can ask, in 
fact we must ask, "Is the maas of an xibj^ct the_.same JKhen we 
make oiir mpasnrements^affe^^t^o different velocities I'f^jativfi t" 

Einsiei4i-was able to bring order into the theory. HR saw 
clearly that the Newtonian concepts of absolute time, length, 
and mass, manifested in the Galilean trajisToTHrartrttnis, wS^re ' 
simply~at^odds with expeHimental resuTts .~~TKe~"rdeaTs""of~abso-
iute time and space can have meaning to us only if we can know 
at what absolute time an event occurs and at what absolute po
sition an object is located. And it is clear that we do not 
know these things, and our theory (Newtonian mechanics as well 
as relativity) has built-in conditions which make it impossible 
to know these things. We do, in fact, measure time intervals, 
as Einstein has stated, by counting the number of times some 
regular event occurs. And we do not locate our coordinate sys
tems in some abstract space, but we do locate them relative to 
some material body or bodies; the earth, the solar system, our 
galaxy — the Milky Way. 

If w£L_wanted to insist that time, length, and mass are in-
dependent of relative yelpcitiea.,., 
these quantities TiDL SQroe w from the way„,jjaeY 
are now de±ixied. If we do not insist upon tTSis requirement for 
our theory , we shalT be abTe tb "ai^rd 'the n^ construct
ing a different theory for each coordinate system, which would 
surely be the ultimaTe^reiativity. But in order to avoid this 
thoroughly distastefu 1. Jtl-ter^natXxs > TSinstein that the 
Galileaji transformations must HA if we are going to 
use the definrtlons~ST^1Eme and length given by Einstein and 
still satisfy the two postulates of relativity, then the trans
formations required are just those proposed by Lorentz. But now 
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those transformations are no longer a disconnected mathematical 
artifice; they are a necessary part of a complete theory that 
encompasses all of physics, and not merely a single phenomenon. 

The Lorentz transformations give results that are some
times surprising to those who have not given serious thought to 
the concepts used in recent physical theories. The first con
cerns time, and says that the clocks synchronized in one coor
dinate system do not run at the same rate as clocks synchronized 
in another system that is moving with constant velocity rela
tive to the.first. In mathematical form, where c is the veloc
ity of light in 2^jyacuum _ClB6^000_.miles per second) 

= /̂ t / 1 - v2/ĉ ^̂  

If we are at rest in our coordinate system and our clocks 
have moved through the time interval ̂ t, then we shall observe 
that the clocks at rest in a coordinate system that is moving 
with a constant velocity, V, relative to us will show the cor
responding interval At'. Note that At' is always less than At; 
that is, we observe that moving clocks are running slow. Figure 
V illustrates this point. 

.© 

/ 
Figure V. The Lorentz transformation predicts 

that we observe moving clocks to be 
running slow. 

If we observe the single clock A' moving with a velocity V 
relative to our clocks, we see that A' is running slow. By us
ing many clocks in our system, we are assured that our observa
tions of A and A', B and A', C and A', etc., are simultaneous. 
Further, we note that our caution in not moving our clocks in 
our coordinate system once they were synchronized is justified. 
If At' were just half of At, as shown in the figure, the veloc
ity V would need to be about 86.5 percent of the velocity of 
light, or about 161,000 miles per second. 

It is quite important to note that someone at rest in a 
coordinate system having some velocity relative to our own 
would observe that our clocks are running slow. To ask which 
of the clocks are running at the correct rate makes no sense. 

0 B 0^ 
„ s iS)' 

V 
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We also note that At' differs from At significantly only 
when the relative velocity V is very high. If V is about ten 
percent of the velocity of light, or about 18,600 miles per 
second, then At' differs from At by just one percent. In the 
case that V is zero, the Lorentz transformation reduces to At' 
••At. 

The Lorentz transformation for length is 

1 -

where Lp iw lentrth wpi won 1^1 measure were the object at rest 
relative to us, and L is the length we would measure were the 
^o'bject moving With a v^locrty"irYi^lq.tTii^?^^ —Here the— 
length L is being measured along the same line as the velocity 
V is directed. Note that as V increases, the object's length 
in the direction of V decreases. Figure VI illustrates this 
change. 

L 

H Lo H 
Figure VI. The Lorentz transformation predicts that, 

we will oDs"erve rods to become !=ihr)rt&v 
when they are moving relative to us. 

The Lorentz transformation for mass is 

™o 

m = 7 
Vl - V^/c^ 

where mo and m are the masses we measure when the object is at 
rest and moving with a velocity V relative to us respectively. 
The mass increases with increasing V. 

We can see from the last two transformations (length and 
mass) that an object's velocity relative to any observer must be 
less thstn the velocity of light. We note that as the velocity 
of a body increases, the body's mass increases also, so that 
greater and greater forces are required to produce velocity 
changes when the velocity is close to that of light. The two 
transformations would predict that at V = c, an object would 
have zero length ( and hence zero volume) and infinite mass. 
But we could notiexpect to reach this velocity, since an infin
ite force would be required. 



XX p. 15 

If the consequences of the Lorentz transformations are ex
amined in detail, we find that the theory handles the concepts 
of mass and energy in completely equivalent ways. This is the 
basis for the famous equation E = mc^, where E and m are the 
mass and energy of a system. The conservation laws of energy 
and mass are combined into a single energy-mass conservation 
law. If a certain amount of mass Am disappears in some process, 
then an associated amount of energy AE appears, where E = 
(Am)c^. Just thisimass loss accounts for the energy that ap
pears in atomic and hydrogen bombs. 

One further point should be made, this being probably the 
most important philosophical result of the theory. For the 
moment, let us restrict ourselves to observing gyents that oc-
cur on some chosen stral'ght""~lTne""I We shaXr call the stTace posi
tion "Klxrilg'Tin^S "Tfne' X is RAT 1 ed mAaRU-rpri 

^iixecttpn frpjn negative 
when measured in the other direction. Now suppose tHat we turn 
a light on and off in quick succession at the origin, so that 
two pulses of light travel away from the origin, one in the 
positive direction and one in the negative direction. We can 
make a simple plot that will show us the locations of the pulses 
at any time after they leave the origin. This plot is given in 
Figure VII«. 

which originated at x - 0 and t « O. 

We plot the positions of the light pulses (x) against the 
time (t) at which the pulses arrive at those positions. For ex
a m p l e ,  t h e  l i g h t  p u l s e  i s  l o c a t e d  a t  x  a  x ^  a t  t h e  t i m e  t  =  t n ,  
so that the point P2^ , t^) lies on one of our lines. This 
point might be Xj^ - 186,000 miles and tl = 1 second. The lines 
are straight, because the velocity of light is constant. That 
is, X =! ct, so that x/t = c at all points on the line. Tfeesî  
two lines are called the world lines of the_light pulses for gur. 
coordinate system, and they"giy^ 
behavior of the pulses both in time and in space. The world 
lines of all pb.1 ects whlcH-through The or it̂ in Of that ls7 
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are at x * O when t = O) must lie only in the region AOA', since 
no oBoexxt-caiL-Jbave a veiociTiFy in any coordinaTeZSgariafim whici^^ 
greater than,..3Ub̂ .̂elQjCxt3̂ ..jQ̂  Tcl. 

We shall say that an "event" is describedby the space 
po_sition whereI.l£l^ocurf.e.g!XnH"3!Ee"Tim^ it occurr&d. in 
general, an event requires three space coordTin^t^ and the time 
for its description. These are the four dimensions that are 
often associated with relativity. In our example, where we are 
limiting ourselves to one space dimension, we have a two dimen
sional "space" called the space-time continuum. An event is 
represented by a point in that space, called a world point. 

Consider now two world points, one at the origin 0 (0,0) 
and one at the point P2 (X2,t2) lying in the region AOA'. The 
distance between these two events is simply X2, and the time 
interval between them is ±2- Since P2 lies in the region AOA', 
we see that ct2 is greater than x2. That is, light leaving 
X = O at t = O would have reached the position x^ before the 
second event (X2,t2) occurred. It turns out that there is ̂  
coordinate system, moving at any velocity whatever relative to 
our own, in which these two events occur simultaneously. Thus 
the time order of these two events is the same in all coordinate 
systems, [0(0,0) "before" p2(^2 >^2)}> and we thus call the 
region AOA' the absolute future relative to O. There is, how
ever, one coordinate system in which the two events will occur 
at the same place. The relativistic interval between two events 
of this kind is said to be timelike. 

Consider now the two events 0(0,0) and Po(x3 t3). Here 
the distance between the two events is X3, and the time interval 
between them is t3. Since P3 lies outside AOA' we see that ct3 
is less than X3. That is, light leaving x = 0 at t = O would 
arrive at the position X3 after the second event (X3,t3) had oc
curred. Here there ̂  another coordinate system in which the 
two events are simultaneous, and in fact there are an infinite 
number of coordinate systems in which the event (x3,t3) occurs 
before (0,0)„ Then we can assign no absolute time order to 
these events. There is, however, no coordinate system in which 
these two events occur at the same place. The relativistic in
terval between two events of this kind is said to be spacelike. 

Since the time order of 0(0,0) and P2(̂ 2'̂ 2) absolute, 
it may be that there is a "causal" relation "between them. Since 
the time order of 0(0,0) and P3 (x3,t ) depends upon the coordin
ate system in which the observer is ax rest, we conclude that 
there can exist no such causal relation between these two events. 
Since the criterion for the relativistic interval between two 
events being timelike or spacelike is whether light starting 
from X = O at t = O reaches the position (x2 or X3) before or 
after the second event occurs, we conclude that no influence 
(force field) can have a propagation velocity greater than c. 
That is, no physical event can send out the signal of its occur
rence with a velocity greater than c, the velocity of light. 



XX p. 

We^JLotice that the tiaepxy of special relativity tells us 
how to trapsJEQ3E^"^^¥oQlp5I^^^ and time Trom"0106^0^^ 
"tilLjt^anQih^ i«« wit h cp ngtt Velority_ re 1 a^^^^ 

rst• The ghost of inertial systems haunts the special theory 
Einstein could see._ji£L_.reaspn _tQ_ giye^^^ preferjace.. to coor2In^ 
a^ "sysfefiis^'wTth uniform^ relative yeipclty i an^ set about ̂  
constructingathepxy^that would be generally appiicable^ ev^n 
to^accelerating coprdin^tesystems. He published his first " 
work on the theory of general relativity in 1915. We cannot 
discuss this theory in any detail here, but we can remark that 
general relativity, unmotivated by experiment, stands as one of 
the most extraordinary intellectual accomplishments in the 
history of man, Einstein. literally alone, wroue^ht the theory 
with imagination, insight, and 'inia.p.iratinn that may w«=>1.1 have 
been unique. While the general theory is not in as common use 
as in the special theory, it not yet being required for the 
description of most physical phenomena, it has made some start
ling predictions which have been verified experimentally. No 
exception—has-.ye%—been- found to the general thexjry. 

It is not surprising tJhat ,,th&„th.QrQUghgoing success of 
relatiyity thepry ;shpuld spnd most -s©ric«is™th-fSkexs 10 a yari-
ety of intellectual disciplines~-«scuxxy^ theijL basic 
assumptipns^ a^^ We have yet to receive all the 
fruits that must follow such a reaction. Percy A. Bridgman 
(1882- ) has long been one of those urging us to learn the 
lessons of relativity wello " Bridgmarn was for many years a pro-
fessor~oT*^ysTCs"£rt HaFvaxd University, and he received the 
Nobel Prize in physics in 1946, 

Bi^idgman advocates td e f i n i t i o n s  b e  b a s e d  u p o n  t h e  o p -
-erations, physical or mehtalTTthat we perform when agjtually 
usi^ the d^efinitions. Such definitions he calls operational. 
Also Fe argues^Tor "an nnen andr rocopt4,ve attitude while also 
i ns i sti ng t hs^ we ke-jcaiitious about extendi ng,-o^3^-€oneepts into 
new" they are not tested'. In light of the lat-
teF^poinTT" the"^u^ication date of the following selection by 
Bridgman is significant. Within a short-.time after Bridgman 
wrote The Logic of Modern-.Physigs inCl927). the experimental 
results in the atomic realm ana their interpretation by the 
then new quantum mechanics were to again call into serious 
question almost all of the basic concepts on which the subject 
of physics was built. The new questions raised in that realm 
still are cause for disagreement and controversy among many of 
today's most eminent physicists. 
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