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Parity Nonconservation in Neutron Capture on 113Cd

Abstract
Parity nonconservation was studied for 23 p-wave resonances in 113Cd up to En=500eV at the LANSCE
pulsed neutron source using a longitudinally polarized neutron beam and the time-of-flight method. The
helicity dependence of the total neutron capture cross section was measured with an enriched 113Cd target
and with a target of natural cadmium. Parity violating effects were observed for several resonances in 113Cd
and 111Cd. A root-mean-square value of the parity nonconserving matrix element MJ=1=2.9-0.9+1.3meV was
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neutron strength function is compared with the parity violation results for nuclei from the 4p-peak region.
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Parity nonconservation was studied for 23p-wave resonances in113Cd up toEn5500 eV at the LANSCE
pulsed neutron source using a longitudinally polarized neutron beam and the time-of-flight method. The
helicity dependence of the total neutron capture cross section was measured with an enriched113Cd target and
with a target of natural cadmium. Parity violating effects were observed for several resonances in113Cd and
111Cd. A root-mean-square value of the parity nonconserving matrix elementMJ5152.920.9

11.3 meV was ob-
tained for the spinJ51 levels in the compound nucleus114Cd. This result from the 3p-peak region of the
neutron strength function is compared with the parity violation results for nuclei from the 4p-peak region.
@S0556-2813~98!02210-9#

PACS number~s!: 25.40.Ny, 24.80.1y, 11.30.Er, 27.60.1j

I. INTRODUCTION

The significant experimental progress achieved to date in
the measurement of parity violation~PV! in neutronp-wave
resonances is reviewed in Refs.@1–4#. These reviews em-
phasize the large size of the measured longitudinal asymme-
tries and the need for further study of this phenomenon.

In conformity with the definition presented in the pioneer-
ing work of Alfimenkovet al. @5#, the parity nonconserving
~PNC! longitudinal asymmetryP(E) is the fractional differ-
ence between thep-wave resonance cross sections for the
helicity states plus~1! and minus~2!:

P~E!5
sp

1~E!2sp
2~E!

sp
1~E!1sp

2~E!
, ~1.1!

where@sp
1(E)1sp

2(E)#/25sp(E) is thep-wave part of the
total neutron cross section

sp~E!5
p

k2

gJGnpGp

~E2Ep!21~Gp/2!2 , gJ5
2J11

2~2I 11!
.

~1.2!

HereGp is the total width of the resonance,Gnp is the neu-
tron width, Ep is the resonance energy,J is the spin of the
compound nuclear resonance, andI is the angular momen-
tum of the target. In the vicinity ofp-wave resonance, the
numerator in Eq.~1.1! behaves nearly resonantly@6,7#, so
that the perturbation-theory expression for the constant
asymmetry

P~Ep!5R(
s

2Vsp~J!

Es2Ep

gs~Ep!

gp~Ep!
,

R5
gp~1/2!

Agp~1/2!
2 1gp~3/2!

2
~1.3!

can be used for eachp-wave resonance exhibiting parity vio-
lation. HereVsp is the matrix element of the weak interaction
between ap-wave resonance atEp and ans-wave resonance
at energyEs with the same spinJ. The quantitiesgp andgs

~defined asg56AGn! are the neutron width amplitudes of
the corresponding states, andR characterizes the relative
contribution of the partial neutron amplitudegp(1/2) of a
p-wave resonance in the representation of the total angular
momentumj ( j 51/2 and 3/2). According to the statistical
approach to the compound nucleus, the weak matrix ele-
mentsVsp(J) are uncorrelated Gaussian variables with zero
mean and variancê Vsp

2 (J)&. The amplitudesgs(Es),
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gp(Ep) also are uncorrelated zero-mean Gaussian variables.
The matrix elementsVsp(J) are, in principle, the quantities
under study, while the presence of other random variables is
accounted for by the use of spectroscopic information or by
an appropriate averaging. However, it is impossible to deter-
mine each of the matrix elementsVsp for a givenp level p
because severals-wave resonances can contribute to the
value ofP(Ep) for this level. Instead, adopting the statistical
approach, we assume that the relevant compound nucleus
amplitudes satisfy the ergodic hypothesis@8–10# and that the
quantity Vsp is a mean zero Gaussian variable with a vari-
anceMJ

2 which is defined as the expectation value ofVsp
2

over an ensemble ofsp-compound states with a givenJ:
MJ

25E(uVspu2). It is possible to obtainMJ directly by the
likelihood analysis of measured asymmetriesP(Ep); such an
analysis was performed for the first time in Ref.@8#.

In analogy with time reversal@11# and isospin symmetry
@12,13# violations, the corresponding spreading widthGw of
the weak interaction is introduced

Gw5
2pMJ

2

DJ
, ~1.4!

which is expected to be approximately independent of the
atomic mass number A and of the resonance spinJ, that is,
MJ

2 scales withDJ which is the average level spacing in the
compound nucleus of a given spinJ for the l 50 levels.
However, it was proposed in Refs.@14,15# that MJ

2 scales
with ADJ as

MJ51.331028AAueffDJ, ~1.5!

where the quantitiesMJ , DJ , and the effective excitation
energyueff5Eb2D ~here Eb is the neutron binding energy
and D is the pairing energy taken from Ref.@16#! have di-
mensions eV. In Ref.@14# the dynamic enhancement of par-
ity violation is due to the virtual excitation of a giant 02

resonance by the weak interaction. The mass dependence of
the weak interaction matrix element has not yet been experi-
mentally tested. To our knowledge, only Ref.@15# addressed
this subject when analyzing the early class of experiments,
which had statistically inadequate data. A number of experi-
mental parity violations are essential for the statistical analy-
sis to extract the root mean square valueMJ of the weak
mixing matrix element. In practice the parity violation mea-
surements are feasible only near a maximum of thep-wave
neutron strength function. Initially, the TRIPLE Collabora-
tion measured PNC effects for nuclei238U @17# and 232Th
@18# near the maximum of the 4p neutron strength function.
Here we report on the PNC measurement for cadmium—our
first target from the mass region near the 3p maximum of the
neutron strength function.

The common method of PV study is measuring the target
transmission in a longitudinally polarized beam@5#. Not all
nuclei can be studied by this method, due to lack of the
required quantity of target material~several kilograms!.
There is another method—neutron capture@19,20#—that is
suitable for the study of parity violation with small targets of
enriched isotopes. For any nonfissionable heavy nucleus, the
total width of low-energyp-wave resonances isG5Gn
1Gg'Gg because the neutron width is extremely weak.

Consequentlysp'sg and measuring PNC asymmetries in
the total capture cross section and by the transmission
method are equivalent ways to study parity nonconservation
in the neutronp-wave resonances. We applied the capture
method to the target cadmium, which was of particular inter-
est because the first enhancement of parity violation in the
compound nucleus@21# was observed in the asymmetry of
the g-ray yield following capture of polarized thermal neu-
trons by cadmium. For single resonances, the PNC asymme-
try was already measured in113Cd @22# at Ep57.0 eV and in
111Cd @5# at Ep54.53 eV. Detailed neutron spectroscopic
measurements on manyp-wave ands-wave resonances in
113Cd were performed at the ORELA pulsed neutron source
@23#. Spins of neutronp-wave ands-wave resonances of
113Cd were determined recently at the GELINA pulsed neu-
tron source@24#. Less detailed spectroscopic data are com-
piled by Divadeenam, Mughabghab, and Holden@25#.

In Sec. II the experimental methods are described for
measurements of parity violation via longitudinally polarized
neutron capture. Data analysis and results for parity violating
asymmetries for studiedp-wave resonances are presented in
Sec. III. In Sec. IV the value of the root-mean-squared ma-
trix elementMJ51 is obtained from the measured longitudi-
nal asymmetries forJ51 levels in113Cd using the likelihood
analysis with probability density functions developed re-
cently in Ref.@26# for the target spinIÞ 0 nuclei. Section V
provides a brief summary.

II. EXPERIMENT

The PNC experiment was performed with the longitudi-
nally polarized pulsed neutron beam available at the Los
Alamos Neutron Scattering Center~LANSCE!. LANSCE
uses the 800-MeV proton beam from the former Los Alamos
Meson Physics Facility linac. The proton beam consists of
650 ms long pulses separated by 50 ms. Each pulse is in-
jected into and accumulated by a storage ring that com-
presses the pulse width from 650ms to 125 ns@full width at
half maximum~FWHM!#. After compression, the pulses are
extracted from the ring and transported to a tungsten target
where they produce spallation neutrons. The neutrons are
moderated by slabs of water~or liquid hydrogen! and colli-
mated into several beams with different flight paths. A more
detailed description of the target-moderator geometry and
performance can be found in Ref.@27#, and references
therein. The unpolarized neutron intensity at flight path 2,
used by the TRIPLE Collaboration, is approximately given
~at 70 mA average proton beam current! by dN/dE52
31012E20.96f V (eV s)21, where V is the detector solid
angle in steradians andf is the fraction of the 13313 cm2

moderator viewed by the collimator system. This is the ini-
tial intensity without any material in the beam. The neutron
beam flux was monitored by a3He-ionization chamber lo-
cated at the exit of the bulk shield surrounding the neutron
production target.

The neutron beam is polarized by spin-dependent trans-
mission through a polarized proton target. The polarization
apparatus has been described in Ref.@28# and in earlier pub-
lications of the TRIPLE Collaboration. Since then several
major improvements have been made including installation
of a new polarizer and extension of the spin transport system

2978 PRC 58S. J. SEESTROMet al.



along the flight path to 60 m where the capture detector is
located. As described by Penttila¨ et al. in Ref. @29#, the pro-
tons in the NH3 target, maintained at a temperature of 1 K in
a 5 T magnetic field, are polarized using the dynamic nuclear
polarization technique by microwave pumping at frequency
140 GHz. The neutron beam polarizationf n is related to the
polarization of the proton spin filterf p :

f n5tanh~ f pnspolt !, ~2.1!

wheren is the number density of protons in the target,spol is
the polarization cross section, andt is the thickness of the
filtering material. The polarized beam has a diameter of 80
mm after leaving the proton cryostat. A neutron beam polar-
ization up to 70% was achieved with a factor of 7 reduction
in intensity.

The neutron spin can be reversed either by reversing the
spin of the proton polarizer or by adiabatic passage through a
region of spatially changing magnetic field in a spin flipper
described by Bowmanet al. @30#. The former process is
rather slow, taking about an hour, and therefore the proton
polarization is only reversed every one to two days. The spin
flipper is used for more rapid reversals by changing the di-
rection of the current in a transverse coil every 10 s, in a
sequence chosen to minimize false asymmetries~to first or-
der in the effects of stray fields from the transverse coil and
to first and second order in effects due to time drifts in the
detector!. The data are sorted into good and bad data areas
based on the stability of the beam during each eight-step
sequence. If the total number of counts in any storage ring
pulse out of 1600 in a sequence differs more than 8% from
the mean, then the sequence is routed to the bad area. A run
consisted of 20 sequences, taking about 30 min. Altogether
271 runs were taken on the113Cd sample.

The TRIPLE design for a multisegmented capture detec-
tor made of CsI~pure! material is described in Ref.@31#. In
the present113Cd experiment, a temporary detector system
was used. The detector consisted of eight 15315 cm2, 15 cm
thick cubic BaF2 crystals each located'12 cm from the
sample. The detector was shielded from the scattered neu-
trons by a hollow cylinder 5 cm thick made of 10%
6Li-loaded polyethylene. The outside shield consisted of 10
cm lead and a 15 cm thick outer layer of 5% B-loaded poly-
ethylene. The anode signals from the photomultiplier tubes
were clipped at 25 ns, discriminated at the level of 0.5 MeV,
and introduced into a coincidence logic unit. The data acqui-
sition system, which utilized a Canberra multiscaler and
8192 channel memory, was set up with a 200 ns channel
width and the information was recorded on a VAXstation
II/GPX computer. A typical time-of-flight spectrum with the
113Cd sample is shown in Fig. 1. The strongests-wave reso-
nances saturated the measuring system due to the high in-
stantaneous count rate. However, for thep-wave resonances
the detector was in the linear regime.

The isotopic sample was a highly enriched~93.35%!
113Cd disc with a 90 mm diameter and total weight of 91.2 g.
The sample was obtained from the Russian State Pool of
Isotopes via the JINR in Dubna. Other isotopes present in the
sample are110Cd ~0.138%!, 111Cd ~0.264%!, 112Cd ~2.64%!,
114Cd ~3.11%!, and 116Cd ~0.208%!. The abundances of the
isotopes106Cd and108Cd are less than 0.01%. The areal den-

sity of the sample was 0.00764 atoms/b. The areal density of
the transmission sample of natural cadmium wasn53.93
31023.

III. DATA ANALYSIS AND RESULTS

A. Parity-violating capture asymmetries

Only the good data~as described in Sec. II A! were used
in the analysis for PNC asymmetries. The data runs were
further sorted off-line based on the flip to no-flip ratioR
~defined as the ratio of the yield with spin reversed to the
yield with spin unchanged! of total counts in the unsaturated
portion of the spectrum. The beam monitor ratio was very
close to one over the entire data set (^Rmon&50.99998
60.00005), including rejected runs for which the TOF spec-
tra displayed an anomalous ratio. The resulting filtered data
set consisted of 216 runs. The no-flip histogram of this
summed data set was normalized to the flip histogram by the
mean value of the ratioR51.000589. The validity of this
normalization procedure was checked by calculating the
asymmetry for 12 different regions of the spectrum away
from resonances. These asymmetries are consistent with
zero, with the mean asymmetry of the 12 regions being
(20.2661.84)31024.

The spectra were fit with a modified version of the peak
fitting codeNEWFIT @32#. All of the data regions were fit with

FIG. 1. 113Cd neutron capture data obtained at LANSCE~loga-
rithmic scale!.
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a Lorentzian convoluted with a Gaussian. Some regions also
were fit with a skewed Gaussian convoluted with a Lorentz-
ian; the skewed Gaussian more correctly reproduces the reso-
lution function of the LANSCE moderator. Our procedure
was first to obtain the line shape parameters by fitting the
sum of the spectra for the6 spin directions. These param-
eters were then fixed, and the difference spectrumN12N2

was fit varying only the peak area. The yield asymmetrye
5(N12N2)/(N11N2) was then calculated. Examples of
fits to the sum and difference spectra are shown in Figs. 2
and 3: the resonances at 21.8 eV and 98.6 eV have spinJ
52 and PNC effects are not expected in such a case, while
the 102.3-eVp-wave resonance has spinJ51 and does ex-
hibit a PNC effect. The level at 99.5 eV is ans-wave reso-
nance of the111Cd isotope.

In another analysis, the uncertainties in the PNC asymme-
tries were determined by the method of replicate trials. All
216 individual runs were fit using the parameters determined
in the analysis described above. The asymmetry was deter-
mined from the mean of this distribution and the uncertainty
was the width of this distribution divided byAN, whereN is
the number of trials. The uncertainties determined in this
way were slightly larger than those obtained in the previous
analysis, while the nonzero asymmetries agree.

The final step in data analysis was the transformation of
the capture yield asymmetryeg , to the PNC asymmetryP in
the p-wave cross section according to the relation

eg5a f nP, ~3.1!

wherea is the correction factor accounting for neutron cap-
ture in the target after multiple scattering. For the thin113Cd
sample multiple scattering effects were negligible for all
p-wave resonances:a(Cd)'1. The relative neutron polar-

ization was monitored continuously by NMR measurement
of the proton polarizationf p with the use of Eq.~2.1!. The
value of the proton NMR polarization was stored for each
neutron spin sequence and averaged to produce the relative
neutron polarization for each run. The absolute calibration of
the neutron polarization was performed by transmission mea-
surement of the known PNC asymmetry in the 0.74-eV reso-
nance of139La target placed in the downstream end of the
spin flipper. The average beam polarization~for the summed
data set! at this 10-m position wasf n(Ep50.74 eV)50.66
60.04. P asymmetries were extracted for 23p-wave reso-
nances in113Cd listed in Table I. The uncertainties quoted
are the statistical, peak fitting, and the beam polarization
errors combined. The energies were calibrated to the reso-
nance energies determined in Ref.@23#. The parity assign-
ments for the majority of cases are taken from Ref.@23#.
Resonances at energies 281.8 and 457.8 eV, quoted in Ref.
@23# ass waves on the basis of probabilistic arguments, are
assigned here asp-wave resonances on the basis of theg-ray
spectra@24#. The shape analysis of the present sum data near
290 eV gave no direct indication of the presence of the weak
289.64-eV level as found in ORELA measurement@23# on
the tail of thes-wave resonance 291.61 eV. The poorer TOF
resolution of our experiment~2 eV for one channel atE
5290 eV) did not allow these peaks to be resolved. How-
ever, we did see a statistically significant PV effect over the
peak observed near 291 eV. We renormalized the observed
parity violating effect to theP value for 289.64-eV reso-
nance presented in in Table I using thegGn data from Ref.
@23#.

It is possible that the cumulative effect of multiple gaps in
the spin transport system coupled with the Earth’s magnetic

FIG. 2. Fits to the difference spectrum~top! and to the sum
spectrum~bottom! near the 21.8-eVp-wave resonance. A PNC ef-
fect is not expected in this case sinceJ52; the dashed peak repre-
sents the resonance contribution after subtracting the background.

FIG. 3. Fits to the difference spectrum~top! and to the sum
spectrum~bottom! near the 102.3-eVp-wave resonance which ex-
hibits a PNC effect; the dashed resonance shapes obtained after the
background subtraction are the 102.3-eV level in113Cd, the
99.5-eVs-wave level in111Cd, and the 98.6-eV level withJ52 in
113Cd.
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field could reduce the polarization of the beam at the 60-m
sample position. According to calculations in Ref.@33#, the
depolarization~defined as the relative difference of beam po-
larizations at 60 and 10 m! shows fluctuating energy behav-
ior that decreases with neutron energy. For normal condi-
tions and for energies from about 5 to 500 eV, these
fluctuations are less than 3% with an average depolarization
value of about 2%. For the case of no B field in the detector
section of the solenoid, as an example of abnormal condi-
tions, a depolarization of 12% near 0.7 eV and of 2% around
100 eV was calculated. We believe that, on average, depo-
larization was less than 5% for energies above 7 eV. This is
confirmed by ourP value for the 7-eV resonance, which
agrees with the value 0.9860.30 in Ref. @22#, and by the
depolarization free transmission measurement described be-
low.

B. Parity-violating transmission asymmetries

A transmission measurement was performed with a
8.46-cm thick natural Cd target placed in the polarized beam
after the spin-flipper at 6-m position. A10B liquid scintillator
detector@34# was used at 56 m. This transmission measure-
ment, initially intended to verify the capture value ofP at the

102.3-eV resonance, revealed two more cases of parity vio-
lation in cadmium. A count rate asymmetrye in a transmis-
sion experiment bears a different relationship to the cross
section asymmetryP than in the capture case@Eq. ~3.1!#.
Here @5,8#

e~E!52tanh@ns~E! f nP#, ~3.2!

which involves the resonance parameters describing the
cross sections(E) defined by Eq.~1.2!. For p-wave reso-
nances, thens(E) value is small even for thick samples
@ns(E),1#, and the Doppler broadening and the instru-
mental resolution function additionally reduce the value of
s(E) and, therefore, the experimental value ofe. As opposed
to the capture case, it is not straightforward to deduce the
asymmetryP from the ‘‘observed’’ valuê e& calculated as
the relative difference of the corresponding count rate sums
over the resonance. In particular, there are difficulties in the
case of weak levels in the vicinity of strong ones. Conse-
quently, it is best to fit the summed~1 and 2 helicities!
spectra first to obtain the resonance and resolution function
parameters and then fit the1 and 2 spectra separately to
obtainP. This procedure was performed on the natural cad-
mium data with the fitting codeFITXS developed in Ref.@35#.
The code implements the Reich-Moore multilevel cross sec-
tion formalism and takes full account of the LANSCE time-
of-flight spectrometer resolution function. As an example,
the sample-in data fit~80 runs! in the 60–73 eV range is
shown in Fig. 4. Fits for the energy range around 102 eV are
shown in Figs. 5 and 6. Thep-wave 102.30-eV resonance of
111Cd is between 99.50-eV and 103.05-eVs-wave reso-
nances of111Cd. To show its presence and size, the contri-
bution of the 102.30-eV level to the fit shown in Fig. 5 is
omitted and the the result is shown in Fig. 6. Some transmis-
sion results are presented in Table II. The values of^e& are

TABLE I. Capture PNC asymmetries and parameters of the
p-wave resonances in113Cd

En ~eV! Ja gGn ~meV!b P~%!

7.0060.01 1 0.0003160.00003 20.8060.36
21.8360.01 2 0.007160.0002 20.0460.22
43.3860.03 0 0.004760.0004 20.3260.55
49.7760.01 1 0.015060.0005 20.0560.22
56.2360.01 2 0.040360.0006 10.2360.10
81.5260.01 0.005260.0006 10.5661.15
98.5260.02 2 0.04260.001 20.3360.21

102.3060.02 1 0.03760.001 11.0460.22
106.5660.02 0.03060.002
166.6060.13 0.02060.002 12.0061.10
196.1560.04 0.10060.005 21.6560.76
203.5160.04 1 0.06760.003 20.5060.40
211.8860.05 0.07860.003
237.8760.05 2 0.12560.004 10.2460.21
252.6860.05 2 0.14060.004 10.2560.25
271.5060.06 0.2660.01
281.8360.06 1 0.4860.01 20.2060.14
289.6460.09 ~1!c 0.0660.006 15.161.1
312.3060.07 2 0.49160.007 10.1660.15
343.7960.07 0 0.1760.01 20.4160.51
351.660.2 2 0.03660.003 20.4661.24
359.360.1 1 0.2860.01 20.2260.34
376.860.1 1 0.8360.01 20.3360.13
385.060.1 0.08960.006 20.1860.61
422.760.1 2 1.0060.02
457.860.1 1 1.6260.02 20.0560.10
489.960.1 1 0.7260.02 10.0460.23

aSpins taken from Ref.@24#.
bValues taken from Ref.@23#.
cSpin deduced from the presence of PV.

FIG. 4. The experimental~points! and fitted ~full line! Cd
sample-in transmission spectra in the 60–73 eV energy range. The
dashed line is the background.
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listed to demonstrate the small size of observables in this
transmission experiment as compared withP. The neutron
widths were in agreement with Refs.@25,23# except for the
102.30-eV resonance for which the initial fit gave a value of
0.090 meV instead of the known value 0.037 meV. However,
it was found that addition of thep-wave resonance~suppos-
edly of 111Cd) at the energy 102.54 eV led to agreement. The
values En5102.54 eV andgGn50.054 meV of this new
resonance were determined from fits keeping the values of

the E5102.30 eV resonance parameters fixed as given in
Ref. @23#. With these parameters, the transmission value ofP
for the 102.30-eV resonance agrees with the capture value of
P within statistical uncertainty. A tentative111Cd isotopic
assignment for the parity violating 62.39-eV resonance needs
experimental confirmation. Nevertheless, we believe that we
discovered two more cases of parity violation in
111Cd:62.39-eV and 69.60-eV resonances—in addition to the
previously known case of the 4.53-eV resonance@5#.

IV. WEAK MATRIX ELEMENT

All previous experimental work on the rms matrix ele-
mentMJ involved target nuclei withI 50. There parity vio-
lation occurs for the spinJ51/2 resonances, and since for
such a casegp(3/2)50, the parameterR in Eq. ~1.3! has the
valueR51 and the asymmetryP is in fact a sum of Gauss-
ian variablesVsp with constant coefficients

Asp5
2gs~Ep!/gp~Ep!

Es2Ep
. ~4.1!

Such quantity is Gaussian with varianceAp
2MJ

2 , where

Ap5A(
s

Asp
2 . ~4.2!

As emphasized in the Introduction, it is possible then to ob-
tain MJ by the likelihood analysis of measured asymmetries
P(Ep), which was performed for the first time in Ref.@8#.
The quantityAp

2 involves only experimentally known neu-
tron resonance parameters; the signs of the neutron width
amplitudes do not enter. To include experimental errorss in
P, the convolution theorem is used with the result that the
probability density function forP is Gaussian with variance
(Ap

2MJ
21s2) @8#.

The extension of the method to targets with spinIÞ0 is
discussed in Ref.@26#. The method can be identified as a
Bayesian method with uniform prior probability. We per-
form the data analysis in terms of the likelihood function
L(MJ) originated as the post probability functionP(M uP) in
the frame of Bayes theorem

L~MJ![P~MJuP!5
P~PuMJ!P~MJ!

P~P!
, ~4.3!

with P(P)5*P(PuMJ)P(MJ)dMJ . As usual, a constant-
valueda priori function P(MJ) for a parameterMJ is in use
for situations where nothing is knowna priori about the
parameter MJ . The overall normalization constant
P(MJ)/P(P) in Eq. ~4.3! is calculated by integrating
P(MJuP) over MJ . The explicit forms of the likelihood
functions used by different authors in analysis of PV data are
discussed elsewhere@36#. For IÞ0 targets and the case of
complete knowledge of spins and other parameters including
the amplitudesg1/2 and g3/2, the extension is trivial: one
introduces the reduced observableP/ApR, for which the
probability function is Gaussian with varianceMJ

2 . In other
words, the experimental asymmetryP follows a Gaussian
distribution with variance (MJ

2A2R21s2). In our case of
113Cd, neutron widths and spin are known. However, the

FIG. 5. The experimental and fitted Cd sample-in transmission
spectra around 102 eV: all levels are taken into account. The dashed
line is the background.

FIG. 6. Same as Fig. 4 but the 102.30-eV resonance is omitted
in the plot.
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p-wave amplitudesgp(1/2) and gp(3/2) are unknown. In this
case the quantityR in Eq. ~1.3! must be treated as a random
variable, so that the asymmetryP is the productP5GR of
the Gaussian variableG5(s2Vspgs /@(Es2Ep)gp# and a
random variableR. The latter is a known function of the two
Gaussian variablesgp(1/2) and gp(3/2) with the variances
^gp(1/2)

2 & and ^gp(3/2)
2 & correspondingly. The resulting prob-

ability density function ofP is no longer Gaussian. As
shown in Ref.@26#, it is

P~PuMJAp ,a,s!

5
2

p E
0

p/2 a

a2sin2u1cos2u

du

A2p~MJ
2Ap

2sin2u1s2!

3expS 2
P 2

2~MJ
2Ap

2sin2u1s2! D , ~4.4!

whereu is defined through tanu5gp(1/2) /gp(3/2) . The param-
eter a2 is a2[^gp(3/2)

2 &/^gp(1/2)
2 &, its value can be obtained

from data on thep3/2 andp1/2 neutron strength functions. For
smalla this function is Gaussian and is identical to the target
spin I 50 function, since thenR51. The shape of
P(PuMJ Ap ,a,s) for large values ofP remains approxi-
mately Gaussian. The effect of the appearance of ap3/2 am-
plitude in the neutron width is to produce a spike nearP
50 at the expense of large values ofP.

This probability density function was used to construct
the Bayesian likelihood functionL(MJ) with uniform prior
probability

L~MJ!5N0)
i 51

10

P~MJuPi ,Ap ,a,s i !, ~4.5!

whereN0 is a normalization constant and the product is over
the data for the ten spinJ51 p-wave resonances in113Cd
with measuredP. This likelihood function has an asymmet-
ric shape that leads to asymmetric error bars forMJ . TheMJ

values are obtained by finding the value ofMJ
! that maxi-

mizesL(MJ). A confidence interval forMJ is obtained by
solving the equation

lnFL~MJ
6!

L~MJ
!! G5

1

2
. ~4.6!

The obtained result for the weak matrix element in113Cd is

MJ5152.920.9
11.3 MeV. ~4.7!

The given value of the matrix element is influenced con-
siderably by the PV value for the 289.64-eV resonance,
which alone contributes 1.6 meV. The small width of this
resonance is exactly the source of the large contribution to
the matrix element:P is large because the denominator in
Eq. ~1.1! is small. The inclusion of the 289.64-eV result in
the analysis to extractMJ51 is justified since the experimen-
tal asymmetry at an energy about 291 eV is unambiguous.
The data of Ref.@23# are clear in the existence of two reso-
nances at this energy, one of which is ap wave. Since PV
effects are measurable only inp-wave resonances, our deci-
sion to normalize the asymmetry to thep-wave cross section,
which results in the large asymmetryP, is the only logical
course if our data and the data of Ref.@23# are taken at face
value. We are aware of possible doubts in the merit of the
given uncertainty inMJ51 . In this connection we would like
to draw the attention of readers to the Flambaum and Grib-
akin @38# conjecture that PV effects do not obey the central
limit theorem of probability theory, therefore, large fluctua-
tions are expected and the effects in few resonances might
dominate the mean value.

The likelihood function can be expressed as a function of
the weak spreading width through Eq.~1.4!. A plot of the
113Cd likelihood function calculated with thep-wave data
from Table I, thes-wave data from Ref.@23#, spins from Ref.
@24#, and the valuea50.7 from Ref.@37# is given in Fig. 7.
The most likely value of the spreading width is

Gw5~16.228.3
117.7!31027 eV. ~4.8!

It was calculated with the valueDJ5153364 eV which fol-
lows from the ‘‘observed’’ valueDobs524.862.6 eV @23#
after applying the (2J11)-law of spin dependence of level
densities. The113Cd weak spreading width can be compared
with the valueGw55.523.0

15.6 in Ref. @18# for 232Th and with
with the valueGw50.920.5

11.9 in Ref. @17# for 238U ~in the same
units of 1027 eV). There is little evidence for a mass depen-
dence of the weak spreading width. The experimental value
of the weak matrix element given by Eq.~4.7! agrees well
with an estimateMJ52.0 meV from Eq.~1.5!. However, the
results are not precise enough to distinguish between the

TABLE II. PNC transmission asymmetries and parameters of some resonances in Cd.

En ~eV! A gGn ~meV! gGn ~meV!a 104^e& P~%!

62.39 ~111! 0.02660.002 0.04260.019 7.960.4 1.1260.07
63.76 113 2.1060.17 2.660.1
66.85 112 7.060.4 7.561.0
69.60 111 0.07060.005 0.1060.02 1.660.4 0.1360.03
89.50 110 13266 130610
99.50 111 9.060.6 1061

102.30 113 0.03760.001 0.03760.001 2.460.7 0.8360.20
102.54 ~111! 0.05460.003
103.05 111 0.6560.05 0.7560.10
291.61 113 4.4060.07 4.4060.07

aValues taken from Refs.@23,25#.
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different approaches to the mass dependence ofMJ dis-
cussed in Sec. I. PNC asymmetry measurements for addi-
tional nuclei in the mass regionA.100, as well as from
other regions, are necessary to determine the mass depen-
dence of the weak spreading width.

V. SUMMARY

We performed capture measurements of PNC longitudinal
asymmetries in113Cd in the neutron energy region 7–500
eV. These measurements are equivalent to transmission ex-
periments, in the sense that both measure the parity violating
part of the total resonance cross section. The capture tech-
nique using a nearly 4p detector has a sensitivity advantage,
which makes possible PNC measurements with small
samples of enriched isotopes. Of the 23p-wave resonances

studied in 113Cd, four resonances showed parity violation
with greater than 2.2s statistical significance. Only about
one half of the cadmium resonances can exhibit parity vio-
lation, namely those with spinsJ50 or 1 but not those with
J52. We used theJ values determined in Ref.@24#. The two
J50 resonances showed no parity violation at the accuracy
level 531023. The sample of ten resonances withJ51 was
analyzed to determineMJ51 . The value obtained,
MJ51~113Cd!52.920.9

11.30meV, is the first experimental value
of MJ for nuclei in the region of the 3p maximum of the
neutronp-wave strength functionA.100. The value of the
weak spreading width is not very different from the values
for uranium and thorium nuclei from the 4p-maximum re-
gion, implying that the spreading width of the weak interac-
tion in nuclei has the same order of magnitude.

There remain unresolved issues. The uncertainty in the
MJ values is not small enough to distinguish between differ-
ent theoretical predictions for the mass dependence ofMJ .
We plan to measure PNC asymmetries for other nuclei in the
A.100 mass region in order to improve the precision of
MJ . These measurements will be performed with both trans-
mission and capture techniques, and with the new polariza-
tion setup which was used in this experiment. For capture
measurements a new 4p detector with 24 CsI~pure! crystals
is assembled and tested. Resonance spin determination on
other target candidates for PNC study would be of great
value.
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