
Computer Science Faculty Publications Computer Science

1-2015

Pedagogical Possibilities for the 2048 Puzzle Game
Todd W. Neller
Gettysburg College

Follow this and additional works at: https://cupola.gettysburg.edu/csfac

Part of the Computer Sciences Commons

Share feedback about the accessibility of this item.

This is the publisher's version of the work. This publication appears in Gettysburg College's institutional repository by permission of
the copyright owner for personal use, not for redistribution. Cupola permanent link: https://cupola.gettysburg.edu/csfac/26

This open access article is brought to you by The Cupola: Scholarship at Gettysburg College. It has been accepted for inclusion by an
authorized administrator of The Cupola. For more information, please contact cupola@gettysburg.edu.

Neller, Todd W. "Pedagogical Possibilities for the 2048 Puzzle Game." The Journal of Computing Sciences in Colleges 30.3 (January
2015), 38-46.

http://cupola.gettysburg.edu/?utm_source=cupola.gettysburg.edu%2Fcsfac%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cupola.gettysburg.edu/?utm_source=cupola.gettysburg.edu%2Fcsfac%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cupola.gettysburg.edu/csfac?utm_source=cupola.gettysburg.edu%2Fcsfac%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cupola.gettysburg.edu/compsci?utm_source=cupola.gettysburg.edu%2Fcsfac%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cupola.gettysburg.edu/csfac?utm_source=cupola.gettysburg.edu%2Fcsfac%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=cupola.gettysburg.edu%2Fcsfac%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.google.com/a/bepress.com/forms/d/1h9eEcpBPj5POs5oO6Y5A0blXRmZqykoonyYiZUNyEq8/viewform
mailto:cupola@gettysburg.edu

Pedagogical Possibilities for the 2048 Puzzle Game

Abstract
In this paper, we describe an engaging puzzle game called 2048 and outline a variety of exercises that can
leverage the game’s popularity to engage student interest, reinforce core CS concepts, and excite student
curiosity towards undergraduate research. Exercises range in difficulty from CS1-level exercises suitable for
exercising and assessing 1D and 2D array skills to empirical undergraduate research in Monte Carlo Tree
Search methods and skilled heuristic evaluation design.

Keywords
2048 puzzle game, computer science

Disciplines
Computer Sciences

This article is available at The Cupola: Scholarship at Gettysburg College: https://cupola.gettysburg.edu/csfac/26

https://cupola.gettysburg.edu/csfac/26?utm_source=cupola.gettysburg.edu%2Fcsfac%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages

PEDAGOGICAL POSSIBILITIES FOR THE 2048 PUZZLE

GAME *

Todd W. Neller
Department of Computer Science

Gettysburg College
Gettysburg, PA 17325-1400

717-337-6643
tneller@gettysburg.edu

ABSTRACT
In this paper, we describe an engaging puzzle game called 2048 and outline a
variety of exercises that can leverage the game's popularity to engage student
interest, reinforce core CS concepts, and excite student curiosity towards
undergraduate research. Exercises range in difficulty from CS1-level exercises
suitable for exercising and assessing 1D and 2D array skills to empirical
undergraduate research in Monte Carlo Tree Search methods and skilled
heuristic evaluation design.

INTRODUCTION
Released in March 2014, the online and mobile puzzle game 20481 began its surge

of popularity. In this paper, we will describe this engaging game and point out ways that
it may be used to advantage in the Computer Science curriculum.

The outline of the paper is as follows: We begin by describing the 2048 game,
noting work already in progress to leverage the popularity of this game in CS education,
and describing the scope of our unique contribution. Next, we discuss the modeling of
the game state itself from simple fragments of the specification suitable for CS1 to a full
game state model suitable for CS2. We then turn our attention to the creative challenge
of heuristic game state evaluation. Finally, we describe a progression of Monte Carlo

1 http://gabrielecirulli.github.io/2048/

* Copyright © 2015 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

38

CCSC: Eastern Conference

simulation and search methods providing modest, achievable goals for introductory CS1
through advanced AI students.

Game Description
The 2048 game is played on a 4-by-4 square grid

that is partially filled with tiles labeled with powers of
2. The primary goal of the game is to merge randomly
generated tiles in order to create a tile labeled 2048 (211)
as shown above. Beyond this primary goal, however,
players may continue play so as to achieve higher
scores and tiles with higher powers as well. The
highest possible tile would be 131,072 (217), although
this would be improbable to achieve.

Initially, the board has two randomly generated
tiles. Randomly generated tiles are distributed
uniformly over all empty cells, but such tile values are either 2 (with probability .9) or 4.

In each turn, a player may choose to move left, right, up, or down. A move in a
given direction is legal if it results in a change to the grid. When no legal move exists,
the game is over. Change occurs through tiles merging and/or sliding into different cells.
Thus, the grid must contain at least one empty cell or at least one pair of identical,
successive tiles along a row or column for the game to continue.

When the player chooses a direction, the tiles in all rows or columns aligned with
that direction merge and slide in that direction if possible. Let us refer to a single
row/column as a line, with the front of the line being the end farthest in the direction of
motion. From the front to the back of the line, successive identical tile pairs merge into
a new tile with their sum. (Merged tiles cannot merge again in the same movement.)
Then, all tiles (merged or not) slide as far as possible in the direction of motion. Consider
the following grids before (left) and after (right) a downward move:

In the rightmost column, both bottom and top pairs of vertically adjacent 2s merge
into two 4s that slide downward. Note that these merged 4s do not then merge with each
other in the same movement. In the next column to the left, note the 3 vertically adjacent
8s. The two bottommost 8s merge into a 16, being farthest in the direction of motion.

39

JCSC 30, 3 (January 2015)

In the next column to the left, there are no possible merges; the 2 simply slides down.
In the leftmost column, two 2s merge into a 4.

The upper-left corner 2 is a randomly generated tile. After each legal move, a
single tile is randomly generated as described above. Scoring is simple: Each time a
merged tile is created, the value of that tile is added to the score. Thus, as the board is
seeded with 90% 2s and 10% 4s after each move, one seeks to move so as to maximize
one's expected future score.

Previous CS Teaching and Learning with 2048
Already, a free, short Udacity course “Make Your Own 2048" 2 is being offered to

“teach you the basics of HTML and CSS and how they interact with Javascript”. Having
no prerequisites, the course invites the student to “make small changes to HTML and
CSS files” that significantly change the look of the game.

Being free and open source, 2048 clones abound these days. Many have been
motivated to dig into the 2048 source code via Github3, learning enough Javascript to
make not only trivial and cosmetic changes4, but also mathematical variations5 and
Artificial Intelligence (AI) hint systems and demonstration bots6.

Scope
Given the rapidly growing interest in do-it-yourself 2048 clones and ample coverage

of such cloning skills elsewhere, we instead turn our attention in this paper to the space
of 2048 assignment ideas ranging in application from CS1 to Introductory AI courses.
We do not presume Javascript as a programming language. Indeed, we put aside both
language and graphical user interface commitments, hoping to explicate the rich
opportunities the game provides for teaching core CS concepts in a fun and entertaining
way. Our simple, text-based Java experimentation with these ideas has proven as
interesting as the game itself.

MODELING
One of the first problems we can present students is this: Given a 4-by-4 puzzle

grid, compute whether or not the game is over. Since the game is over if and only if there

2 https://www.udacity.com/course/ud248

3 https://github.com/gabrielecirulli/2048

4 http://doge2048.com/

5 http://mathmunch.org/2014/03/24/2048-2584-and-variations-on-a-theme/

6 http://stackoverflow.com/questions/22342854/what-is-the-optimal-algorithm-for-
 the-game-2048

40

CCSC: Eastern Conference

are no empty cells and no orthogonally adjacent identical tiles, this can be approach via
two steps: (1) a search of a 2D array for the value 0 (encoding an empty cell), and (2) a
search of each row and column for adjacent pairs. This exercise would be suitable in a
unit on multidimensional arrays in a CS1 course, or as a relatively easy programming
contest problem. With this and other problems that follow, many variations are possible,
as there are many precursors and subsequent variations of this game, e.g. Threes7 and
2584 (the Fibonacci variant), respectively.

One can also parameterize this problem with a direction: Can the player legally
move in a given direction? Note that, while reducing our adjacency consideration to one
dimension, one aspect of the computation requires care: Not every empty cell aids
movement in a specific direction. If there are empty cells(s) in a line that is already
compacted in the given direction, such cells do not make movement in that direction
legal.

Using this parameterization, one can then compute the legal move directions for the
grid.

Another simple problem concerns the modeling of a single line movement in 2048.
Let the first index of an array be the farthest in the direction of motion, and let the value
0 again represent an empty cell. Have students first devise an algorithm that will slide
and compact all nonzero values to the beginning of the array. Then students can
augment this algorithm with tile-merges. Finally, the tilemerging code can be modified
to calculate accumulated score gain.

Alternatively, one may approach the processing of a line by enqueuing nonzero
values into a queue and dequeuing values into a new/cleared array. In this approach, a
merge takes place when a just-dequeued value matches the new value at the front of the
queue, in which case the second value is dequeued as well and the sum is placed into the
array. This would work nicely as a simple CS2 queue exercise.

From such underlying computation, one can then compute an entire grid movement
and associated score gain one line (i.e. row/column) at a time.

When working with an object-oriented (O-O) language, it is useful to consider the
design of a 2048 state object with a well-designed interface for user interaction and play
modeling (e.g. isGameOver(), makeMove(Direction), generateRandomTile(), getScore(),
etc.), heuristic evaluation (e.g. getGrid()), and search/simulation (e.g. clone() or copy
constructor). Of course, one's best design would depend on one's possible follow-on
projects described in the following sections.

HEURISTIC EVALUATION
One of the more intriguing questions the player faces is how one prefers one game

state to another. With experience, a player notes that it is often advantageous to prefer
a monotonic snake-like pattern where the largest tile is in a corner and tiles monotonically
decrease back-and-forth along rows or back-and-forth along columns. A particularly

7 http://asherv.com/threes/

41

JCSC 30, 3 (January 2015)

delightful game experience is then performing successive merges along this snake-like
path to form a new maximum tile in the corner.

However, one's ideal configuration cannot generally be maintained. The question
then again is this: “What is to be preferred in the space of all configurations?” In AI, this
scoring of states is referred to as heuristic evaluation. By defining a heuristic scoring
function (or heuristic function), we formalize what we value in a given configuration of
tiles. Consider how much one should value…
 ! … having our maximum value tile in a corner? … monotonicity along a snake-like

path?
 ! … monotonicity along any line?
 ! … the maximum tile of a line along an edge? … adjacent identical tiles?
 ! … empty cells?

For example, one heuristic evaluation advocated in an online discussion of optimal
2048 play8 is to equally reward (1) each line where the maximum value is at one end, and
(2) each empty cell of each line. This strategy, when coupled with optimized expectimax
search of up to depth 8, was reported to achieve a 16384 tile in 13 out of 100 trials. Thus,
heuristic evaluation need not be complex to be effective.

Arguing the merits of various strategies may have some fascination, but here we are
provided a challenge to define our strategies precisely and test them rigorously with play
that is guided by such heuristic evaluation. The 2048 game provides the Computer
Scientist a wonderful opportunity for both problem-solving creativity and the experience
of empirical research.

From an O-O perspective, one may implement the heuristic evaluation as a tightly
integrated function of the state object. This would have the advantage of inviting
students to extend class definitions, overriding the parent heuristic evaluation, yet
inheriting and possibly using various supporting computations.

One might also take the approach of creating a separate evaluator object that is
allowed to visit and evaluate the state object. Thus, heuristic evaluation invites
interesting discussion of O-O design patterns.

MONTE CARLO AND SEARCH TECHNIQUES
Finally, we consider ways we can use both elements above, a game model and a

game state heuristic evaluation, to inform play.9 We begin simply with algorithms
suitable for CS1 exercises and then elaborate to projects suitable for an introductory or
advanced AI course. In all of these techniques, we assume either (1) an ability to clone
a state object so as to preserve a parent state, or (2) an ability to both make and undo

8 http://stackoverflow.com/questions/22342854/what-is-the-optimal-algorithm-for
-the-game-2048; https://github.com/nneonneo/2048-ai

9 An online demonstration of AI added to provide a player hints or play an
automated game can be found at http://ov3y.github.io/2048-AI/

42

CCSC: Eastern Conference

alternating moves and random tile generations. In short, we require an ability to simulate
the effects of different play decisions.

Throughout all of these examples, we will make use of the simple heuristic
described in the previous section that, for each row and each column line, scores a point
for a maximum value at a line end plus the number of empty cells in that line.

Simple Greedy Play
The simplest use of a heuristic evaluation function is to make each legal move

without subsequent random tile generation, evaluate each resulting state, and choose the
move leading to the state that maximizes our heuristic function. Let us call this “simple
greedy” play.

Simple greedy play is weaker than many human players because it is so
short-sighted, not even considering the ramifications of the next random tile generation.
For introductory CS students, it would be desirable to have a prerecursion technique that
does not require consideration of game tree traversal and evaluation. For this, we have
developed and tested a simple approach based on Monte Carlo simulation.

Simple Monte Carlo Play
One way to gain weak insight beyond the next move is to make a few random moves

to get a very rough feel for the heuristic values further along that line of play. In general,
Monte Carlo simulation is a fast way to gain probabilistic insight in systems where
events of interest are not too infrequent [1].

Suppose we want to get a rough evaluation for states beyond a move in a given legal
move direction. We copy the current state, make the move, and then make a few more
random moves. For this example, we'll make one deliberate move and two random
moves. After all three moves and subsequent random tile generations (which we'll
assume henceforth), we evaluate the resulting state with our heuristic function.

We repeat this process many times and average the evaluation. For our experiments,
we'll perform 1000 Monte Carlo simulations for each legal move. Once we've averaged
the evaluations for each legal move, we choose the move that maximizes our expected
state 2 random moves beyond our chosen move at depth 3.

Note that this technique relies on iteration, and does not require the student to have
mastered recursion or game-tree evaluation concepts.

Expectimax
In the context of an introductory AI course, we would naturally show students that

the structure of the game tree consists of choice nodes that one maximizes alternating
with chance nodes that one averages. The basic relevant algorithm would be

43

JCSC 30, 3 (January 2015)

(depth-limited) expectimax.10 Given the branching factor of the problem, a depth-limited
expectimax without optimizations in modeling (e.g. fast bit representation and operations)
and search (e.g. caching), one would need to terminate at a shallow depth-limit in order
to achieve rapid play.

Expectimax with Chance Sampling
We can gain much of the benefit of expectimax reasoning with faster performance

by performing chance sampling of random tile generation. In doing so, we can limit our
effective branching factor and search faster or deeper.

Sampling such chance events is an interesting exercise. An incorrect naïve approach
would uniformly sample all possible events, treating the generation of 2 and 4 tiles as
equiprobable. If one randomly generates samples so as to allow duplicates, it slows the
process of gaining unique samples in proper proportion. A correct efficient approach
would be to create two copies of a list of empty cells. One copy represents unchosen 2
tile generations and the other copy represents unchosen 4 tiles generations. The relative
probability of sampling an unchosen 2 tile is .9 times the number of unchosen samples
divided by the sum of same product plus .1 times the number of unchosen 4 tile samples.
Using this insight, we choose the list/tile to sample with correct probability, and then
select a random unchosen cell from the list in a manner similar to the Fisher-Yates shuffle
algorithm, building an unbiased sample efficiently.

Performance Results
Using each of the previous algorithms, 1000 games were played. Performance

results are summarized in the following table:

Algorithm
Median
Score

Mean
Score

Std.
Dev.

Max.
Tile

Median
Tile

random 1028 1075 512 256 128

simple greedy 3326 3620 1708 1024 256

simple Monte Carlo (depth 3) 14586 14295 6592 2048 1024

expectimax (depth 2) 14398 14241 6717 2048 1024

expectimax (depth 3) 27132 25270 10429 4096 2048

10-sample expectimax (depth 2) 14496 14623 7096 4096 1024

10-sample expectimax (depth 3) 27052 24883 10106 4096 2048

10 Expectimax is the expectiminimax algorithm [5] without the minimizing
adversarial player.

44

CCSC: Eastern Conference

Of greatest significance to introductory students is the fact that the Simple Monte
Carlo Play to depth 3 described above requires no recursion or game-tree evaluation, yet
performs at a similar level to depth 2 expectimax.

To have median performance that achieves the winning 2048 tile, depth 3
expectimax is necessary, but this can be achieved more efficiently with sampling.
Switching to a 10-sample expectimax for depth 2 and depth 3 took 55% and 36% of the
computational time, respectively, without significant degradation of performance.

The maximum score achieved in any of our initial experimental runs was 69624
using a 10-sample expectimax to depth 3. 100 runs of non-sampling expectimax to a
maximum depth of 10 reportedly achieved the 2048, 4096, 8192, and 16384 tiles in
100%, 97%, 76%, and 13% of runs, respectively. The median score was 157652, and the
maximum score was 377792.11

Finally, we note that 1000 games is a small sample size for these initial exploratory
experiments. The purpose here is to provide a rough feel for the relative merits of these
algorithms in the order of their programming complexity. We thus provide reasonable
approximate expectations for performance with a simple heuristic and a wide range of
levels of algorithmic difficulty for the student.

We hope the reader is encouraged by the performance that is achievable with
relatively simple methods and is thus emboldened to have students explore this
fascinating design space. Indeed, this general topic area suggests excellent undergraduate
research projects. For example, an introductory student might experiment with different
heuristic evaluations using simple Monte Carlo play, whereas an advanced student might
do the same using expectimax play.

As many online are sharing their own 2048 AI algorithmic approaches, this appears
to be an excellent, accessible playground for formative experiences in empirical AI
research.

Next Steps
An advanced undergraduate- or master's-level research project might consist of

reading a survey of Monte Carlo Tree Search (MCTS) algorithms [2] and creating a
MCTS player for 2048. We have not yet had opportunity to apply MCTS to 2048, but
searching online, we observe that others are thinking and working along the same lines.

CONCLUSIONS
Computer Science education, as with many areas of education, has benefitted from

an increasingly contextualized approachto teaching its abstract concepts. Board games
[3] and video games [4] have long provided good contexts of engaging experiences for
teaching many CS concepts.

11 http://stackoverflow.com/questions/22342854/what-is-the-optimal-algorithm-for-
the-game-2048

45

JCSC 30, 3 (January 2015)

In this article, we have described a range of feasible exercises and projects for the
new, popular 2048 puzzle game. From the CS1 student testing game-ending conditions
to the advanced AI student applying expectimax with chance sampling, we hope the
reader appreciates the many interesting pedagogical possibilities offered by 2048.

We have experimented with these ideas, yet given that 2048 burst into popular
consciousness one month ago, there has not been time to assess such assignments.
However, we have considerable experience with game exercises ranging from CS1
through advanced AI, and serve here to primarily report on the engaging quality of this
game, and the many pedagogical possibilities that strike us as worthwhile. Just as the
2048 game is engaging, we expect that relevant exercises will also engage CS students
and fruitfully exercise core CS concepts. We foresee this as a ripe area for empirical
research as evidenced by many 2048 blog articles and open-source project spin-offs. As
CS educators, may we catch these teaching opportunities early and aid each other in
rapidly developing curricular applications.

REFERENCES

[1] P. J. Nahin, Digital Dice: Computational Solutions to Practical Probability
Problems, Princeton, New Jersey: Princeton University Press, 2013.

[2] Cameron Browne, et al, “A Survey of Monte Carlo Tree Search Methods,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 4, no. 1, pp.
143, March 2012.

[3] Peter Drake, Kelvin Sung, “Teaching Introductory Programming with Popular
Board Games,” in SIGCSE '11 Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education, Dallas, Texas, USA, 2011.

[4] K. Sung, “Computer games and traditional CS courses,” Communications of the
ACM, vol. 52, no. 12, pp. 74-78, December 2009.

[5] Stuart Russell, Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.,
Upper Saddle River, New Jersey: Prentice Hall, 2010, p. 178.

46

	1-2015
	Pedagogical Possibilities for the 2048 Puzzle Game
	Todd W. Neller
	Pedagogical Possibilities for the 2048 Puzzle Game
	Abstract
	Keywords
	Disciplines

	C:\Users\John\Documents\myfiles\CCSC\CCSC14\JCSC30_3.wpd

