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Abstract: This article describes our modeling approach to teaching the one-
dimensional heat (diffusion) equation in a one-semester undergraduate partial
differential equations course. We constructed the apparatus for a demonstra-
tion of heat diffusion through a long, thin metal rod with prescribed tempera-
tures at each end. The students observed the physical phenomenon, collected
temperature data along the rod, then referenced the demonstration for pur-
poses in and out of the classroom. Here, we discuss the experimental setup,
how the demonstration informed practices in the classroom and a project based
on the collected data, including analytical and computational components.

Keywords: Mathematical modeling, partial differential equations, stu-
dent project

1 INTRODUCTION

Incorporating data and/or numerical experiments in classroom examples
of mathematical models is a popular way to motivate student interest
and learning. See [1, 3, 4, 6, 7] as a small sample. Moreover, students
can gain insight into the application, intuition for the mathematical
analysis and confirmation of the theoretical results by using real data
and numerical simulations to complement the theory [2]. In these ways,
students gain experience in the techniques of applied mathematics by
exploring a model along three axes: mathematics, data analysis, and
computation [8].

At our institution, explicitly applied courses have not historically
been the standard offering in the Math department. Recently, though,
there has been a concerted effort to offer, and student interest in, more
applied courses. In the past few years, courses have been offered covering
applied linear algebra (focused on ranking and clustering methods), op-
erations research, neurobiology models and partial differential equations.
It was in preparation for the selected topics course in partial differen-
tial equations when we started discussing the importance of linking the
PDE models to be discussed with their physical counterparts through
real data and numerical simulations.

The upper level selected topics course in partial differential equa-
tions was offered for the first time during the Spring 2015 semester.
The prerequisite courses were Multivariable Calculus and Ordinary Dif-
ferential Equations. Of the fifteen students enrolled there were seven
seniors, five juniors, and three sophomores. All but two students were
either majoring or minoring in mathematics. All but one of the math
majors were simultaneously pursuing another major or a minor in var-
ious areas, including physics, economics, music, environmental science,
computer science and education. When asked why they wanted to take
a PDE course, the students’ responses focused on the applicability to



2 K. Spayd and J. Puckett

real-world problems and a change of pace from the pure courses more
regularly offered. This affirmed our intent to highlight techniques of
applied mathematics; in particular, we wanted to make explicit connec-
tions between physical phenomena and their PDE models in setting the
context for the mathematics.

One such standard model discussed in a one-semester undergraduate
PDE course is the one-dimensional heat equation, also known as the
diffusion equation, given by

ut = kuxx, x ∈ (0, L), t > 0, (1)

where u = u(x, t) is a scalar representing the temperature of a very thin
rod at any point in space and time and k is a material-dependent pa-
rameter known as thermal diffusivity. The ends of the rod at x = 0, L
are subject to various boundary conditions: prescribed temperature, in-
sulation and Newton’s Law of Cooling. Traditionally, these are referred
to as Dirichlet, Neumann and Robin boundary conditions, respectively.
See Figure 1 for a schematic representation with Dirichlet boundary
conditions at each end. In the course at our institution, we used Haber-
man’s Applied Partial Differential Equations with Fourier Series and
Boundary Value Problems as the textbook [5]. The students immedi-
ately encountered the derivation of the one-dimensional heat equation,
a discussion of boundary conditions and steady-state (time-independent)
solution methods in the first chapter.

x=0 x=L

Water bath 

at left 

boundary

Heat source 

at right 

boundaryu(0,t)=T0 u(L,t)=TL

Figure 1: A very thin rod from x = 0 to x = L with prescribed temper-
ature (Dirichlet) boundary conditions u(0, t) = T0 and u(L, t) = TL.

For this reason, we wanted to set the physical context of the one-
dimensional heat equation as soon as possible; the students met in a
physics laboratory for the second class meeting in order to observe a
demonstration of heat diffusing through a thin rod, described in Sec-
tion 2. In Section 3, we address how the demonstration helped with
the model’s derivation and solution techniques in the classroom. Tem-
perature data recorded during the demonstration was used in a stu-
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dent project later in the semester; see Section 4 for a description of
the project. After the project’s completion, the students were asked for
feedback on all parts of the experience. The results are summarized in
Section 5.

2 EXPERIMENTAL SETUP

We designed a simple and affordable apparatus to demonstrate heat dif-
fusion in the same context as the one-dimensional heat equation. The
necessary funds were provided by [an internal organization at our in-
stitution]. The apparatus consisted of a thin rod placed between two
temperature baths as in Figure 1, with four temperature sensors at-
tached. Using more sensors would have decreased the sampling rate.
The rod was made of aluminum, had a length L = 300 mm and a square
cross section with side length 3.2 mm. The flat sides on the rod allowed
for better thermal contact between the temperature sensors and the rod.
The temperature sensors (Maxim Integrated DS18B20) were attached to
the rod at four locations: x = 47, 94, 141, 188 mm. The rod and sensors
were encased in a 25 mm thick foam tube used for insulation. These
sensors were connected in parallel to a Raspberry Pi which read each
sensor’s unique serial number and temperature at a rate of 0.3 Hz. Be-
fore students arrived in class, all the equipment was placed on the lab
table and allowed to reach thermal equilibrium at T = 24◦C. The heat
source consisted of 1 liter of water in a glass beaker placed on a hot
plate, which was checked for a stable temperature reading at T = 53◦C.

After students arrived, we began recording temperatures from the
sensors. A python script recorded the data from the sensors and streamed
them to the command-line where students could see each sensor’s read-
ing plotted against time (Figure 2). The rod was then carefully placed
in thermal contact with the room temperature water bath first and then
with the hot water bath. More details about the setup, a parts list,
the python script used to record and analyze the data, along with the
collected temperature readings are available at: website address with
author information

3 MODEL BUILDING AND ANALYSIS

In the third class meeting, we went through the formal derivation of
the one-dimensional heat equation as an abstraction from what had just
been observed. At this point in time, though, the schematic drawing of
a thin rod, as in Figure 1, and the analysis that followed were rooted
in a common memory. We were explicitly tied to the observed physical
experiment.
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Figure 2: Temperature readings from four sensors along the rod over the
course of the heat diffusion demonstration

The physical assumptions needed for the derivation of Equation 1
include the following:

• the rod is perfectly insulated so that no heat loss occurs through
the lateral surface of the rod,

• the rod is composed of a single, uniform material so that thermal
properties are constant,

• there is no internal heat generation,

• the rod is either heated or cooled only at the ends, not across it.

Because of the laboratory demonstration, these assumptions evolved
from passive requirements into discussion points about the model’s rel-
evance and accuracy. The students initiated conversations regarding
which assumptions were met, neglected or approximated in the lab. This
was a natural segue into the role of mathematical models as approxima-
tions of reality and the use of data in model validation. As will be
discussed in Section 4, this was not an obvious point to the students
given that many of them had no prior exposure to rigorous mathemati-
cal modeling.

Conservation of energy is the governing equation in the derivation of
Equation 1:

d

dt

∫ b

a

c(x)ρ(x)u(x, t)Adx = φ(a, t)A− φ(b, t)A+

∫ b

a

Q(x, t)Adx (2)

where [a, b] is an arbitrary subinterval of [0, L], c is the specific heat of
the rod (J · kg−1 · K−1), ρ is the mass density of the rod (kg ·m−3), A
is the constant cross-sectional area of the rod, φ represents heat energy
flux and Q gives the rate of internal heat generation. Under the third
bulleted assumption above, Q(x, t) ≡ 0. Then the left hand side of
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Equation 2 gives the rate of change in the total heat energy and is equal
to the difference of heat energy per unit time between endpoints a and b
on the right hand side. Given a uniform rod, c(x) and ρ(x) are constants
that are incorporated into the diffusivity constant k in Equation 1.

It was significantly easier to motivate, explain and understand Equa-
tion 2 within the context of the lab demonstration than without it.
Specifically, the above equality between the rate of change of total heat
energy in an arbitrary section of the rod and the difference between in-
flow and outflow rates was physically relevant as opposed to a theoretical
postulation. The students had a shared physical reference and it made
a strong base on which to build the theory.

Likewise, the boundary conditions discussed after the derivation were
entirely accessible after the lab demonstration. The mathematical ter-
minology of Dirichlet, Neumann, and Robin boundary conditions were
coupled to the realistic experimental conditions associated with each
term: holding the temperature fixed at an end, insulation at an end
prohibiting heat loss, and heat escaping through one end into the air,
respectively. As with conservation of energy above, the students could
visualize these conditions in the context of their lab experience and make
more personal connections with the material.

We began investigating solution techniques by first identifying an
equilibrium temperature distribution, i.e. a steady-state solution, us.
During the demonstration, the students observed a “long-run” plateau
of temperatures from each temperature sensor, seen in Figure 2. It
was clear to them that at some point, the temperature readings became
steady and did not depend on time. Thus ut = 0 and Equation 1 reduces
to

uxx = 0. (3)

Additionally, we plotted the equilibrium temperatures from the four
temperature sensors (see Figure 3) and, from it, could predict that
the steady-state solution would be a linear function of x. The theory
supports this empirical observation: integrating Equation 3 twice with
Dirichlet boundary conditions u(0, t) = T0 and u(L, t) = TL gives

us(x) =
TL − T0

L
x+ T0. (4)

The benefits of the lab demonstration also extended into our cov-
erage of separation of variables as a general solution technique. In the
examples covered in class and the homework exercises, all boundary con-
ditions were homogeneous, e.g. u(0, t) = 0, ut(L, t) = 0. This differed
from the boundary conditions used in the demonstration; however, the
students had no trouble extending the observed physical context to a sit-
uation in which there was an ice bath at one end of the rod (u(0, t) = 0)
and insulation at the other (ut(L, t) = 0), for example.
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Figure 3: Equilibrium temperatures from the four sensors in the heat
diffusion demonstration (dots) and the steady-state solution (line)

4 PROJECT

Apart from the positive effects of writing and group work on student
learning in the context of mathematical modeling [8], assigning projects
that require a lengthy written report are standard practice in the Math
department at our institution. The project included here was assigned
in the third week of class. In the following subsections, the numbered
questions were given to the students as parts of their project. Figures
from the project output are included where appropriate.

4.1 Analysis

Since we intentionally used nonhomogeneous boundary conditions in the
lab demonstration, the method of separation of variables could not im-
mediately translate to the physical problem that was actually observed.
Chapter 8 in [5], which was not included in the semester-long course,
covers the topic of treating the solution to this type of problem as the
sum of two parts: the solution of the associated homogeneous initial-
boundary value problem,

ut = kuxx, x ∈ (0, L), t > 0, (5)

u(0, t) = 0, t > 0, (6)

u(L, t) = 0, t > 0, (7)

u(x, 0) = f(x), x ∈ (0, L), (8)

and the steady-state solution, us, to the original nonhomogeneous prob-
lem. This approach was entirely accessible to the students and appro-
priate for independent study after the first few weeks of the semester; it
followed as a natural extension of our coverage of separation of variables
with homogeneous boundary conditions.
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To guide the students through this material, it was broken into
smaller pieces as seen in the list of questions below.

1. What is the initial boundary value problem for the heat equation
corresponding to the experimental setup you observed in the lab?

2. What is the steady-state solution, us(x), to the model you wrote
above?

3. Follow the steps in your notes and/or section 2.3 in the book to make
an attempt at solving for u(x, t). What problem do you encounter?
Why?

4. Instead of solving for u(x, t), consider the function v(x, t) = u(x, t)−
us(x), which measures the displacement of the time-dependent so-
lution from the steady-state solution. What is the associated initial
boundary value problem for v(x, t)?

5. Solve for v(x, t). Why do you not have the same trouble as you
did in the third question? Now, what is the solution u(x, t) of the
original heat equation model from the first question?

The first two questions are perfunctory but necessary for setting up the
more involved analysis in questions three through five. In particular,
the students needed to carefully analyze the logic in the separation of
variables technique with nonhomogeneous boundary conditions. With
homogeneous boundary conditions, it can be assumed that the spatial
factor in the separated solution is zero at the boundaries, so that we
avoid the trivial solution in the temporal factor, and hence full solu-
tion. This is not a valid assumption when the boundary conditions are
nonhomogeneous. This was a subtle point that many students had dif-
ficulty identifying without help. Once this was accomplished, though,
the students were then able to proceed without much difficulty to deter-
mine that the solution is the sum of an infinite series (v(x, t)) and the
steady-state solution (us(x)).

4.2 Numerics

In class, we spent a significant amount of time discussing the Matlab
code used to visualize the first n terms of a Fourier series solution of
a given initial boundary value problem. In order to answer the first
question below, students needed to adjust provided code from class to
this specific context. For the second and third questions below, the
students were expected to make use of Matlab’s help features and write
the necessary code themselves.

1. Use Matlab to graph the series solution you obtained above for
u(x, t).
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2. Use Matlab’s PDE solver pdepe to simulate the solution to the full
one-dimensional heat equation problem corresponding to what you
observed in the lab. How does this numerical simulation compare
to the plot of your analytic solution, particularly near the initial
condition? What causes the difference between the two plots?

3. Overlay the four data points from the experiment on the simulations
from the previous question. Discuss how well (or not) the experi-
mental data points match up with the numerical solution. Compare
the data and model over time.

A week before the project due date, we used one class period as a
question and answer session specifically for Matlab issues. Students were
asked on an anonymous mid-semester evaluation whether they thought
the expectations for Matlab programming in the first project were appro-
priate; responses were mixed but it was clear that the provided individual
and group help sessions were appreciated.

As a foreshadow of the Gibbs phenomenon, covered later in the
semester, students were asked in the second question above to compare
the truncated analytical solution and the full numerically simulated so-
lution. See Figure 4, parts (a) and (c), for the two surface plots. Small
oscillations can been seen in the bottom-right-front corner of Figure 4(a),
where t and u are small and x is large. Figure 4(b) is a closer look at
this behavior. Students were able to answer correctly that necessary
truncation of the infinite series was to blame for these oscillations. This
reflection came in handy several weeks later when the Gibbs phenomenon
was discussed in class.

The comparison of the temperature data and numerical simulation in
the third question was the most enlightening in regard to mathematical
modeling. It was through this particular visualization (Figure 5) that
the students were best able to appreciate the heat equation model as an
abstraction of the physical phenomenon. Several students wrote in their
project reports that the heat equation solution was not very accurate
when compared to the data because they did not align closely enough,
as in Figure 5(b),(c). This led to a class discussion about unavoidable
discrepancies between real data and theoretical models; our primary
hope is that a mathematical model at least captures the qualitative
behavior of a physical phenomenon and perfect alignment between real
data and the theoretical solution is not necessarily expected. These
points were well received but not obvious to everyone since many of the
students had no prior experience using data in this way.
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(a) Truncated analytical solution

(b) Closer look at oscillation in (a)

(c) Numerical simulation

Figure 4: Plots used in comparing the analytic solution and numerical
simulation in the second question from Section 4.2

4.3 Errors and Fine-Tuning

The last two questions in the project were written to highlight the lim-
its of our mathematical model, partially addressed in the previous sec-
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(c) t3 = 799.3076 s

Figure 5: Collected temperature data (dots) and numerical simulation
(curve) at times t1, t2, t3; these are snapshots of the animation produced
for the third question in Section 4.2

tion.

1. What are some sources of error between the physical experiment
and mathematical model? Explain.

2. What parameters could be changed to fine-tune the model, so that
the model better matches the data points? Experiment with pa-
rameter values in the Matlab code to see if you can get the model
to fit the data any better.

Several responses were insightful, particularly from the physics majors
in the class; students identified measurement inaccuracies from the tem-
perature sensors, imperfect insulation and variable boundary conditions
as possible sources of error. The thermal diffusivity constant was easily
identified as a tuning parameter. Although the thermal diffusivity of
aluminum is 8.4× 10−5 m2 · s−1, we found the best fit for the data with
k = 2.6× 10−5. This can be explained by thermal loss due to imperfect
insulation. Some students went further than simply refining the value
of k and attempted to incorporate time-dependent boundary conditions
and a space-dependent thermal diffusivity function.

5 REFLECTIONS

To measure student perceptions of the demonstration, associated course-
work and project, a short anonymous evaluation was given after the
project reports were graded and returned. The students were asked
to give a numerical measure between one and five to each statement
included in the evaluation, where the value one represented strong dis-
agreement, three represented neutrality and five represented strong agree-
ment. All fifteen students enrolled in the course completed the evalua-
tion.
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The statements and mean responses are presented in Table 1. The
distributions of responses were not significantly skewed, so mean and
median values were similar. The lowest responses were in regard to the
derivation of the heat equation (the second statement in Table 1); it is
likely that a substantial portion of the math majors in the class felt a
bit out of their depth with the heavily applied derivation. Even in the
face of this, the responses to this statement are still generally positive.

Statement Mean Agreement
The demonstration added to my understanding of the
physical context for the heat equation.

4.47

The demonstration added to my understanding of the
derivation of the heat equation model in class.

3.93

The demonstration added to my understanding of the
various boundary conditions discussed in class.

4.27

The project added to my appreciation of applied math-
ematics and mathematical modeling.

4.27

The demonstration, resulting data and analysis en-
hanced my educational experience in this class.

4.67

Table 1: Statements and mean responses from student evaluations

Prior to giving the evaluations, we had hoped that the responses
would at least center around the value four. This would signify to us
that the students perceived a positive impact on their learning through
the lab experience. We were pleased to see that the responses were very
favorable. All of the written comments were positive; one student noted
that this project helped their “growth as a mathematician.”

Overall, we believe this entire experience was greatly beneficial for
the students. It was clear that the students enjoyed being in the lab
for the demonstration; it was a camaraderie-building experience and an
active component in an otherwise traditional math class. It appeared
to us that the novelty and physicality of the demonstration increased
the students’ enthusiasm for the material. This naturally led to more
engagement, discussion and insight than we would have expected other-
wise. This approach to the heat equation, from the lab to the project
write-up, allowed the students to experience mathematics as an applied
and interdisciplinary field. The data, modeling and numerical compo-
nents all worked together to significantly enhance the learning that took
place.
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