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The Rise of Technology and its Influence on Labor Market Outcomes

Abstract
Technological progress has significantly changed the inputs and production processes utilized by firms. Such
shifts have led to warnings throughout the past few decades that substantial numbers of jobs, particularly
things belonging to the middle class, would be eliminated and replaced by technology. This paper examines
the validity of this argument by estimating the impact of technology investment on local labor markets during
that period. I find evidence for a positive, rather than negative, relationship between technology and
employment. Furthermore, my estimates suggest there exists a complementary relationship between
technology investment and growth in labor opportunities, rather than a substitution effect of workers moving
from technology-intensive industries to non-technology intensive sectors.
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The Rise of Technology and its Influence on Labor Market Outcomes 

Maja Thomas 

Abstract: Technological progress has significantly changed the inputs and production processes 
utilized by firms. Such shifts have led to warnings throughout the past few decades that 
substantial numbers of jobs, particularly things belonging to the middle class, would be 
eliminated and replaced by technology. This paper examines the validity of this argument by 
estimating the impact of technology investment on local labor markets during that period. I find 
evidence for a positive, rather than negative, relationship between technology and employment. 
Furthermore, my estimates suggest there exists a complementary relationship between 
technology investment and growth in labor opportunities, rather than a substitution effect of 
workers moving from technology-intensive industries to non-technology intensive sectors 

 

Introduction 

The rise of technology, specifically robotics and computerization, has dramatically 

shifted the inputs available to businesses over the past several decades. This rapid development 

has transformed the production processes for many different industries. Many fear that this 

technological development has increased automation while not adding enough jobs to offset the 

drop in opportunities. If true, this decrease in the employment capacity would negatively impact 

the wages and incomes of many workers, namely middle skill white collar and blue collar labors 

performing easily codifiable tasks (Autor 2011).  

The subject of automation and its expansion in recent decades has ignited fears and 

frustrations over its threat of making many traditional jobs obsolete. Automation has been used 

as anecdotal evidence to explain claims of declining productivity, employment, and the current 

economic slow growth. The impact of automation has discriminately hit certain industries and 

job types, most of which are middle-paying and moderate-skilled, while straying away from 

others (Autor 2011). Much of this is because automation is only viable for certain job types, most 

of which are middle-paying and moderate-skilled. The core tasks of these positions often require 

employees to follow precise methodical procedures which machines are well equipped to 
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perform. But is the rise in technology to blame for labor market perils or has it simply provided a 

digestible narrative? 

Per neoclassical theory, investment would actually increase labor demand due to the 

complementary nature of labor and capital. However, many economists consider ICT capital 

differently, worrying that investment would decrease the demand for labor by increasing 

productivity of labor. Nevertheless, with spillover effects on other industries, incomes, or 

aggregate demand (and thus output), the impact of ICT investment is difficult to assess per 

traditional theory.   

Thus, this paper answers this question empirically, examining the impact of technology 

investment on local labor markets. In the next section, I discuss the influence of robotics and job 

automation on employment dynamics. In section III, I develop an econometric model to analyze 

the relationship between increases the level of information and communications technology 

investment within a commuting zone and the expected level of employment in that county. In 

section IV, I discuss the data collected to test my hypothesis, and in section V, I use that data to 

test my hypothesis and find evidence for a positive relationship between investment and 

employment.  

I. Job Automation and Labor Market Demand 

The interaction between job automation and labor market dynamics has attracted 

significant attention from both economists and scholars alike. With vast technological advances 

occurring in computing and robotics, machines have now become as or more efficient than 

human workers in various environments. Without a clear consensus, economists continue to 

question automation’s bearing on the labor market while the public remains largely in fear.  
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A negative relationship between the levels of ICT investment and employment would 

hardly be surprising. Since the rise of machines and machine learning, many have feared that 

robots would replace human labor, leading to employment losses. Straying from traditional 

neoclassical framework, economists tend to view ICT investment as a substitute for labor rather 

than a compliment. In this case, demand for labor would decrease, thereby reducing 

employment. Furthermore, while decreases in job opportunities due to automation could 

hypothetically be made up by increases in job opportunities in other industries, labor may not be 

able to shift into these new opportunities due to a lack of experience or other structural problems, 

thus leading to structural unemployment and an overall decline in employment. These findings 

would uphold implications from the Solow growth model, where an increase in technological 

investment increases labor productivity (i.e. output per worker). Ceteris paribus, firms would 

need less employees and would be incentivized to cut jobs.  

This negative relationship between technology investment and labor has been 

documented by different parts of the literature. Robots and automated systems have negatively 

impacted several occupations, almost entirely eliminating elevator operators, highway toll 

collectors, parking attendants, and other similar roles (Quereshi and Syed 2014). Qureshi and 

Syed found that in the health care industry, 19 Aethon TUG robots can perform $1 million in 

human labor each year for $350,000, saving the industry 65% in labor costs. Robots such as 

these, in working two shifts seven days per week, save the labor of 2.8 full time equivalent (FTE) 

employees while costing less than one. Ebel (1986) also noted the labor costs savings by 

employing robots. Robots in the automotive industry costs around $6 per hour including 

depreciation and maintenance costs, compared with between $23 and $24 an hour in wages and 

benefits for an employee.  
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Contradicting evidence would demonstrate either no significant relationship or a positive 

relationship between the commuting zone levels of ICT investment and employment. If there 

were no significant relationship between the dependent and independent variables, job losses 

would either not result from automation or losses would be made up by gains in other sectors or 

occupations. If there were a significant and positive relationship, commuting zone job growth 

would result from ICT investment due to aggregate demand effects. This would align with 

neoclassical theory, which states that an increase in ITC investment would increase labor 

demand because capital and labor are complements. Higher investment would increase 

production, leading to an increase in income and increase the demand for goods and services, 

overall employing more individuals to produce these goods and services. Additionally, if demand 

for output increased because of the technological investment, a decrease in employment resulting 

from increases in labor productivity would be offset by an increase in labor demanded to 

increase total output. Even if ICT investment and labor were substitutes, there could be spillover 

effects (i.e. increases in demand for labor in related industries, impacts of increased income or 

aggregate demand, etc.) which could increase employment overall.  

Other parts of the literature have found ICT investment to have had a non-negative 

impact on the labor market, largely due to spillover effects of ICT investment. Autor (2015) 

found that automation had not led to significant job losses, citing that the interaction between 

technology and employment required ingenuity and creative thinking that cannot be adequately 

computerized. Autor (2011) detailed growing labor market opportunities for both high skill, 

high-wage and low skill, low-wage white and blue collar industries, as a result of automation-led 

wage-level occupational shifts. As computer and robotics technologies progressed, machines 

were well equipped to perform core job tasks of middle skilled industries. However, this has 
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caused various spillover effects and led to increases in opportunities in other sectors, and likely 

triggered dramatic growth in service occupations as detailed by Autor and Dorn (2013). Such 

also appeared the case during the early 2000s, where Charles, Hurst, and Notowidigo (2016) 

found that the declines in the manufacturing industry were propped up by the growth in the 

housing sector, which benefitted from the decreases in construction costs and increases in 

building efficiency. Leontif and Duchin (1984) forecasted the intensive use of automation the 

twenty years following 1985, estimating it would conserve about 10% of the labor force required 

to produce the same goods. However, their models predicted an increase in the output level 

which would offset the effects of job displacement, finding a complementary relationship 

between investment and employment as would the neoclassical framework. Furthermore, they 

argued the impacts would involve a significant increase in professional employees and a steep 

decline in the relative number of clerical workers as a proportion of the labor force. 

An even smaller proportion of the literature has found no relationship between ICT 

investment and the labor market. Doms, Dunne, and Troske (1997) found that time series results 

demonstrated little correlation between the adoption of technology and changes in workforce 

characteristics. The adoption of new technologies did not appear to impact a factory’s relative 

share of non-production labor or high wage workers, as compared to plants which did not adopt 

new technologies. This relationship between factory automation technologies and employment of 

highly paid workers was further established by Dunne and Schmitz (1995) and Siegel (1995). 

Thus, the impact of ICT investment on labor markets could reasonably be either positive 

or negative. This paper aims to answer the empirical question of ICT investment’s impact on the 

change in employment, differing from the above literature which addresses similar questions 
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utilizing historical data and qualitative methods. Further information on the model is detailed in 

the next section.  

II. Modeling 

I test whether information and communications technology investment in a commuting 

zone affects the level of employment in that commuting zone using methods similar to those of 

Autor et al (2015). Commuting zones are clusters of US counties characterized by strong within-

cluster and weak between-cluster ties that have been compiled by the Economic Research 

Service in 1990. The average level of information and communications technology investment is 

computed annually over the course of two eight year periods: 1992-1999 and 2000-2007.   

 
The benchmark regression can be written as follows:  

 

where; 

o EMPLOY measures the level of employment within each commuting zone as a 

percentage of total employment; 

o INVEST represents the average level of information and communications 

technology investment over two eight year periods, 1992-1999 and 2000-2007, 

respectively, as a percentage of total investment; 

o YEAR is a dummy variablse controlling for differences in employment growth 

among the two eight-year periods; 

o REGION is a vector of dummy variable controlling for differences in 

employment among census divisions; 

o  is the error term. 

 

From the above regression, the null hypothesis for this model can be written as follows: 
 
H0:  
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An increase in the level of information and communications technology 
investment within a commuting zone does not negatively impact the level of 
employment in that commuting zone. 

HA:  
 An increase in the level of information and communications technology 

investment within a commuting zone negatively impacts the level of employment 
in that commuting zone. 

 

III. Data 

The data in this study comes from the European Union level analysis of Capital, Labor, 

Energy, Materials, and Service (EU KLEMS) and David Autor, Daron Acemoglu, and David 

Dorn. The unit of analysis in this data set is commuting zone-year (e.g. commuting zone 100-

2007) and the data is compiled in the years 1991-1999 and 2000-2007. The EU KLEMS data 

measures information and communication technology investment and is part of a larger dataset 

which includes other variables related to capital, labor, and output from the 1970s to 2007. The 

Autor et al dataset was the focus of their 2015 paper and includes commuting zone-level data on 

employment and import penetration in the years 1991, 1999, 2007, and 2011. The data used in 

this analysis includes their 722 commuting zones and encompasses the entire mainland United 

States for the years 1999 through 2007. These commuting zones are clusters of counties with 

strong internal commuting ties (Autor 2014). The data sets utilized in creation of this study are 

codified by industry and year. Autor employs SIC codes to signify industry type, while EU 

KLEMS uses broad sector categories. Thus, to combine the data sets, I recode all SIC codes into 

broad sector categories for ease of merging.  

My dependent variable is the change in commuting zone employment. As noted above, 

commuting zones are clusters of US counties characterized by strong within-cluster and weak 

between-cluster ties that have been compiled by the Economic Research Service in 1990. 

Employment is defined as the number of employees who are on payroll in the pay period in 
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March of each year. Paid employees consist of full time employees, part time employees, 

employees on sick leave, holidays, or vacations. The data used to construct this variable come 

from David Autor and the County Business Patterns series from the United States Census. I 

utilize industry level employment data within each commuter zone and year and manipulate it to 

construct my dependent variable. I start by finding total employment within each commuting 

zone by coding a new variable adding each industry together within a commuting zone and 

removing duplicate observations, leaving only commuter zone and year. This value is then 

divided by number of working age individuals in each commuter zone to construct an 

employment-population ratio. I then construct a new variable measuring the change in the 

employment population ratio for my two years, 1991-1999 and 2000-2007, which will represent 

1999 and 2007, respectively. The data includes 1444 observations ranging from -.093% to 

2.697% of total employment across all commuting zones. 

The independent variable in this study is the percentage of information and 

communication technology, as a share of total investment, within a commuting zone. 

Information and communications technology (ICT) is a broad category of technology and can be 

used as a proxy for robot-type capital. Calculation of ICT capital is based on the database 

described in Jorgenson, Ho, and Stiroh (2005) and sourced from EU KLEMS. The independent 

variable is constructed by taking the eight-year average of EU KLEMS’ ICT as a percentage of 

total investment from years 1991-1999 and 2000-2007. Next, I create a variable representing 

employment share of each industry within each commuting zone by dividing industry 

employment by total employment within the commuting zone. I then multiply the average ICT 

investment by employment share. Finally, I sum the industries to create a weighted average of 

ICT investment in each commuting zone and eight-year period. The finalized variable includes 
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1444 observations ranging between 9.57% and 23.21% of total investment across all commuting 

zones. The correlation coefficient between the independent and dependent variables is -0.2718, 

demonstrating a negative relationship between ICT investment and employment and following 

the narrative that increases in automation remove jobs from the labor market without adding 

sufficient new opportunities.  

Nine control variables are utilized in this model: one dummy variable accounting for 

changes in employment level due to time period and eight other dummy variables accounting for 

changes in employment level due 

to geographic region (see Figure 1). 

These variables are coded either '0’ 

or ‘1’. The year dummy is coded 

‘1’ for observations which take 

place in 1999 and ‘0’ for 

observations in 2007. Each 

regional dummy is coded ‘0’ if the 

commuting zone is not part of that 

geographic region and ‘1’ if it is. 

No commuting zone can belong to 

more than one geographic region. The Mountain region is omitted in the regression analysis, 

leaving a variable to compare the other regions to.  A summary of all variables and their 

respective descriptive statistics can be seen in the appendix in Table 1. 

IV. Findings 

Figure 1: US Census Divisions 

Figure courtesy of the US Energy Information Administration (eia.gov) 
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V. Appendix Tables 3 and 4 

display the results of the models 

constructed in this paper; that is, the 

impact of an increase in the level of ICT 

investment within a commuting zone on 

the expected level of employment in that 

county using an ordinary least squares 

(OLS) regression. At a first glance, there is a substantially negative relationship between 

the two, as seen in the scatterplot in Figure 2. 

The correlation coefficient is -.2718, again 

demonstrating the negative relationship between 

the ICT investment and the change in 

employment. However, as you I add in control 

variables such as year, there emerges, if 

anything, a positive relationship. This is 

supported by the results of the scatterplots on the left in Figures 3 and 4, where the data is 

separated out by year. In the period from 1991 to 1999, there exists a positive 

relationship (correlation coefficient of 0.2373) between the level of ICT investment and 

the change in employment, which is likely due to the economic boom of the 1990s. 

Figure 2: ICT Investment and Employment Relationship 
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Then, through the 2000s the relationship becomes slightly negative (correlation 

coefficient of -.0809) and less uniform as the market gears up for the Great Recession. 

Additionally, the summary statistics (see Table 2) show a higher average change in 

employment during the 1991-1999 period (5.90% versus 0.22%) and lower average ICT 

investment levels in 1991-1999 than the following eight year period (14.32% versus 

16.21%). 

While the first glance correlation coefficient supports my hypothesis, the first OLS model 

does not; I therefore fail to reject the null hypothesis and cannot conclude that there exists a 

negative relationship between ICT investment and employment. The results of the model (see 

Table 3a) indicate that there is actually a positive relationship between ICT investment and 

employment, although they are not significant at the 5% level. But let us not fetishize the 5% 

level—with a p-value of 0.063 we hold reasonably the same assurance in the coefficient as we 

would if it were 0.05 or under. These findings suggest that a one-percent increase in the level of 

ICT investment within a commuting zone, as a percentage of total investment, would lead to a 

0.168% increase in the expected change in 

employment-population ratio in that commuting 

zone. These findings dispel fears of 

technological unemployment and the narrative 

of robots taking human jobs, proving consistent 

with the complementarities between ICT 

investment and human labor. However, the 

small size of the coefficient and borderline 

Figure 3: ICT Investment and Employment Relationship, 
1991-1999 

Figure 4: ICT Investment and Employment Relationship, 
2000-2007 
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significance of its p-value may also be in accordance with Autor’s (2015) findings that there 

exists no significant negative relationship between automation and job losses.  

I implement various controls for year and region in the model. The regions are comprised 

of the following divisions: New England, Mid-Atlantic, south Atlantic, East North Central, West 

North Central, East South Central, West South Central, and Pacific. Of the nine control variables 

tested in this model, eight are significant below the 5% level: year, New England, Mid Atlantic, 

South Atlantic, East North Central, South North Central, West South Central, and Pacific. All 

control variables hold negative coefficients except year. This relationship between year and 

employment supports the results of the earlier correlation coefficients and scatter plots, 

suggesting that employment was expected to be 6% higher in the period from 1991-1999, 

regardless of region or ICT investment level.  

From the results of the first model, I create a second model to include Autor’s (2014) 

import penetration variable to account for differences arising from trade, and assess whether it 

was an important omitted variable in the first model (see Table 3b). Upon running the mode, I 

find that the change in import penetration, while significant and negative (as in Autor’s findings), 

does not substantially change the ICT investment coefficient. The coefficient lowers slightly to 

0.160 and keeps significance at the 10% level. Thus, I conclude there exists no problem of 

omitted variables present within the first model.  

Next, I construct models which estimate the relationship between the dependent and 

independent variables in one of the two eight-year periods, to see if the relationships implied by 

the scatterplots and correlation coefficients hold true that there are differing impacts on the 

relationship between ICT investment and employment which are dependent on the eight-year 

period investigated. My first model utilized data only during the 1991-1999, and the results 
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demonstrated a strongly significant and positive correlation between the two variables with a 

correlation coefficient of 0.566. The results of the 2000-2007 model, however, were negative and 

insignificant, even at the 10% level. Thus, the models demonstrate that the gains from ICT 

investment were to be made during the 1990s but did not last not through the 2000s, when the 

overall employment population ratio tumbled due to the 2001 recession.  

Finally, I construct three models to allocate the 27 broad sector industries in each 

commuting zone into three categories: ICT intensive investment, moderate ICT intensive 

investment, and non-ICT intensive investment. From the year-commuting zone-industry stage of 

my data manipulation, I identify the top 9 industries by computing the simple average of the 

average ICT investment over the two periods, constructing one value from 1991-2007. Then, I 

compute the total employment in each commuter zone for each bracket, leaving 6,498 

observations and three new variables corresponding to each ICT investment level. Finally, I find 

the change in employment for the two periods and drop the 1991 values from the data set. More 

information on the industry breakdown and their respective summary statistics can be found in 

Tables 5-7. 

The results of the three ICT models (Table 4a-c) suggest that increased ICT investment 

positively impacts ICT intensive segments while negatively impacting non-ICT intensive 

industries. The ICT intensive model demonstrates a positive and strongly significant relationship 

between the two variables, suggesting that a one percent increase in ICT investment will increase 

expected employment by .42%. This result further demonstrates the complementarity of ICT 

investment to the labor market, particularly its addition to ICT intensive industries. On the other 

hand, the expected relationship between ICT investment in non-ICT intensive industries and 

employment is significant and negative, with a coefficient of -.21%. This disproves the idea that 
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the increase in employment in the first model was the result of a substitution effect in non-ICT 

intensive industries. The moderate ICT investment model is insignificant, with a near-zero 

coefficient that implies no definite relationship between ICT investment and employment. This 

coefficient is in line with the results of the other two models because of the complementary 

relationship between intensiveness and employment and substitute relationship between non-

intensiveness and employment.  

However, the results of the three categorical models may indicate an omitted variables 

bias problem in the models. If an industry category—ICT intensive, for example—expands, 

companies may concurrently hire more employees and invest in ICT. In this case, the 

relationship between ICT investment and change in employment would necessarily be causal, 

but a response to a third variable which is driving expansion in that sector. Instituting an 

additional variable to control for this difference would solve this potential problem, but I could 

not conceive of any measurable instruments to utilize in the model. Thus, further research should 

attempt to correct for hypothetical bias by using an instrument correlated with ICT investment 

and not directly linked with employment in those industries.  

I was unable to account for all possible influences on level of commuting zone 

employment which could misconstrue the relationship between the dependent variable and 

commuter zone ICT investment. Particularly, there is no control for the type of industry 

employment or the makeup of commuter zone employment in the first model, and the three 

models which consider industries only do so using intensive, moderately intensive, and non-

intensive ICT brackets. However, it is unclear whether the addition of this variable would 

actually significantly impact the results of the model, and there would exist difficulties in coding 

this variable for all industries included in the initial dataset. Additionally, research conducted by 
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Autor et al (2015) did not find industry to have a significant impact in their model. Nevertheless, 

while the model demonstrates a significant relationship between the dependent and independent 

variables, there could exist an omitted variable or variables which impact the findings of the 

model.    

As ICT investment is a relatively broad category of technology, further research may be 

needed to look specifically at the impacts of robotics and possible resulting job automation. In 

the creation of this model, ICT investment appears to be an adequate proxy for robotics. 

However, it may be that another indicator of robotics development could have been better served 

to estimate the model, as it would analyze the funding on specifically technologies which could 

be used to automate tasks. Additionally, further research should aim to include a larger number 

of years so as to compute both the change in employment and change in investment. This would 

allow the model to analyze the impacts of increasing investment in ICT technologies on 

employment rather than average level. Using an independent variable measuring its change, 

would, regardless of impact, have more straightforward policy implications.   

VI. Concluding Remarks 

Job automation and its growth in recent decades have awakened suspicions and 

frustrations over their risk of making many traditional jobs obsolete and decreasing employment 

opportunities for the newly jobless. Yet, according to the results of the model, this does not seem 

to be the case. The findings from this paper challenge my hypothesis of a negative relationship 

between the dependent and independent variables, instead suggesting that an increase in the level 

of ICT investment within a commuting zone, as a percentage of total investment, would lead to 

an increase in the expected employment population ratio in that commuting zone. These results 
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are significant at the 10% level with a p-value of 0.063. Thus, the findings ultimately indicate 

that ICT investment leads to increased employment.  

From these findings, policy recommendations are less than straightforward; the first 

model dictates that increasing ICT investment would push employment in commuter zones, but 

due to differences in the two time periods tested and the negative and insignificant coefficient in 

the third and fourth models, implications for the current slow growth era may be not be effective. 

However, the differences may be due to the 2001 recession and decrease in growth. Thus, further 

research is recommended to determine whether periods of slow growth can receive the 

employment benefits of ICT investment. This paper does not attempt to define the correct limit 

of spending nor does it serve to understand the optimal distribution of ICT investment by 

industry. What this paper does, however, is dispel fears of a negative relationship between the 

two variables.  

The US labor market remains a major source of discussion, particularly as the economy 

has been plagued by slow growth. While the official unemployment rate was 4.9% as of October 

2016, the labor force participation rate and employment-population ratio remain far below pre- 

2007 levels. A struggling labor market in the aftermath of recession and dramatic rise in 

technology have caused many to couple the two together, and fear that technological 

developments have contributed to unemployment rates. However, the use of technology appears 

to be a scapegoat for other issues putting downward pressure on the labor market. The rise of the 

service sector, as noted by Autor and Dorn (2013) has allowed another outlet for American 

workers. The results of the models tested in this paper, however, demonstrate a complementary 

relationship between ICT investment and growth in labor opportunities, rather than a substitution 

effect of workers moving from ICT-intensive industries to non-ICT intensive sectors. Thus, the 
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public should embrace—rather than fear—information and communication technology 

investment as a way in which to spur growth and expand labor market opportunities. 

VII. Appendix 

Table 1: Summary of Variables 

Variable  Description Observations Source 

 

Employment 

 

Employment within czone as  

percentage of total employment 

 

1444 observations 

1999, 2007 

 

Autor et al. 

 

ICT Investment 

 

Average level of ICT investment as 

percentage of total investment over 

eight year periods 

 

1444 observations 

1992-1999, 2000-2007 

 

EU KLEMS 

 

Year 

 

 

New England 

Division 

 

Mid-Atlantic 

Division 

 

East North Central 

Division 

 

West North 

Central Division 

 

East South Central 

Division 

 

West South 

Central Division 

 

Dummy variable representing either 

1999 (‘0’) or 2007 (‘1’) 

 

Dummy variable representing New 

England czones 

 

Dummy variable representing Mid-

Atlantic czones  

 

Dummy variable representing East 

North Central czones 

 

Dummy variable representing West 

North Central czones 

 

Dummy variable representing East 

South Central czones 

 

Dummy variable representing West 

South Central czones 

 

1444 observations 

1999, 2007 

 

1444 observations 

1999, 2007 

 

1444 observations 

1999, 2007 

 

1444 observations 

1999, 2007 

 

1444 observations 

1999, 2007 

 

1444 observations 

1999, 2007 

 

1444 observations 

1999, 2007 

 

Autor et al/EU KLEMS  

 

 

Census Bureau County  

Business Patterns 

 

Census Bureau County 

Business Patterns 

 

Census Bureau County 

Business Patterns 

 

Census Bureau County 

Business Patterns 

 

Census Bureau County 

Business Patterns 

 

Census Bureau County 

Business Patterns 
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Pacific Division 

 

 

Dummy variable representing 

Pacific czones.  

 

1444 observations 

1999, 2007 

 

 

Census Bureau County 

Business Patterns 

 

Table 2: Summary of Independent and Dependent Variables by Year 

 

Variable Mean 
 

Standard Deviation 
 

Minimum Maximum 

 

ICT investment 1991-1999 

 

14.32083 

 

.28453 

 

9.5747 

 

20.0174 

 

ICT investment 2000-2007 
 

16.21238 

 

1.396903 

 

9.9275 

 

23.2145 

 

Change in employment,  

1991-1999 

5.90318 4.114131 -9.162831 27.81029 

 

Change in Employment,  

2000-2007 

 

 
 

.2150155 
 
 

4.606847 -23.85641 22.99899 

 

 
Table 3: Regression Analysis: ICT Investment Across All Levels 

 
Variable  

(a)  OLS regression 
Change in 
commuting zone 
employment  

(b) OLS regression 
Change in 
commuting zone 
employment  

(c) OLS regression 
Change in commuting 
zone employment in 
1999 

(d) OLS regression 
Change in 
commuting zone 
employment in 2007 
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IT investment in 
commuting zone 
 
Year 
 
 
Import 
penetration 
 
 
New England 
 
 
Mid Atlantic 
 
 
South Atlantic 
 
 
East North 
Central 
 
West North 
Central 
 
East South 
Central 
 
West South 
Central 
 
Pacific 
 
 
Constant 
 
 
 
N 
R2 

 
.167 
(.090) 
 
6.01*** 
(.279) 
 
 
 
 
 
-1.67* 
(.813) 
 
-3.201*** 
(.678) 
 
-3.152*** 
(.419) 
 
-2.728*** 
(.456) 
 
-.239 
(.400) 
 
-2.756*** 
(.464) 
 
-1.471*** 
(.418) 
 
-2.487** 
(.541) 
 
-0.688** 
(1.439) 
 
 
1444 
.358 
 

 
.160 
(.089) 
 
5.407*** 
(.287) 
 
-.971*** 
(.136) 
 
 
-1.049 
(.804) 
 
-2.389***  
(.676) 
 
-2.443*** 
(.424) 
 
-2.017*** 
(.459) 
 
.181 
(.398) 
 
-1.439** 
(.493) 
 
-1.080** 
(.415) 
 
-2.279*** 
(.533) 
 
-.213    
(1.417) 
 
 
1444 
.380 

 
.566*** 
(.124) 
 
 
 
 
 
 
 
 
.833 
(1.051) 
 
-3.292*** 
(.878) 
 
-.732 
(.542) 
 
.753 
(.592) 
 
1.142* 
(.525) 
 
-.384 
(.600) 
 
-1.317* 
(.542) 
 
-2.710*** 
(.701) 
 
-1.941 
(1.732) 
 
 
721 
0.142 

 
-.116 
(.119) 
 
 
 
 
 
 
 
 
-4.251*** 
1.126 
 
-3.253** 
(.938) 
 
-5.572*** 
(.580) 
 
-6.343*** 
(.629) 
 
-1.840** 
(.548) 
 
-5.141*** 
(.643) 
 
-1.735** 
(.577) 
 
-2.307** 
(.749) 
 
5.224** 
(1.896) 
 
 
722 
0.218 

     
 *p<.05; **p<.01; ***p<.001   
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Table 4: Regression Analysis: ICT Investment Across All Levels 

 
  

 
Variable  

(a)  OLS regression 
Change in commuting 
zone employment for 
high ICT industries 

(b) OLS regression 
Change in commuting 
zone employment for 
mid ICT industries 

(c)  OLS regression 
Change in commuting 
zone employment for 
low ICT industries 

 
IT investment in 
commuting zone 
 
Year 
 
 
New England 
 
 
Mid Atlantic 
 
 
South Atlantic 
 
 
East North Central 
 
 
West North Central 
 
 
East South Central 
 
 
West South Central 
 
 
Pacific 
 
 
Constant 
 
 
 
N 
R2 

 
.425*** 
(.060) 
 
3.773*** 
(.185) 
 
-1.214* 
(.539) 
 
-1.978*** 
(.449) 
 
-.868** 
(.278) 
 
-1.704*** 
(.302) 
 
-.928*** 
(.265) 
 
-1.223*** 
(.308) 
 
-1.163*** 
(.277) 
 
-1.087** 
(.359) 
 
-5.77*** 
(.953) 
 
 
1444 
.257 

 
-.056 
(.041) 
 
1.77*** 
(.129) 
 
-.373 
(.375) 
 
-.965** 
(.313) 
 
-.719*** 
(.193) 
 
-1.106*** 
(.210) 
 
.171 
(.185) 
 
-.422* 
(.214) 
 
-.449* 
(.193) 
 
-.871*** 
(.250) 
 
1.561* 
(.664) 
 
 
1444 
.225 
 

 
 -.209*** 
(.0459) 
 
.456*** 
(.142) 
 
-.128 
(.413) 
 
-.317 
(.345) 
 
-1.560*** 
(.213) 
 
.115 
(.232) 
 
.558** 
(.203) 
 
-1.098*** 
(.236) 
 
.143 
(.212) 
 
-.484 
(.274) 
 
3.459 
(.731) 
 
 
1444 
0.137 

    
*p<.05; **p<.01; ***p<.001  
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Table 5: ICT Level Industry Breakdown: ICT Intensive Industries  

 

 
ICT-Intensive Industry 
Name 

 
Broad 
Sector 
Code 

 
Average ICT 

Investment, 1991-
1999 

 
Average ICT 

Investment, 2000-
2007 

 
Average ICT 

Investment, 1991-
2007 

 
Transport and storage 26 0.229 0.374 0.360 

 
Education 35 0.300 0.349 0.344 

 
Electrical and optical 
equipment 

15 0.238 0.345 0.335 

 
Machinery, nec 14 0.244 0.308 0.302 

 
Financial intermediation 29 0.297 0.248 0.253 

 
Wholesale trade and 
commission trade 

22 0.226 0.246 0.244 

 
Transport equipment 16 0.204 0.239 0.235 

 
Construction 19 0.138 0.205 0.198 

 
Community social and 
personal services 

33 0.165 0.178 0.176 
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Table 6: ICT Level Industry Breakdown: Moderate ICT Intensive Industries  

 

 
Moderate ICT Industry 
Name 

 
Broad 
Sector 
Code 

 
Average ICT 

Investment, 1991-
1999 

 
Average ICT 

Investment, 2000-
2007 

 
Average ICT 

Investment, 1991-
2007 

 
Pulp, paper, paper, 
printing and publishing 7 0.132 0.170 0.166 
 
Manufacturing nec; 
recycling 

17 0.163 0.166 0.166 

 
Health and social work 36 0.149 0.153 0.152 
 
Chemicals and chemical 
products 

10 0.135 0.146 0.145 

 
Retail trade, repair of 
household goods 

23 0.124 0.132 0.131 

 
Sale, maintenance and 
repair of motor vehicles 
and motorcycles 

21 0.129 0.115 0.117 

 
Basic metals and 
fabricated metal 

13 0.101 0.102 0.102 

 
Coke, refined petroleum 
and nuclear fuel 
 

9 0.097 0.099 0.099 

Other non-metallic 
mineral 12 0.089 0.094 0.093 
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Table 7:: ICT Level Industry Breakdown: non-ICT Intensive Industries  

 

 
Non-ICT Intensive 
Industry Name 

 
Broad 
Sector 
Code 

 
Average ICT 

Investment, 1991-
1999 

 
Average ICT 

Investment, 2000-
2007 

 
Average ICT 

Investment, 1991-
2007 

 
Food, beverages and 
tobacco 
 

4 0.076 0.091 0.090 

Textiles, textile, leather 
and footwear 5 0.065 0.091 0.088 

 
Real estate, renting and 
business activities 

30 0.068 0.073 0.072 

 
Electricity, gas and water 
supply 

18 0.062 0.070 0.069 

 
Wood and of wood and 
cork 

6 0.059 0.066 0.065 

 
Rubber and plastics 11 0.045 0.061 0.059 

 
Hotels and restaurants 24 0.044 0.050 0.049 

 
Mining and quarrying 2 0.061 0.040 0.042 

 
Agriculture, hunting, 
forestry and fishing 

1 0.014 0.018 0.018 
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