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The Effects of Airline Behavior on Aircraft Accidents

Abstract
The purpose of this paper is to study the effects of specific airline business decisions on aircraft accident
propensity. Airline safety affects everyone and has large regulatory and policy implications. Existing research
has focused largely on three areas: airline financial health, safety and the resulting effects of accidents. I use
both Poisson and Negative Binomial models to study two different airline features: low-cost carriers and flight
length, and how they relate to the probability of an aircraft accident. Based on results using a Generalized
Negative Binomial model, I find statistically significant evidence at the 99% confidence level that a 1-unit
increase in the flight length leads to a 0.11% decrease in the number of accidents. I also find statistically
significant evidence at the 99% confidence level that when an airline is classified as a low-cost carrier, the
number of accidents decreases by 79.16%. These results indicate that a homogenous safety regulation
framework is not appropriate for the airline industry with regard to flight length and cost structure.
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Abstract: 
 
The purpose of this paper is to study the effects of specific airline business decisions on aircraft 
accident propensity. Airline safety affects everyone and has large regulatory and policy 
implications. Existing research has focused largely on three areas: airline financial health, safety 
and the resulting effects of accidents. I use both Poisson and Negative Binomial models to study 
two different airline features: low-cost carriers and flight length, and how they relate to the 
probability of an aircraft accident. Based on results using a Generalized Negative Binomial 
model, I find statistically significant evidence at the 99% confidence level that a 1-unit increase 
in the flight length leads to a 0.11% decrease in the number of accidents. I also find statistically 
significant evidence at the 99% confidence level that when an airline is classified as a low-cost 
carrier, the number of accidents decreases by 79.16%. These results indicate that a homogenous 
safety regulation framework is not appropriate for the airline industry with regard to flight length 
and cost structure. 
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I. Introduction 

 This paper investigates the following two questions: Do budget or low-cost airlines have 

more aircraft accidents than their counterparts of legacy carriers? Do airlines that provide longer 

average flight routes have more airplane accidents than their counterparts? 

 Intuitively, it may be expected that budget airlines only take the minimum safety 

precautions in order to provide the same services as their counterparts for a lower cost. Thus, an 

airline classified as a budget airline may have more accidents than a non-budget airline as a 

result of less investment in safety. Alternately, budget airlines may spend more on safety in order 

to preserve their reputation and thus experience fewer accidents than their counterparts. A longer 

flight length may cause an increase in the number of accidents because the more time an aircraft 

is in the air, the more time there is for an accident to occur. Conversely, if the probability of an 

accident occurring is greatest during taxiing, takeoff and landing, operators who service short-

haul flights may experience more accidents as they rely on quick turnaround times and incur a 

larger number of takeoffs and landings. 

 Existing research relating to these topics focuses on the subsequent effects of airplane 

accidents, the effect of an airline company’s financial health on safety and the ways in which 

airlines make business decisions. The Poisson model for discrete independent variables is used 

consistently throughout the research related to accident rates. Using this model, existing research 

has found contradicting evidence on the statistical significance between financial health and 

safety (Wang, Hofer and Dresner, 2013; Rose, 1990; Golbe, 1986). 

 This paper closes the gap in existing research between business decisions and safety as I 

investigate the effect of business decisions, specifically whether or not the airline is a budget 

airline and flight routes, on accident rates. I make use of count models, specifically Poisson and 
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Negative Binomial, to answer my questions of interest because my dependent variable, number 

of accidents, is a positive count variable. While there is an abundant amount of existing research 

which uses the Poisson model and number of accidents as a dependent variable, no other 

research has combined these things with independent variables which relate specifically to 

deliberate business decisions such as flight length and whether or not an airline is a budget 

airline. Applying the Generalized Negative Binomial model closes a gap in existing research 

while also generalizing my conclusions by eliminating the assumption that the variance of my 

dependent variable is linear and equal to the mean. 

 This topic is important because it relates to issues of safety, transportation routes and 

business efficiency. Understanding the connection between a firm’s decision making incentives 

and the frequency of accidents can help to prevent airplane accidents in the future through more 

effective regulation and improved business efficiency. Airlines adapt to changing economic 

environments while continuously aiming to maximize profits. Recognizing these decisions in 

relation to accident frequency may help businesses to understand the results of their actions and 

thus, change them accordingly to increase safety. 

 These research questions address issues of public policy and customer awareness, both 

nationally and internationally. The potential risks associated with flying are large and affect 

many more individuals than just those who fly. It is important for both consumers and the public 

to recognize the risks associated with flying, particularly if the risk is not uniform across airlines 

or flight routes. The results might help to determine if a universal regulatory framework for all 

types of airlines is the best form of safety-related policy. 

 The paper is organized as follows: In section II, I review related literature, important 

variables and common models used to answer similar questions. In section III, I outline the 
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Poisson and Negative Binomial models, my hypotheses and describe my research method. In 

section IV, I discuss the data and define each variable. In section V, I present the empirical 

results of my research. In section VI, I conclude my analysis with the implications and 

applicability of my results. 

 

II. Literature Review 

Existing research related to the effects of airline business decisions on aircraft accidents 

falls into two categories. A first line of this research focuses on safety as it relates to profits, 

financial health, investment and demand. A second line of this research studies business 

decisions as they relate to both topics of low cost competition and flight routes. My research 

provides a link between the existing yet isolated research on business decisions and safety. 

 First I discuss existing research relating to safety, and accidents in particular. A useful 

study is conducted by Golbe (1986), who examines the relationship between profits and safety 

precautions taken by an individual airline. She implements both cross-sectional and time-series 

techniques on data of U.S. airlines aggregated at the industry level from 1952 – 1972. Golbe 

(1986) emphasizes key variables of number of departures, load factors and net income, as a 

measure of profitability. Golbe (1986) uses airline accident experience as a measure of safety 

and models both accident experience and net income as dependent variables. Her research 

concludes that there is no significant relationship between profits and safety (Golbe 1986). 

 Bornstein and Zimmerman (1988) investigate the effect of an aircraft accident on flight 

demand using time series data for U.S. air carriers from 1960 - 1985, modeling revenue per 

passenger as a function of elapsed time since an accident, seasonal dummies, and firm and time 

fixed effects. They conclude that although an accident results in a significant $4.5 million loss 
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for a firm, there is not a significant relationship between accidents and flight demand before 

deregulation of the industry and only weak evidence of an effect on demand after deregulation 

(Bornstein and Zimmerman 1988). 

 Rose (1990) studies the effect of an airlines’ financial health on accident rates using panel 

data across thirty-five U.S. airlines from 1957 - 1986. She measures safety as a risk distribution, 

gathering data on both safety investment and physical conditions in which firms operate their 

aircraft. Similar to Wang, Hofer and Dresner (2013), Rose (1990) uses the Poisson probability 

distribution to model the dependent variable of accident rate. Using fixed effects, Rose (1990) 

separately models both total accidents and fatal accidents as an effect of departures (system 

departures in thousands), average stage length (thousands of miles), carrier type, foreign flights, 

size of firm, airline operating experience (billions of miles) and time variant characteristics of 

technology. While I use some of the same variables, all of my models use only total accidents as 

the dependent variable. She concludes that an increase in operator profit leads to a statistically 

significant decrease in accident rates (Rose 1990). 

 Wang, Hofer and Dresner (2013) measure the effect of safety investment on accident 

propensity and financial health. They use panel data on airlines from the National Transportation 

Safety Board (NTSB) and the U.S. Department of Transportation (DOT) from 1991 – 2008. Due 

to the entry and exit of airlines within the industry, they treat their panel dataset as unbalance. 

These authors model Poisson functions of number of accidents as I will do in this paper. Further, 

they create a variable for average accidents per departure, substituting this as the dependent 

variable in their reduced form model. They conclude that safety investment reduces accident 

propensity and find no relationship between financial condition and accident propensity nor 

financial condition and safety investment (Wang, Hofer and Dresner 2013).  
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 Other pertinent research emphasizes airline business decisions in relation to budget 

airlines and flight routes. Fischer and Kamerschen (2003) examine the relationship between low-

cost operator presence at airports and average airfare. They use the DOT’s form 41 for Air 

Carrier Traffic Statistics to crease a time-series data consisting of the four quarters of 1996. They 

use a cross section regression model in which the dependent variable is average yield 

(price/distance) with independent variables including total passengers, distances (stage length) 

and ValueJet. They measure ValueJet as a binary variable valued at 1 if the airline ValueJet 

services a particular airport and 0 otherwise; this variable accounts for the presence of low cost 

carriers at any given airport. Fischer and Kamerschen (2003) conclude that the presence of low-

cost competition for a particular route has a statistically significant negative effect on revenue. 

 Garrow, Holte and Mumbower (2012) study the phenomenon of product de-bundling as it 

relates to the emergence of low-cost carriers. They collect airline data from individual airline 

websites regarding baggage fees, cancelation fees, seat fees and ticket change fees. They find 

statistically significant evidence that low-cost carriers are the most likely carriers to charge 

additional fees. 

 Gillen and Hazledine (2015) study the effect of regional route fluctuations on firm 

pricing strategy. They use data from a total of six regions on various flight routes and use the 

Hirschman-Herfindahl index to account for airline concentration. They find no significant 

relationship between supply of seats and route length but find a significant difference in airfares 

across regions (Gillen and Hazledine 2015). 

 The limitation of prior research addressed in this paper is the lack of research examining 

the cause of accidents as related to business decisions. Although there is abundant research on 

airline safety and business decisions relating to budget airlines and flight routes, these topics 
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have only been studied in isolation from each other. Current research focuses on the effects of 

accidents but little has been examined regarding the cause of the accidents. My research utilizes 

many of the same variables, models and tests as those introduced above but I investigate the link 

between these industry characteristics and accidents to determine the effect of both flight length 

and budget airlines on accidents. 

 

III. Model and Methodology 

 I test whether budget airlines have more accidents than their counterparts and whether an 

increase in flight length leads to an increase in the number of aircraft accidents using a unified 

model. I hypothesize that budget airlines have more accidents than their counterparts as budget 

airlines may cut safety costs in order to provide cheaper fares than legacy or non-budget airlines. 

I expect an increase in flight length to cause a decrease in the number of accidents as I suspect 

that operators who provide long-haul flights invest more in safety and experience fewer takeoffs 

and landings, which are most damaging to the engines and aircraft, than operators who provide 

more frequent short-haul services. 

 I use a unified Negative Binomial model to answer my two questions of interest because 

of the similarity in potential control variables. I have included control variables which intuitively 

affect aircraft accidents without being directly related to flight length or whether or not an airline 

is a budget airline. 

 Similar to previous research such as that of Wang, Hofer and Dresner (2013) and Rose 

(1990), I begin by using the Poisson model to estimate the relationship between flight distance, 

budget airlines and accidents. The Poisson model is applicable to this data set because the 
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dependent variable, aircraft accidents, is a count variable. This model requires the dependent 

variable to be a discrete, non-negative value including zero, which is true of aircraft accidents. 

As the number of accidents may equal zero for any given year, we cannot take the log of 

the dependent variable. Instead, I use the following exponential function: 

 E(y|x1, x2, …, xk) = exp( 0 + 1x1 + … + kxk) = 

exp(Xit ) 

(1) 

Where xit represents various independent or control variables for airline i at time t while  

represents corresponding estimated coefficients. However, with the Poisson model, equation 1 

can be simplified because the distribution is determined by the mean; in fact, the mean and 

variance of Y are equal in the Poisson model. This is represented in the following equation: 

 P(Yit) = (exp[-exp(xit )][ ] / Y! (2) 

Where P(Yit) is the probability of Y accidents for airline i at time t, exp(xit ) is the expected 

number of accidents for airline i at time t or the average accident rate per departure and Y = 0, 1, 

2, …, exp(xit ) > 0. 

 Further, in the Poisson model, the mean and the variance are equal. This is represented in 

the following equation: 

 E(Yit) = exp(xit ) = Var(Yit) (3) 

However due to the nature of accident rates, there may be more or less variation in the 

data than expected under Poisson. Thus, the Negative Binomial model may provide a better fit 

for the relationship of interest as the Poisson model may produce biased coefficient estimates in 

the presence of over- or under-dispersion (Shankar, Mannering and Barfield, 1995).8 As shown 

                                                 
8 As stated by Shankar, Mannering and Barfield (1995), “It is well known, based on the finding 
of many previous research efforts, that accident frequency data tend to be over-dispersed, with 
the variance being significantly greater than the mean” (Shankar, Mannering and Barfield, 1995).  
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by Shankar, Mannering and Barfield (1995), who study the effect of roadway accidents using the 

Negative Binomial model, equation 3 can be altered to represent the relationship with a Negative 

Binomial model in the following way: 

 Var(Yit) = E(Yit)[1+ E(Yit)] (4) 

 From the above equation, the variance is no longer equal to the mean when using the 

Negative Binomial model due to the existence of the term [1 + E(Y)], when E(Y) ≠ 0. When 

 is equal to 0, Var(Y) = E(Y) and I am left with variance which is represented in the Poisson 

model. However, when  is not equal to zero, there is evidence of either over - or under-

dispersion. It is important to note that the Negative Binomial model is only applicable in the 

presence of over-dispersion using the Poisson distribution, in which the variance is greater than 

the mean; when there is under-dispersion using the Poisson distribution, the Negative Binomial 

model is not valid (Shankar, Mannering and Barfield, 1995). As used by Shankar, Mannering 

and Barfield (1995), the following equation represents the probability distribution using the 

Negative Binomial model: 

 P(Yit) =  ( )(Yit)(1 - uit) (5) 

Where uit = /(  + exp(xit )),  = 1/  and  represents a function of gamma (Shankar, 

Mannering and Barfield, 1995). 

 I will also implement the Generalized Negative Binomial model in which the form of the 

variance is not assumed to be linear, as it is in the Negative Binomial model. Thus, the 

Generalized Negative Binomial model makes my results more precise as the form of the variance 

is not assumed to be linear. 

In my regression, I specify the following model: 

E(Accidentsit) = Departuresit * exp( 0 + 1Budget Airlineit + 2Average Stage (6) 



 
 

79 
 

Lengthit + uit)  

Consistent with existing research, the expected number of accidents is the number of 

departures multiplied by the average accident rate per departure because of the stochastic or 

random nature of accident data (Wang, Hofer and Dresner, 2013; Rose, 1990). 

 Based on equation 6, my hypothesis that budget airlines are less safe is supported when 

1 > 0. When an airline is considered to be a budget airline and 1 is positive, there is a positive 

effect on the expected value of accidents and thus my hypothesis is supported. My hypothesis 

that an increase in average flight length leads to a decrease in accidents is supported when 2 < 

0, as an increase in the average stage length should be negatively related to the number of 

accidents, according to my prediction. 

 

IV. Data 

 I use data from the National Transportation Safety Board (NTSB), Federal Aviation 

Administration (FAA) and the Bureau of Transportation Statistics (BTS) as has been used in 

previous research. To minimize measurement errors, I make use of a consolidated data set from 

the Airline Data Project at Massachusetts Institute of Technology (MIT) which contains data 

from the BTS form 41 which gathers quarterly billing data and monthly airline data. Using these 

data sources, I construct a panel data set which varies across fifteen U.S. airlines over twenty-one 

years, from 1995 through 2015. Data on all fifteen airlines in the MIT project is included; a list 

of these airlines along with the years for which data is available for each airline can be found in 

table 1 of section VIII.  

Due to mergers and acquisitions within the industry, there is no data for all twenty-one 

years for all fifteen airlines. It is important to note that while this is considered “missing data” in 
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terms of the raw data, the data is not in fact missing as the airlines simply were not in existence 

or operating during the years in which I do not have data. I have verified with individual airline 

websites that the years in which there is “missing data” align with mergers, acquisitions, entries 

or closings within the industry. Because of these gaps in the data, together with the fact that my 

panel is relatively narrow in the sense that I only include data on fifteen airlines, I continue my 

analysis by treating my panel data set as cross sectional data as done by Golbe (1986).9 

 I use a dependent variable of aircraft accidents as used by Golbe (1986) Borenstein and 

Zimmerman (1988), and Rose (1990) and Wang, Hofer and Dresner (2013). I have gathered the 

information from the FAA which has the NTSB’s Accident and Incident Database. According to 

the FAA Aviation Safety Information Analysis and Sharing (ASIAS), an aircraft accident is 

defined as “an occurrence associated with the operation of an aircraft which takes place between 

the time any person boards the aircraft with the intention of flight and all such persons have 

disembarked, and in which any person suffers death or serious injury, or in which the aircraft 

receives substantial damage” (ASIAS). I have included all U.S. aircraft accidents, including fatal 

and non-fatal, from January 1995 through December 2015 for all fifteen airlines used in my 

dataset. Due to the nature of aircraft accidents, this variable is a non-continuous, discrete count 

variable. 

 In order to answer my question regarding the effect of flight length on accident 

propensity, my primary independent variable of interest is average stage length which is used by 

Golbe (1986), Rose (1990) and Wang, Hofer and Dresner (2012). This variable is available in the 

consolidated MIT study, which pulls data from the BTS form 41, and measures the total number 

                                                 
9 I report results using fixed effects in tables 9 and 10 of section VIII. While the signs of the 
average stage length and budget airline variable coefficients are the same when implementing 
cross sectional data methods, neither coefficient is statistically significant at even the 10% 
significance level.  



 
 

81 
 

of miles flown divided by the total number of departures. Thus, the average stage length 

represents average flight length of each departure, measured in miles.  

In order to answer my question regarding the effect of being a budget airline on accident 

propensity, I have investigated three potential independent variables including a dummy 

variable, total baggage fee and total cancelation fee. Based on the research of Garrow, Holte and 

Mumbower (2011), who study the phenomena of product de-bundling in the airline industry, I 

have created a binary variable valued at 1, which is attributed to a budget or low-cost carrier and 

0, which is attributed to a non-budget or legacy airline. Their research includes a total of eleven 

U.S. airlines, ten of which I also include in my data set. Although Garrow, Holte and Mumbower 

(2011) do not precisely define budget or legacy carriers, they state that the legacy carriers 

“participate in well-established alliances that enable them to further increase the number of 

destinations they can serve; these major carriers also tend to have a moderate number of other 

airline partners that further enhance their networks” (Garrow, Holte and Mumbower, 2011). 

Based on their classification of low cost carriers, I identify the following same four budget 

airlines: Southwest, AirTran, JetBlue and Frontier.10 I classify the remaining eleven airlines in 

my data set as legacy or non-budget airlines, six of which are also considered to be legacy 

carriers by Garrow, Holte and Mumbower (2011). Thus, I assume that the five airlines included 

in my data set, but not included in the specific reference literature, are also legacy carriers. 

I have also included total baggage fees and total cancelation fees as potential key 

independent variables to account for budget airlines. I have gathered both fee variables from the 

consolidated MIT study, both of which are measured in thousands of U.S. dollars. I use the 

                                                 
10 In conducting further company research, I find both Allegiant Air and Sprit to be considered 
budget airlines. While I do not include these classifications in my primary results, tables 11 and 
12 in section VIII show the results of my research with additionally categorizing both Allegiant 
Air and Spirt as budget airlines.  
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conclusion of Garrow, Holte and Mumbower’s (2011) research that budget airlines are the most 

likely to charge additional ancillary fees. Thus, I use the fee variables, interchangeably, as proxy 

variables to represent an airline behaving “more like a budget airline.” I assume that a 1-unit 

increase in either fee variable indicates an airline behaving more like a budget airline. However, 

due to structural breaks and variation across low-cost carriers, as mentioned by Garrow, Holte 

and Mumbower (2011), there is potential bias in the way these fee variables may represent 

budget airlines. Due to the difficulty in defining a budget airline precisely, as shown in previous 

research, I include all three variables (baggage fee, cancelation fee, budget airline) to 

interchangeably account for budget airlines. 

 I use the number of incidents reported for each airline in each year, from the FAA ASIAS 

as done by Rose (1990). An incident is defined as “an occurrence other than an accident, 

associated with the operation of an aircraft, which affects or could affect the safety of 

operations” (ASIAS). Due to the nature of aircraft incidents, this variable is a non-continuous, 

discrete count variable.  As I have not been able to include the average age of the aircraft, I 

presume that incidents will work to control for age of aircraft-related characteristics, which may 

affect accidents as an increase in incidents intuitively leads to an increase in the probability of an 

accident. 

 The following control variables that I mention are all gathered from the MIT project and 

thus the BTS form 41. I control for size of aircraft by dividing average seat miles (ASM) by the 

total number of miles flown. ASM is an industry standard measurement of utilization and airline 

output and measures the total number of available seats per departure multiplied by the total 

number of miles traveled. However, because ASM includes mileage, there is potential for 
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collinearity with my independent variable of interest, average stage length. Thus, I divide ASM 

by miles and am left with the average number of seats per departure.  

I control for airline size by including the number of functioning aircraft and total 

operating revenue measured in billions of U.S. dollars. I include the average salary of both pilots 

and co-pilots, measured in U.S. dollars, to control for pilot experience and skill level. I include 

maintenance per aircraft in which I divide the total maintenance expenditure, measured in 

thousands of U.S. dollars, by the total number of aircraft in the fleet to account for maintenance 

cost per aircraft. Summary statistics of all variables can be found in table 2 of section VIII. 

 While I attempt to create a robust data set including industry standard, intuitively sound 

and previously used variables, I have not been able to collect data on average aircraft age and 

airline profitability. Aircraft incidents may serve as a proxy variable for aircraft age while total 

revenue may serve as a proxy variable for profitability, although neither fully capture the effect 

of the absent variables. 

 
V. Results 

 I present my basic Poisson regressions in table 3 of section VIII. In running the most 

simplified regression presented in column 1, the sign of the coefficient of interest in positive and 

statistically significant at the 99% level. When I include control variables to the same model, as 

seen in columns 2 and 3 of table 3, the estimated coefficient of the average stage length variable 

becomes negative while remaining statistically significant. The results in column 1 indicate that a 

1-unit increase in flight length leads to a 0.059% increase in the number of accidents while the 

results in columns 2 and 3 indicate that a 1-unit increase in average stage length leads to a 0.10% 

decrease in the number of accidents, which are all statistically significant at the 99% confidence 
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level. Further, seen in the regressions in columns 2 and 3 of table 3, when an airline is a budget 

airline the number of accidents decreases by 61.74% and 61.41%, respectively.11  

 Based on the regression represented in column 3 of table 3 in section VIII, I run both 

Deviance and Pearson goodness-of-fit tests. With P-values of 0.0017 and 0.0005, respectively, I 

reject the null hypothesis that the Poisson model fits my relationship of interest well. 

 The regressions in table 5 utilize the Negative Binomial model. The basic regression in 

column 1 indicates that a 1-unit increase in the average flight length leads to a 0.07% increase in 

the number of accidents which is statistically significant at the 5% significance level. This 

positive sign of the coefficient is similar to that of the basic regression using the Poisson model 

shown in column 1 of table 3. When I implement the Negative Binomial model and run the LR 

test of alpha = 0, I get a P-value of 0.000. Thus, I reject the null hypothesis that alpha is equal to 

zero and conclude the Negative Binomial model to be a good fit for my data as I find over-

dispersion and cannot assume the variance of accidents to be equal to the mean or for alpha to be 

equal to 0.12 

 When I include control variables to the basic Negative Binomial model, as seen in 

columns 2-5 of table 5, the estimated coefficient of the average stage length variable becomes 

negative. The difference between the regressions represented in columns 2-4 is the variable in 

which I use to account for budget airline. In column 2 of table 5, I include the baggage fee 

variable while in column 3 of table 5, I include the cancelation fee variable. Intuitively I expect 

an increase in baggage or cancelation fees to lead to an increase in the number of accidents, as I 

assume that airlines that charge higher fees behave more similarly to budget airlines. From the 

                                                 
11 The output in table 4 of section VIII represents the marginal effect interpretations associated 
with the Poisson regressions represented in table 3. 
12 Further, because the mean of accidents is 1.28 while the variance is 3.43, I can simply identify 
the presence of over-dispersion within my data. 
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regression output seen in columns 2 and 3, neither estimated coefficient of the baggage nor 

cancelation fee variable is statistically significant at even the 90% confidence level. Due to the 

insignificance of the estimated coefficients, structural breaks and potential measurement error, I 

conclude that neither baggage nor cancelation fees accurately represent budget airlines.13 

 The regressions represented in columns 4 and 5 of table 5 include a binary budget airline 

variable as opposed to a fee variable to account for budget airlines. Both regressions show that a 

1-unit increase in the average stage length leads to 0.11% decrease in the number of accidents, 

which is statistically significant at the 1% significance level. The estimated coefficients of the 

budget airline variable are large in magnitude and statistically significant at the 99% level; I find 

that when an airline is a budget airline, the number of accidents decreases by 71.84% and 

79.16%. It is worth noting the changes in significance of the estimated coefficients of the 

average stage length, maintenance per aircraft, number of seats and incidents variables from 

column 3 to column 4.14 The large magnitude of the budget airline coefficients in columns 4 and 

5 may be explained by the measurement error in the variable and thus I am not confident in these 

conclusions drawn to answer my question regarding the effect of budget airlines on accident 

propensity. 

 The regressions represented in table 7 are the same as those presented in table 5, although 

they implement the Generalized Negative Binomial model as opposed to the Negative Binomial 

model. The results are almost identical to those of the Negative Binomial model but because the 

generalized model even further loosens the assumptions of the variance structure, I have decided 

                                                 
13 The output in table 6 of section VIII represents the marginal effect interpretations associated 
with the Negative Binomial regressions represented in table 5. 
14 In line with previous literature, I also run these regressions with an added time trend variable 
in order to account for advances in technology over time which may decrease accident 
propensity. However, because the estimated coefficient of the time trend variable is consistently 
statistically insignificant, I do not include it in my final results. 
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to treat the regression in column 5 of table 7 as my final regression. As some of the estimated 

coefficients in the regression represented in column 4 of table 7 are not statistically significant at 

even the 90% confidence level, I run the regression in column 5 of table 7 in order to more 

accurately estimate the coefficients of interest. 

 From the regression output represented in column 5 of table 7, I have statistically 

significant evidence at the 1% significance level that a 1-unit increase in average stage length 

leads to a 0.11% decrease in the number of accidents while I have statistically significant 

evidence at the 1% significance level that when an airline is classified as being a budget airline, 

the number of accidents decreases by 79.16%. All of the signs of the estimated coefficients align 

with intuition.15 

 The negative and statistically significant coefficient of the average stage length variable 

does not align with the research of Wang, Hofer and Dresner (2013) nor Rose (1990), who both 

find statistically significant positive coefficient estimates.16 However, the negative sign of the 

average stage length coefficient does align with the findings of Golbe (1986) though she does not 

find the negative average stage length coefficients to be statistically significant at any level. 

 

VI. Conclusion 

 From the previous section, I conclude that there is statistically significant evidence at the 

1% significance level that a 1-unit increase in average stage length leads to a 0.11% decrease in 

                                                 
15 The output in table 8 of section VIII represents the marginal effect interpretations associated 
with the Negative Binomial regressions represented in table 7. Column 5 of table 8 in section 
VIII represents the marginal effects corresponding to my final regression in which a 1-unit 
increase in average flight length is associated with 0.00093 fewer accidents and an airline being a 
budget carrier is associated with 0.57 fewer accidents. 
16 Wang, Hofer and Dresner (2013) find statistically significant evidence at the 1% level that 
“longer stage lengths are associated with a higher accident propensity” (Wang, Hofer and 
Dresner, 2013). 
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the number of aircraft accident. I have statistically significant evidence at the 1% significance 

level that when an airline is a budget airline, the expected value of an accident decreases by 

79.16%.   

 As stated in section III, I hypothesize that an increase in the average stage length leads to 

a decrease in the number of accidents as operators who provide short-haul services incur more 

takeoffs and landings, which put the engines and aircraft under the most stress. Based on the 

negative sign of the coefficient of the average stage length variable, this hypothesis is supported. 

I also hypothesize the number of accidents increases when an airline is a budget airline as budget 

airlines may spend less on safety in order to provide comparable services to non-budget airlines. 

However, due to the negative sign of the estimated coefficient of the binary budget airline 

variable, my hypothesis relating to budget airlines is not supported. 

 Intuitively the negative and statistically significant, at the 99% level, coefficients of both 

independent variables of interest may be explained by airline business decisions. Based on my 

results, an increase in average flight length leads to a decrease in the number of accidents. This 

may mean that carriers that provide longer flights put more resources toward flight safety as 

opposed to carriers which provide flights with shorter average stage lengths.17 After further 

investigating the specific position of each accident during the flight, I find that 30.58% of 

accidents occur while the aircraft is on the ground, 16.25% of accidents occur while at cruising 

level, 44.35% occur during either takeoff or landing and 8.82% of accidents occur with an 

“other” or undefined reason. Thus, it makes sense that short-haul carriers, that experience a 

larger number of takeoffs and landings, have more accidents as 44.35% of accidents occur at 

                                                 
17 In testing the effect of average stage length on maintenance expenditure per aircraft, I find 
statistically significant evidence that a 1-unit increase in flight length leads to an increase in 
maintenance expenditure per aircraft. Thus I conclude that longer-haul carriers have higher 
expenditure on maintenance per aircraft than that of their counterparts. 
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takeoff and landing. Conversely, it makes sense that airlines that provide longer flight lengths 

have fewer takeoffs and landings than their short-haul provider counterparts and thus incur a 

smaller number of accidents. These results indicate that airlines that provides longer-haul flights 

have inherently different operating methods and flight safety structures than those of shorter-haul 

carriers. 

 Based on the results, when an airline is a budget airline, the number of accidents 

decreases by an extremely large magnitude. Although these results may support the idea that 

budget airlines may be sensitive to an unsafe reputation and thus may allocate more resources 

toward safety than that of their counterparts in order to maintain strong reputations of safety, 

after further investigation I find, this is not the case.18 While these results indicate that budget 

airlines have different safety structures than that of non-budget or legacy airlines I am not 

confident in my results regarding the budget airline variable. The unrealistically large coefficient 

signifies an error within the application. I suspect measurement error of the budget airline 

variable to be a large potential issue within my model which leaves me with little confidence in 

my results associated to the budget airline variable.19 

 Ultimately these results indicate that a homogenous airline regulation framework is not 

appropriate for budget nor long-haul airlines. With statistically significant evidence that both an 

increase in average flight length and an airline being a budget airline lead to a decrease in the 

number of aircraft accidents, it is apparent that not all airlines should be held to identical 

                                                 
18 In further investigation, I find statistically significant evidence at the 1% level that budget 
airlines spend less on maintenance per aircraft than non-budget airlines. 
19 It is worth noting that in testing the difference between accident rates of budget and non-
budget airlines, I find the mean of accidents for budget airlines to be .8133 while that of non-
budget airlines is 1.45. Thus my regression results and conclusions align with the variable within 
my data set; thus I assume there to me measurement error within the variable and an “outside” 
factor affecting the large decrease in accident rate of budget airlines. 
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benchmarks. Airline business decisions have shown to significantly affect aircraft accident rates; 

thus airlines should be regulated and upheld to specific standards based on these decisions. 
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VIII. Supporting Tables 

Table 1: Airlines included in the Analysis and Available Observations for Each Airline 

Airline Available Data (Inclusive) 

AirTran Airways 1995 -  2011 

Alaska Airlines 1995 -  2015 

Allegiant Air 2000 -  2015 

America West Airlines 1995 -  2007 

American Airlines 1995 -  2015 

Continental Airlines 1995 -  2011 

Delta Air Lines 1995 -  2015 

Frontier Airlines 1995 -  2015 

Hawaiian Airlines 1995 -  2015 

JetBlue Airways 2000 -  2015 

Northwest Airlines 1995 -  2009 

Southwest Airlines 1995 -  2015 

Spirit Airlines 1995 -  2015 

United Airlines 1995 -  2015 

US Airways 1995 -  2014 
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Table 2: Summary Statistics 

Airline Units Observations Mean Standard 
Deviation Minimum Maximum 

Number of 
Accidents Count 283 1.282686 1.852146 0 9 

Average Stage 
Length 

Total Miles 
Flown / Aircraft 

Departures 
282 935.0396 278.6823 256.0417 1720.326 

Budget Airline Binary 282 .2659574 .4426272 0 1 

Baggage Fee Thousand U.S. $ 252 108026.3 198955.6 20.54 1125846 

Cancelation Fee Thousand U.S. $ 237 267122.2 460147.5 2690.4 3117848 

Number of 
Aircraft in Fleet Count 282 265.3815 235.9029 .9863014 971.8904 

Pilot and Co-
Pilot Average 

Salary 
U.S. $ 260 130379.8 113164.9 16694.64 1859096 

Maintenance Per 
Aircraft 

Maintenance 
Expenditure 

($1,000)/ Fleet 
Size 

264 2420.938 996.9043 428.5007 5586.672 

Total Revenue Billion U.S. $ 274 8.340641 9.127099 .0536117 41.08443 

Number of 
Incidents Count 287 8.355401 10.39193 0 58 

Number of Seats ASM / Miles 282 160.6285 32.88094 93.34768 265.6832 
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Table 3: Poisson Regressions 
Dependent Variable: Number of Aircraft Accidents 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: Standard Errors are given in parenthesis. *Significant at 10% level, **Significant at 5% level, ***Significant at 1% level 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Regressor (1) (2) (3) 

Average Stage 
Length 

.0005898 
(.0001858)*** 

-.0010085 
(.0003297)*** 

-.001009 
(.0002927)*** 

Budget 
Airline  -.6174235 

(.2218317)*** 
-.6140813 

(.1752401)*** 

Maintenance / 
Aircraft  -.0002912 

(.0001192)** 
-.0003702 

(.000085)*** 

Fleet Size  .0041103 
(.0006356)*** 

.0042339 
(.0003065)*** 

Pilot Salary  -9.72e-07 
(1.41e-06)  

Number of 
Seats  -.0036111 

(.0041183)  

Number of 
Incidents  .0033688 

(.0055896)  

Total Revenue  .0030551 
(.0154579)  

Intercept -.3181392 
(.1898117)* 

1.181443 
(.7035263)* 

.6731913 
(.2754536)** 

Robust 
Standard 
Errors? 

No Yes Yes 

Pseudo R2 0.0095 0.3019 0.3031 

Chi Squared 9.96 222.40 216.34 

Number of 
Observations 282 260 264 
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Table 4: Poisson Regression Interpretations (Marginal Effects) 
Dependent Variable: Number of Aircraft Accidents 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: Standard Errors are given in parenthesis. *Significant at 10% level, **Significant at 5% level, ***Significant at 1% level 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Regressor (1) (2) (3) 

Average Stage 
Length 

.0007448 
(.00023)*** 

-.0008845 
(.00029)*** 

-.0008721 
(.00025)*** 

Budget  -.4748103 
(.1541)*** 

-.4656173 
(.12154)*** 

Maintenance / 
Aircraft  -.0002553 

(.0001)** 
-.00032 

(.00007)*** 

Fleet Size  .0036048 
(.00055)*** 

.0036592 
(.00023)*** 

Pilot Salary  -8.53e-07 
(.00000)  

Number of 
Seats  -.003167 

(.0036)  

Number of 
Incidents  .0029544 

(.0049)  

Total Revenue  .0026794 
(.01355)  
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Table 5: Negative Binomial Regressions 
Dependent Variable: Number of Aircraft Accidents 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: Errors are given in parenthesis. *Significant at 10% level, **Significant at 5% level, ***Significant at 1% level 
 
 
 
 
 
 

Regressor (1) (2) (3) (4) (5) 

Average 
Stage Length 

.0007184 
(.0003591)** 

-.0005928 
(.0002924)** 

-.0006922 
(.0003893)* 

-.0011078 
(.000349)*** 

-.0011111 
(.0003296)*** 

Budget 
Airline    -.7184402 

(.2333835)*** 
-.7916491 

(.2245004)*** 

Baggage Fee  7.40e-07 
(7.01e-07)    

Cancelation 
Fee   3.28e-07 

(2.61e-07)   

Maintenance 
/ Aircraft  -.0002036 

(.000133) 
-.0000663 
(.0001418) 

-.0002223 
(.0001257)* 

-.0002559 
(.0001094)** 

Fleet Size  .0044434 
(.0009075)*** 

.0042938 
(.0010027)*** 

.0042367 
(.0006174)*** 

.0044162 
(.0002986)*** 

Pilot Salary  -1.80e-06 
(2.05e-06) 

-3.28e-06 
(2.90e-06) 

-9.61e-07 
(1.14e-06)  

Number of 
Seats  -.0018323 

(.0040688) 
-.0036962 
(.0043345) 

-.0064759 
(.0043613)* 

-.0060738 
(.0040212) 

Number of 
Incidents  .0132486 

(.0059269)*** 
.018139 

(.0079114)*** 
.0037346 

(.0058818)  

Total 
Revenue  -.0226676 

(.0324717) 
-.0210113 
(.0333182) 

.0033395 
(.0155194)  

Intercept -.441502 
(.353355) 

.2237119 
(.6562952) 

.4707563 
(.663461) 

1.538596 
(.7558503)* 

1.450162 
(.6742874)** 

Robust 
Standard 
Errors? 

No Yes Yes Yes Yes 

Pseudo R2 0.0046 0.1718 0.1676 0.1864 0.1865 

Chi Squared 4.00 225.76 225.04 254.70 237.78 

Number of 
Observations 282 244 230 260 264 
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Table 6: Negative Binomial Regression Interpretations (Marginal Effects) 
Dependent Variable: Number of Aircraft Accidents 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: Standard Errors are given in parenthesis. *Significant at 10% level, **Significant at 5% level, ***Significant at 1% level 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Regressor (1) (2) (3) (4) (5) 

Average 
Stage Length 

.0009044 
(.00045)** 

-.00056 
(.00028)** 

-.0005847 
(.00033)* 

-.0009521 
(.0003)*** 

-.0009337 
(.00027)*** 

Budget 
Airline    -.5315556 

(.15305)*** 
-.5652535 
(.1409)*** 

Baggage Fee  6.99e-07 
(.00000)    

Cancelation 
Fee   2.77e-07 

(.00000)   

Maintenance 
/ Aircraft  -.0001924 

(.00012) 
-.000056 
(.00012) 

-.0001911 
(.00011)* 

-.0002151 
(.00009)** 

Fleet Size  .0041975 
(.00086)*** 

.0036268 
(.00083)*** 

.0036416 
(.00054)*** 

.0037113 
(.00024)*** 

Pilot Salary  -1.70e-06 
(.00000) 

-2.77e-06 
(.00000) 

-8.26e-07 
(.00000)  

Number of 
Seats  -.0017309 

(.00385) 
-.0031221 
(.00365) 

-.0055662 
(.00374) 

-.0051043 
(.00338) 

Number of 
Incidents  .0125155 

(.00569)** 
.0153216 

(.00691)** 
.00321 

(.00505)  

Total 
Revenue  -.0214132 

(.03074) 
-.0177477 
(.02811) 

.0028704 
(.01333)  
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Table 7: Generalized Negative Binomial Regressions 
Dependent Variable: Number of Aircraft Accidents 

 
Notes: Standard Errors are given in parenthesis. *Significant at 10% level, **Significant at 5% level, ***Significant at 1% level 
 
 
 
 
 
 
 
 
 
 
 
 

Regressor (1) (2) (3) (4) (5) 

Average Stage 
Length 

.0007184 
(.0003591)** 

-.0005928 
(.0002924)** 

-.0006922 
(.0003893)* 

-.0011078 
(.000349)*** 

-.0011111 
(.0003296)*** 

Budget 
Airline    -.7184398 

(.2333834)*** 
-.791649 

(.2245004)*** 

Baggage Fee  7.40e-07 
(7.01e-07)    

Cancelation 
Fee   3.28e-07 

(2.61e-07)   

Maintenance / 
Aircraft  -.0002036 

(.000133) 
-.0000663 
(.0001418) 

-.0002223 
(.0001257)* 

-.0002559 
(.0001094)** 

Fleet Size  .0044434 
(.0009075)*** 

.0042938 
(.0010027)*** 

.0042367 
(.0006174)*** 

.0044162 
(.0002986)*** 

Pilot Salary  -1.80e-06 
(2.05e-06) 

-3.28e-06 
(2.90e-06) 

-9.61e-07 
(1.14e-06)  

Number of 
Seats  -.0018323 

(.0040688) 
-.0036962 
(.0043345) 

-.0064759 
(.0043613) 

-.0060738 
(.0040212) 

Number of 
Incidents  .0132486 

(.0059269)*** 
.018139 

(.0079114)*** 
.0037346 

(.0058818)  

Total Revenue  -.0226676 
(.0324717) 

-.0210113 
(.0333182) 

.0033396 
(.0155194)  

Intercept -.441502 
(.353355) 

.2237118 
(.6562952) 

.4707563 
(.6634611) 

1.538595 
(.7558502)** 

1.450162 
(.6742874)** 

Robust 
Standard 
Errors? 

No Yes Yes Yes Yes 

Pseudo R2 0.0046 0.1718 0.1676 0.1864 0.1865 

Chi Squared 4.00 225.76 225.04 254.70 237.78 

Number of 
Observations 282 244 230 260 264 
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Table 8: Generalized Negative Binomial Regression Interpretations (Marginal Effects) 
Dependent Variable: Number of Aircraft Accidents 

 
Notes: Standard Errors are given in parenthesis. *Significant at 10% level, **Significant at 5% level, ***Significant at 1% level 
  

Regressor (1) (2) (3) (4) (5) 

Average Stage 
Length 

.0009044 
(.00045)** 

-.00056 
(.00028)** 

-.0005847 
(.00033)* 

-.0009521 
(.0003)*** 

-.0009337 
(.00027)*** 

Budget 
Airline    -.5315554 

(.15305)*** 
-.5652534 
(.1409)*** 

Baggage Fee  6.99e-07 
(.00000)    

Cancelation 
Fee   2.77e-07 

(.00000)   

Maintenance / 
Aircraft  -.0001924 

(.00012) 
-.000056 
(.00012) 

-.0001911 
(.00011)* 

-.0002151 
(.00009)** 

Fleet Size  .0041975 
(.00086)*** 

.0036268 
(.00083)*** 

.0036416 
(.00054)*** 

.0037113 
(.00024)*** 

Pilot Salary  -1.70e-06 
(.00000) 

-2.77e-06 
(.00000) 

-8.26e-07 
(.00000)  

Number of 
Seats  -.0017309 

(.00385) 
-.0031221 
(.00365) 

-.0055662 
(.00374) 

-.0051043 
(.00338) 

Number of 
Incidents  .0125155 

(.00569)** 
.0153216 

(.00691)** 
.00321 

(.00505)  

Total Revenue  -.0214132 
(.03074) 

-.0177477 
(.02811) 

.0028704 
(.01333)  



 
 

100 
 

Table 9: Fixed Effects Negative Binomial Regressions 
Dependent Variable: Number of Aircraft Accidents 

 
Notes: Standard Errors are given in parenthesis. *Significant at 10% level, **Significant at 5% level, ***Significant at 1% level 
 

Regressor (1) (2) (3) (4) (5) 

Average Stage 
Length 

-.0007067 
(.0003892)* 

-.0003581 
(.0007181) 

-.0004855 
(.0008489) 

-.0003422 
(.0007117) 

-.0003761 
(.0005644) 

Budget 
Airline    -1.015469 

(1.756771) 
-.9040006 
(1.641604) 

Baggage Fee  -8.00e-08 
(5.60e-07)    

Cancelation 
Fee   1.46e-08 

(2.23e-07)   

Maintenance / 
Aircraft  -.0000784 

(.0001749) 
-.0000348 
(.0001956) 

-.0000821 
(.0001694)  

Fleet Size  .0037966 
(.0012328)*** 

.003085 
(.0014513)** 

.0037115 
(.0012205)*** 

.0037001 
(.0010353)*** 

Pilot Salary  -3.46e-06 
(3.21e-06) 

-3.85e-06 
(3.42e-06) 

-3.75e-06 
(3.15e-06) 

-3.70e-06 
(2.96e-06) 

Number of 
Seats  .0020996 

(.0116373) 
-.0105001 
(.0135941) 

-.0006037 
(.0114217)  

Number of 
Incidents  -.0015042 

(.0092532) 
-.0022328 
(.0127798) 

-.0025023 

(.0092082) 
 

Total Revenue  -.0198427 
(.0286438) 

-.007008 
(.0293961) 

-.0216388 
(.019868) 

-.0233521 
(.0160176) 

Intercept 2.718387 
(.7503188)*** 

1.644222 
(1.989476) 

3.955269 
(2.439316) 

2.48019 
(2.208632) 

2.162544 
(1.235409)* 

Chi Squared 3.30 18.97 15.87 19.70 19.52 

Number of 
Observations 282 238 230 260 260 
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Table 10: Fixed Effects Negative Binomial Regression Interpretations (Marginal Effects) 
Dependent Variable: Number of Aircraft Accidents 

 
Notes: Standard Errors are given in parenthesis. *Significant at 10% level, **Significant at 5% level, ***Significant at 1% level 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Regressor (1) (2) (3) (4) (5) 

Average Stage 
Length 

-.0007067 
(.00039)* 

-.0003581 
(.00072) 

-.0004855 
(.00085) 

-.0003422 
(.00071) 

-.0003761 
(.00056) 

Budget 
Airline    -1.015469 

(1.75677) 
-.9040006 
(1.6416) 

Baggage Fee  -8.00e-08 
(.00000)    

Cancelation 
Fee   1.46e-08 

(.00000)   

Maintenance / 
Aircraft  -.0000784 

(.00017) 
-.0000348 

(.0002) 
-.0000821 
(.00017)  

Fleet Size  .0037966 
(.00123)*** 

.003085 
(.00145)** 

.0037115 
(.00122)*** 

.0037001 
(.00104)*** 

Pilot Salary  -3.46e-06 
(.00000) 

-3.85e-06 
(.00000) 

-3.75e-06 
(.00000) 

-3.70e-06 
(.00000) 

Number of 
Seats  .0020996 

(.01164) 
-.0105001 
(.01359) 

-.0006037 
(.01142)  

Number of 
Incidents  -.0015042 

(.00925) 
-.0022328 
(.01278) 

-.0025023 
(.00921)  

Total Revenue  -.0198427 
(.02864) 

-.007008 
(.0294) 

-.0216388 
(.01987) 

-.0233521 
(.01602) 
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Table 11: Re-defined Budget Variable Regressions 
Dependent Variable: Number of Aircraft Accidents 

 
Notes: Standard Errors are given in parenthesis. *Significant at 10% level, **Significant at 5% level, ***Significant at 1% level 
 
 
 
 
 

Regressor (1) (2) (3) (4) (5) 

Average Stage 
Length 

-.0011291 
(.0003257)*** 

-.0011291 
(.0003257)*** 

-.0010107 
(.0003017)*** 

-.0003294 
(.0007111) 

-.0003649 
(.000564) 

Budget 
Airline 

-.9677346 
(.2219163)*** 

-.9677344 
(.2219163)*** 

-.955858 
(.2032952)*** 

-.8518152 
(1.811383) 

-.7464848 
(1.708464) 

Maintenance / 
Aircraft 

-.0003749 
(.0001323)*** 

-.0003749 
(.0001323)*** 

-.0003526 
(.0001056)*** 

-.0000837 
(.0001694)  

Fleet Size .0041583 
(.0006001)*** 

.0041583 
(.0006001)*** 

.0041529 
(.0003086)*** 

.0037185 
(.0012219)*** 

.0037109 
(.0010365)*** 

Pilot Salary -1.23e-06 
(1.47e-06) 

-1.23e-06 
(1.47e-06)  -3.71e-06 

(3.15e-06) 
-3.68e-06 
(2.96e-06) 

Number of 
Seats 

-.0054923 
(.0040084) 

-.0054923 
(.0040084) 

-.0057792 
(.0036146) 

-.0003993 
(.0114145)  

Number of 
Incidents 

-.0027056 
(.0062859) 

-.0027056 
(.0062859)  -.0023595 

(.0092196)  

Total Revenue .0050343 
(.0151806) 

.0050343 
(.0151806)  -.0217331 

(.0198984) 
-.023557 

(.0160326) 

Intercept 1.987853 
(.7174252)*** 

1.987852 
(.7174251)*** 

1.717778 
(.6175659)*** 

2.392866 
(2.194456) 

2.113079 
(1.220386)* 

Type of 
Regression 

Negative 
Binomial 

Generalized 
Negative 
Binomial 

Generalized 
Negative 
Binomial 

Fixed Effects 
Negative 
Binomial 

Fixed Effects 
Negative 
Binomial 

Robust 
Standard 
Errors? 

Yes Yes Yes No No 

Pseudo R2 0.1974 0.1974 0.1984   

Chi Squared 265.39 265.39 263.31 19.53 19.39 

Number of 
Observations 260 260 264 260 260 
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