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Abstract Abstract 
Cervical and high thoracic spinal cord injury (SCI) drastically impairs autonomic nervous system function. 
Individuals with SCI at thoracic spinal-level 5 (T5) or higher often present cardiovascular disorders that 
include resting systemic arterial hypotension. Gastrointestinal (GI) tissues are critically dependent upon 
adequate blood flow and even brief periods of visceral hypoxia triggers GI dysmotility. The aim of this 
study was to test the hypothesis that T3-SCI induces visceral hypoperfusion, diminished postprandial 
vascular reflexes and concomitant visceral inflammation. We measured in vivo systemic arterial blood 
pressure and superior mesenteric artery (SMA) and duodenal blood flow in anesthetized T3-SCI rats at 3 
days and 3 weeks post-injury either fasted or following enteral feeding of a liquid mixed-nutrient meal 
(Ensure™). In separate cohorts of fasted T3-SCI rats, markers of intestinal inflammation were assayed by 
qRT-PCR. Our results show that T3-SCI rats displayed significantly reduced SMA blood flow under all 
experimental conditions (p<0.05). Specifically, the anticipated elevation of SMA blood flow in response to 
duodenal nutrient infusion (postprandial hyperemia) was either delayed or absent after T3-SCI. The 
dysregulated SMA blood flow in acutely-injured T3-SCI rats coincides with abnormal intestinal 
morphology and elevation of inflammatory markers, all of which resolve after 3 weeks. Specifically, Icam1, 
Ccl2 (MCP-1) and Ccl3 (MIP-1α) were acutely elevated following T3-SCI. Our data suggest that arterial 
hypotension diminishes mesenteric blood flow necessary to meet mucosal demands at rest and during 
digestion. The resulting GI ischemia and low-grade inflammation may be an underlying pathology leading 
to GI dysfunction seen following acute T3-SCI. 
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ABSTRACT 24 

   Cervical and high thoracic spinal cord injury (SCI) drastically impairs autonomic nervous 25 

system function. Individuals with SCI at thoracic spinal level 5 (T5) or higher often present 26 

cardiovascular disorders that include resting systemic arterial hypotension. Gastrointestinal (GI) 27 

tissues are critically dependent upon adequate blood flow and even brief periods of visceral 28 

hypoxia triggers GI dysmotility. The aim of this study was to test the hypothesis that T3-SCI 29 

induces visceral hypoperfusion, diminished postprandial vascular reflexes and concomitant 30 

visceral inflammation. We measured in vivo systemic arterial blood pressure and superior 31 

mesenteric artery (SMA) and duodenal blood flow in anesthetized T3-SCI rats at 3 days and 3 32 

weeks post-injury either fasted or following enteral feeding of a liquid mixed-nutrient meal 33 

(Ensure™). In separate cohorts of fasted T3-SCI rats, markers of intestinal inflammation were 34 

assayed by qRT-PCR. Our results show that T3-SCI rats displayed significantly reduced SMA 35 

blood flow under all experimental conditions (p<0.05). Specifically, the anticipated elevation of 36 

SMA blood flow in response to duodenal nutrient infusion (postprandial hyperemia) was either 37 

delayed or absent after T3-SCI. The dysregulated SMA blood flow in acutely-injured T3-SCI 38 

rats coincides with abnormal intestinal morphology and elevation of inflammatory markers, all 39 

of which resolve after 3 weeks. Specifically, Icam1, Ccl2 (MCP-1) and Ccl3 (MIP-1α) were 40 

acutely elevated following T3-SCI. Our data suggest that arterial hypotension diminishes 41 

mesenteric blood flow necessary to meet mucosal demands at rest and during digestion. The 42 

resulting GI ischemia and low-grade inflammation may be an underlying pathology leading to GI 43 

dysfunction seen following acute T3-SCI. 44 

Keywords:  45 

spinal cord injury, in vivo studies, inflammation, gastrointestinal dysmotility, ileus 46 



Introduction 47 

In addition to the catastrophic sensory and motor losses following spinal cord injury 48 

(SCI), autonomic nervous system dysfunction is also widely recognized (30). Furthermore, 49 

gastrointestinal (GI) dysmotility is observed clinically immediately after SCI (28, 71) and may 50 

persist for years after the initial injury (3, 12, 14, 37, 53, 56, 70). Dysfunction of the digestive 51 

organs following experimental SCI includes reduced gastric motility and gastric emptying, 52 

abnormal response to GI peptides and reduced nutrient absorption. Each of these co-morbidities 53 

contributes to diminished long-term quality of life after SCI (43). 54 

The principal functions of the GI tract, the digestion and absorption of nutrients and the 55 

maintenance of proper fluid balance, require adequate blood flow to GI tissues. The primary 56 

vascular perfusion occurs through the splanchnic vascular bed that consists of the celiac, superior 57 

mesenteric, and inferior mesenteric arteries (35). The distal esophagus, stomach and the proximal 58 

duodenum are vascularized by the celiac trunk which supplies three main branches: the left 59 

gastric artery, the common hepatic artery, and the splenic artery. The left and right gastric 60 

arteries are responsible for the lesser curvature, while the left gastroepiploic and right 61 

gastroepiploic arteries feed the greater curvature. The duodenum has a “dual” blood supply, 62 

arising from both the celiac trunk and the superior mesenteric artery (SMA). This vascular 63 

arrangement reflects the importance of blood supply, and the GI tract is one of the most highly 64 

perfused organ systems in the body whereby resting GI blood flow can reach approximately 20-65 

25% of the total cardiac output (10).   66 

Postprandial hyperemia, the global increase in blood flow to the GI tract following a 67 

meal, is a critical reflex for adequate GI function and has been demonstrated to result from the 68 

exposure of the intestinal mucosa to nutrients in concert with the release of GI peptides (11). The 69 

postprandial reflex involves a concurrent increase in blood flow through both the celiac and 70 



superior mesenteric arteries (58). Multiple mechanisms responsible for postprandial hyperemia 71 

have been proposed including local presynaptic activation of vasodilation by nitric oxide release 72 

(48), vago-vagal reflex activation (33) and inhibition of medullary presympathetic vasomotor 73 

neurons by vagal afferent input (50).  74 

Individuals with spinal cord lesions, particularly those rostral to T5, present with 75 

diminished sympathetic tone due to disruption of the descending fibers of the medullary 76 

presympathetic vasomotor neurons. Loss of these presympathetic vasomotor neurons provokes 77 

cardiovascular instability, arterial hypotension, and pooling of blood in the extremities that has 78 

been documented clinically (68) and experimentally (31). Vascular hypotension and pooling of 79 

blood in the extremities may predispose the GI tract to hypoperfusion following SCI.  80 

Reduced GI blood flow over an extended period of time deprives GI tissues of the 81 

oxygen needed to maintain organ integrity (11). The resulting ischemia and restoration of 82 

adequate blood flow provokes a multifactorial tissue injury response including a) intercellular 83 

adhesion molecule-1 (Icam1) mediated increase in adherent leukocytes;  b) upregulation of 84 

chemokines, particularly monocyte chemotactic protein (Ccl2); c) macrophage activation by 85 

macrophage inflammatory protein-1α (Ccl3); and d) pro-inflammatory cytokines including 86 

tumor necrosis factor-α, interleukin (IL)1β and IL6 (19, 67).  87 

In the present work, we employed our established rodent model of T3 spinal level SCI to 88 

investigate 1) if T3-SCI leads to reduced mean arterial blood pressure (BP) and reduced resting 89 

blood flow within the superior mesenteric artery supplying the mesenteric bed; 2) if T3-SCI 90 

diminishes postprandial vascular reflexes; 3) if local duodenal tissue perfusion increases in 91 

response to nutrient infusion; and 4) if T3-SCI provokes concomitant histopathologic changes 92 

and inflammation of the small intestine.    93 



 94 

Methods 95 

All procedures were performed following National Institutes of Health guidelines and 96 

under the approval of the Institutional Animal Care and Use Committee at the Penn State 97 

University College of Medicine.  98 

Animals 99 

Male Wistar rats (Hsd:WI, Stock 001, Harlan, Indianapolis, IN, USA) ≥8 weeks of age, 100 

initially weighing 175-200 g, were used for all experimental procedures. Rats (n=116) were 101 

housed in a temperature-controlled room (23◦C) on a 12:12-h light-dark cycle with unlimited 102 

access to food and water. Following surgical manipulation, rats were housed singly and observed 103 

twice a day. Each rat was randomly assigned to one of two surgical manipulations; surgical 104 

controls (in which the T3 spinal cord was exposed by laminectomy) or T3-SCI. At the same 105 

time, animals were also randomly assigned to one of two post-surgical survival times.  106 

Surgical Procedures and Animal Care  107 

Animals were anesthetized with a mixture of 3-5% isoflurane in oxygen (400-600ml/min) 108 

and surgery for T3-SCI using the Infinite Horizons device was performed using established 109 

aseptic surgical techniques. When the rat was no longer responsive to toe pinch or palpebral 110 

reflex, the surgical site overlying the vertebrae from the interscapular region to mid-thoracic 111 

region was shaved and cleaned with three alternating scrubs of chlorhexidine and alcohol. 112 

Animals were maintained at 35.5–37.5°C on a feedback-controlled heating block, and rectal 113 

temperature was monitored continuously.  The location of the elongated T1 and T2 spinous 114 

processes were determined by midline palpation. A 3-5cm midline incision of the skin overlying 115 

the T1-T3 vertebrae was performed and the muscle attachments to the T1-T3 vertebrae were 116 



cleared by blunt dissection, taking care not to damage the vascular supply to the dorsal nuchal 117 

adipose tissue.  Using fine-tipped rongeurs, the spinous process and the laminae of the T2 118 

vertebra were removed laterally to the superior articular processes.  119 

Rats receiving T3-SCI (n=61) were transferred to the Infinite Horizons spinal contusion 120 

injury device (Precision Systems and Instrumentation, Fairfax, VA, USA). The adjacent T1 and 121 

T3 vertebrae were secured into the device and the torso of the animal was suspended slightly 122 

above the platform. After centering the exposed spinal cord beneath the impactor tip, a 300 123 

kDyne impact (15 second dwell time) was initiated. This level of injury produces a consistent 124 

and reliable neurological and histological outcome whereby animals exhibit a residual, chronic, 125 

locomotor deficit and severe loss of the spinal cord white matter. After removal from the 126 

contusion device, all surgical incisions were closed in reverse anatomical order with absorbable 127 

suture (Vicryl 4-0) for internal sutures and skin closure with wound clips. Wound clips were 128 

removed 5-7 days following surgery. Surgical controls (n=55) underwent all procedures except 129 

for the contusion injury. A total of 8 T3-SCI rats were lost from the study. Two rats died from 130 

unspecified surgical complications (one destined for 3 day in vivo physiology, one destined for 3 131 

week tissue harvest) and six rats (all utilized for 3 day in vivo physiology) were removed 132 

following post hoc verification of inadequate lesion severity. 133 

Post-operatively, rats were administered supplemental fluids by subcutaneous injection of 134 

5cc warmed lactated Ringer’s solution and stabilized in an incubator (37ºC) until fully recovered 135 

from anesthesia. Afterward, animals were monitored daily for any signs of infection or 136 

complications from surgery. Rats received extended-release analgesics (buprenorphine SR, 137 

1mg/kg IP, Pfizer Animal Health, Lititz, PA) at time of surgery then antibiotics (enrofloxacin, 138 

2.5 mg/kg) and subcutaneous supplemental fluids (5-10 cc lactated Ringers) twice daily for five 139 



days after surgery. Due to the reduction in locomotor capacity after T3-SCI, a reservoir of chow 140 

was placed at head level in order to facilitate ease of access for feeding. All T3-SCI rats ingested 141 

a measureable amount each day, thereby confirming that access to chow was available. Body 142 

weights and food weights were recorded each morning. T3-SCI rats received bladder expression 143 

and ventrum inspection twice daily until the return of spontaneous voiding occurred. 144 

In vivo physiological instrumentation 145 

After  3-days (n=17 T3-SCI, n=18 control) or 3-weeks (n=5 T3-SCI, n=5 control)  146 

following the initial surgery, animals were fasted overnight, water provided ad libitum, prior to 147 

being deeply re-anesthetized with isoflurane (3-5%, 400-600ml/min flow rate) for in vivo 148 

physiological instrumentation. Animals were placed on a feedback-controlled warming pad 149 

(TCAT 2LV, Physitemp Instruments, Clifton, New Jersey) and maintained at 37±1 °C for the 150 

duration of the experiment. 151 

Tracheal cannulation - Once fully anesthetized for physiological instrumentation, the 152 

animal was tracheally intubated by way of a 1-2-cm midline incision on the ventral side of the 153 

neck caudal to the mandible towards the sternal notch. The underlying strap muscles were 154 

separated using blunt dissection at the midline to expose the trachea. The exposed trachea was 155 

isolated from the underlying esophagus in order to place a loop of 3-0 ethilon suture between the 156 

trachea and esophagus to form a ligature. The trachea was opened ventrally by making a small 157 

cut in the membrane between two of the cartilaginous rings of the trachea just inferior to the 158 

thyroid gland. A small piece of polyethylene tubing (PE-270, 5mm in length and beveled at one 159 

end) was inserted into the trachea and secured in place with the ligature. The strap muscles were 160 

returned to their proper anatomical location and the overlying skin was secured around the 161 



tracheal tube with 3-0 ethilon. Tracheal intubation maintains an open airway and facilitates 162 

clearing of respiratory secretions if necessary. 163 

Femoral arterial and venous catheterization - Following intubation, the femoral artery and 164 

adjacent vein or tributaries were exposed, within the region of the femoral triangle, via a small 165 

skin incision at the intersection of the inguinum and proximal thigh. Connective tissue was 166 

cleared from the femoral artery and vein proximally to the inguinal ligament. The proximal and 167 

distal extremes of the exposed artery were gently ligated with 4-0 silk suture. To monitor arterial 168 

blood pressure, the femoral artery was hemisected and a sterile PE-50 catheter was inserted in 169 

the direction of the abdominal aorta towards the heart. In order to avoid disrupting the arterial 170 

endothelium, thus potentially confounding aterial pressure readings, the femoral catheter 171 

pressure was advanced so that it terminated in the larger diameter common iliac or in the 172 

descending aorta where chance of disrupting the endothelium is reduced.  The proximal end of 173 

the artery and catheter were fully secured with the 4-0 silk suture and exteriorized. The wound 174 

margin was closed with wound clips. 175 

Transonic flow probe - Animals were simultaneously weaned off isoflurane inhalation 176 

and deeply anesthetized with thiobutabarbital (Inactin; Sigma, St. Louis, MO; 75-150 mg/kg i.v.) 177 

which does not affect long-term cardiovascular (7) or gastrointestinal (45) autonomic function. 178 

The rate of Inactin infusion was monitored in conjunction with a resulting momentary drop in 179 

arterial BP that quickly returns to normal (SYS-BP1, World Precision Instruments, Sarasota, 180 

FL). Once a deep state of anesthesia was achieved, a midline laparotomy was made and the 181 

intestines were gently displaced laterally to allow the exposure of the abdominal aorta at the 182 

level of the left renal artery. The SMA was carefully cleared of connective tissue immediately 183 

distal to where it passed over the caudal vena cava to allow for the perivascular flow probe (1PR, 184 



Transonic Systems, Inc. Ithaca, NY) to be positioned alongside the artery so as not to restrict 185 

blood flow.  186 

In animals that were to receive duodenal infusion of a liquid mixed-nutrient mean 187 

(Ensure™), a PE-90 catheter was inserted into the proximal duodenum through a small incision 188 

in the stomach adjacent to the pylorus and secured with a purse-string suture prior to positioning 189 

the perivascular flow probe around the SMA. The Ensure™ was delivered through the catheter 190 

by way of a syringe driven by a syringe pump (Razel R99-E, Fisher Scientific) set at an infusion 191 

rate of 1 ml/hr. 192 

Laser Doppler flow probe – After placement of the Transonic flow probe and duodenal 193 

catheter the retracted viscera were returned to the proper anatomical location. In a subset of the 3 194 

day animals that were simultaneously implanted with the Transonic flow probe (n=8 T3-SCI, 195 

n=6 control) and for all 3 week animals that were implanted with the Transonic flow probe (n=5 196 

T3-SCI, n=5 control as enumerated above), a laser Doppler flow probe (BLF22, Transonic 197 

Systems, Inc. Ithaca, NY) was positioned in close contact with the mesenteric border of the 198 

duodenum immediately distal to the region where the tip of the implanted catheter terminated. 199 

Once a stable reading was achieved from the flow probe, the incision was closed around the 200 

implanted flow probe and the skin loosely secured with stainless steel wound clips. Animals 201 

were allowed to stabilize for 1 hour before data collection was initiated. 202 

Blood Flow Analysis 203 

 At the initiation of the stabilization period, the femoral arterial catheter was attached to a 204 

pressure transducer (BP-1, World Precision Instruments, Sarasota, FL). Data from the flow meter 205 

(T206, Transonic Systems, Inc. Ithaca, NY), blood pressure monitor and laser Doppler flow 206 

probe was continuously recorded to computer (Spike 2, Cambridge Electronic Design, 207 



Cambridge, UK). Flow probe signals were filtered at 0.1-10Hz and converted to blood flow in 208 

ml·min-1 and normalized for body weight. The mean percent change in Doppler output from 209 

baseline was calculated for each experimental manipulation. The effect of duodenal infusion was 210 

compared to the average blood flow rate of the 10 min preceding the infusion. Peak flow rate 211 

was calculated as the highest achieved value during the 1 h following the infusion. 212 

Tissue Harvest 213 

Gastrointestinal tissue - Rats were deeply anesthetized with isoflurane until non-214 

responsive to toe pinch. Quickly, the rats were decapitated and the abdomen was opened via a 215 

midline incision. GI tissue (stomach and proximal duodenum) was taken at 1, 3, 7 days, or 3 216 

weeks following T3-SCI or post-control surgery (n=8 per group with one 3 week SCI mortality 217 

as noted above). Following GI tissue isolation, a small tissue sample from both the stomach and 218 

duodenum, each weighing approximately 200 mg, was removed and placed in aluminum foil and 219 

immediately frozen in liquid nitrogen then transferred to a -80°C freezer until used for qRT-220 

PCR. In the same animals, an adjacent section of GI tissue was removed (as above) and placed in 221 

room temperature 10% neutral buffered formalin (NBF) for histological processing. 222 

At the conclusion of in vivo physiological experiments, deeply anesthetized rats were 223 

transcardially perfused with heparinized phosphate-buffered saline (PBS) until fully 224 

exsanguinated and followed immediately with PBS containing 4% paraformaldehyde. The spinal 225 

cord encompassing the lesion level was removed and refrigerated overnight in PBS containing 226 

20% sucrose and 4% paraformaldehyde. 227 

Histological Processing  228 

Intestine – Formalin fixed tissue from the duodenum 1cm distal to the pylorus were 229 

processed in an automated Tissue-Tek VIP processor and paraffin-embedded with a Tissue-Tek 230 



TEC embedding station (Sakura Finetek USA, Torrance, CA).  Sections were cut at 6 µm for 231 

routine hematoxylin and eosin (H&E) staining. 232 

Intestinal sections were examined by an American College of Veterinary Pathologists 233 

diplomate blinded to treatment (author TKC). All images were obtained with an Olympus BX51 234 

microscope and DP71 digital camera using cellSens Standard 1.6 imaging software (Olympus 235 

America, Center Valley, PA). 236 

Multiple (3-6) random tissue sections were quantified as described previously (20) and 237 

the following measures determined: 1) Villus height and width; 2) Crypt depth and width; and 3) 238 

Villus:Crypt height ratio was calculated. In each case, 10 independent measurements for each 239 

variable were collected from at least 3 different intestinal sections. Semi-quantitative 240 

measurements of inflammation scoring were made on a modified scale (Table 1; adapted from 241 

(2) and (4). 242 

Spinal cord lesion center - For histological staining of T3-SCI lesion extent, tissue was 243 

sectioned (40μm thick) and alternating sections were mounted on gelatin coated slides. To 244 

compare lesion severity with the spinal cords of control animals, spinal cord sections were 245 

stained with luxol fast blue (LFB) to visualize myelinated fibers. LFB-stained slides were 246 

digitally imaged on a Zeiss Axioscope light microscope and Axiocam CCD camera, imported 247 

into Adobe Photoshop and contrast digitally adjusted to allow consistent identification of LFB-248 

stained (i.e., spared) white matter. For individual images, the boundaries of the tissue slice were 249 

outlined to determine cross-sectional area. A separate threshold histogram was generated and the 250 

pixels corresponding to LFB staining above background were selected. These pixels were 251 

quantified and expressed per unit cross-sectional area (38).  The lesion epicenter was defined as 252 

the section with the least proportion of LFB-stained tissue. The proximity of the T3 lesion center 253 



to the cervical enlargement precluded an appropriate determination of spinal cord cross-sectional 254 

area in undamaged tissue rostral to the injury (i.e., damaged tissue extended into the cervical 255 

enlargement as described in (60). Therefore, it was necessary that the cross-sectional area of the 256 

intact spinal cords at T3 of comparably sized animals be determined for normalization purposes. 257 

LFB-stained myelin in injured tissue was then expressed as a percent of the total spinal cord 258 

cross-sectional area as would be predicted by the intact tissue.  259 

Based upon previous reports (52, 61, 62) we determined a priori that animals sacrificed 3 260 

days following surgery in which LFB staining at the lesion epicenter accounted for ≤ 25% of the 261 

region occupied by white matter would be categorized as severe spinal injury; those with ≥ 25% 262 

LFB staining were excluded from further analysis (n=6 T3-SCI rats met this critereon). This 263 

criterion is based upon the observation that considerable LFB-staining remains within the lesion 264 

center in the 1-3 days following injury, though the majority of the LFB-stained tissue likely 265 

consists of remaining myelinated axons as well as myelin debris in a loose fibrous matrix as 266 

reported previously (62). Historically, our animals with the same 300 kdyne injury that are 267 

sacrificed 3 weeks after injury display ≤ 5% of LFB staining above threshold as the lesion center 268 

is clear of cellular debris. After 3 weeks any remaining LFB staining is usually confined to a thin 269 

band within the ventrolateral white matter in a manner consistent with previous reports 270 

characterizing a 200 kdyne  injury level (52). 271 

RNA Isolation, Reverse Transcription Reaction and qRT-PCR 272 

Quantitative reverse transcriptase PCR (qRT-PCR) was used to quantify the level of 273 

inflammatory mediators present at the assigned time points. Tissue sections from the cranial 274 

gastric corpus and proximal duodenum were analyzed for intercellular adhesion molecule-1 275 

(Icam1), monocyte chemotactic protein (Ccl2), and macrophage inflammatory protein-1α (Ccl3),  276 



following T3-SCI and control surgery. Nomenclature is presented according to Rat Genome 277 

Nomenclature Committee guidelines (http://www.informatics.jax.org/mgihome/nomen/gene.shtml) 278 

along with more common, informal, usage. These particular molecules are commonly reported in 279 

the scientific literature and were selected as reliable biomarkers of  gastrointestinal 280 

pathophysiology (see (19).  281 

Whole GI tissue sections were used for RNA isolation. A small section of GI tissue 282 

weighing 50-100 milligrams was cut away from the whole tissue section and used for RNA 283 

isolation. RNA was isolated using TRIzol (Invitrogen, Carlsbad, CA) and RNeasy Microkit 284 

procedures (Qiagen, Valencia, CA).  Briefly, frozen tissue was homogenized in TRIzol using a 285 

glass homogenizer and Teflon pestle on ice, chloroform was added to lysate, and the mixture was 286 

centrifuged in microcentrifuge tubes to separate RNA. Ethanol was added to the upper aqueous 287 

phase, the mixture was applied to an RNeasy spin column and filtered by centrifugation. After 288 

several washes, the samples were subjected to an elution step using RNase-free water. Reverse 289 

transcription (RT) was conducted using the High Capacity cDNA Reverse Transcription Kit 290 

(Applied Biosystems, Foster City, CA). For RT, ~1 μg of RNA from each sample was added to 291 

random primers (10×), dNTP (25×), MultiScribe reverse transcriptase (50 U/μl), RT buffer (10×) 292 

and RNase Inhibitor (20U/μl) and incubated in a thermal cycler (Techne TC-412, Barloworld 293 

Scientific, Burlington, NJ) for 10 min at 25°C, then for 120 min at 37° C. Primers for Actb (β-294 

actin) were a QuantiTect Primer Assay (Rn_Actb_1_SG QuantiTect Primer Assay QT00193473, 295 

Qiagen, Frederick, MD). Primers for  Icam1, Ccl2 (MCP-1) and Ccl3 (MIP-1α) were designed 296 

using Primer Express (Applied Biosystems, Foster City, CA). The forward and reverse primer 297 

pairs used for these studies are shown in Table 2.   298 



For real-time PCR, SYBR Green 2× Master Mix (Qiagen), forward and reverse primers 299 

(100 μM), and RT product (1μl of a 1:16 dilution) were added to a 384-well plate. The cycling 300 

parameters consisted of an initial 2-min incubation at 50°C, followed by 10 min at 95°C, then 15 301 

sec at 95 °C, a 30 sec annealing step at 55°C and a 30 sec extension step at 72°C (55 cycles). A 302 

dissociation step (15 sec at 95°C) was added following 55 cycles to determine specificity of 303 

primers. In this assay, the dissociation step confirmed the absence of nonspecific amplifications. 304 

Quantity of Icam1, Ccl2 (MCP-1), and Ccl3 (MIP-1α) mRNA was based on a standard curve and 305 

normalized to Actb (β-actin) mRNA (ABI QuantStudio 12KFlex with available OpenArray 306 

block, Applied Biosystems). The suitability of Actb as an internal control was assessed through 307 

analysis of the raw data between groups and no variability of Actb was detected.   308 

Statistical Analysis  309 

Results are expressed as means ± S.E.M. with significance defined as P < 0.05. Body 310 

weight and MEI measurements from 3 day survival rats did not significantly differ from rats 311 

destined to survive 3 weeks. Therefore, these 3 day measures were collapsed for the within 312 

groups two-way ANOVA comparison followed by Tukey post hoc analysis. Between groups 313 

results from in vivo blood flow studies were compared by one-way ANOVA and Tukey post hoc 314 

analysis or paired t-test as appropriate. Group results from qRT-PCR were compared by between 315 

groups two-way ANOVA and Tukey post hoc analysis or paired t-test as appropriate. Statistical 316 

analysis was performed using SigmaPlot for Windows (SPSS Inc., Chicago, IL).  317 

 318 

Results 319 

Assessment of T3-SCI histological severity, reduction of spontaneous feeding and loss of body 320 

weight 321 



The severity of experimental T3-SCI was verified based upon the reduction of LFB-322 

stained white matter at the T3 spinal cord segment (Figure 1A). The percent area of white matter 323 

at the lesion epicenter of 3 day T3-SCI rats was significantly reduced in comparison to T3-324 

control animals (Figure 1B; p < 0.05). At three weeks, when the post-injury progression of the 325 

lesion epicenter has relatively stabilized and the lesion boundaries are more clearly defined (22), 326 

the percent area of white matter at the lesion epicenter of 3 week T3-SCI rats was significantly 327 

reduced in comparison to age-matched T3-control animals (Figure 1B; p < 0.05). The data for 328 

control animals was pooled in Figure 1B for clarity. These data are comparable to the injury 329 

extent reported previously and indicate the severity of our injury model (44, 57, 60, 61). 330 

At 3 days following surgery, the change in body weight between T3-SCI and control 331 

animals was -22.5 ± 2.0g vs. 1.2 ± 1.5g, respectively. When normalized as percent of 332 

preoperative weight, T3-SCI rats displayed significantly greater weight loss than surgical 333 

controls for the comparable time period across the duration of the study (Figure 2A; p < 0.05).  334 

Regardless of ease of physical access to chow, spontaneous feeding is suppressed 335 

following T3-SCI when gastric motility is compromised. When normalized as the mean energy 336 

intake (MEI; defined as kcal/day/100 g body weight) the spontaneous feeding for T3-SCI 337 

animals in the present study was significantly lower than controls for every comparable time 338 

point until the third week of the study (Figure 2B; p < 0.05).  339 

As demonstrated in our previous studies (43, 44, 60), T3-SCI reduced the area of intact 340 

white matter, body weight and caloric intake. These data further verify the profound severity, 341 

effectiveness and reproducibility of our surgical procedures for T3-SCI and surgical control 342 

animals. Based upon these criteria, all animals in these groups were selected for further data 343 

analysis. 344 



 345 

Basal mean arterial blood pressure and mesenteric blood flow are decreased in T3-SCI rats  346 

Prior to the initiation of duodenal nutrient infusion, the baseline systemic mean arterial 347 

pressure (MAP) of Inactin-anesthetized T3-SCI rats was significantly lower than the MAP of 348 

age-matched surgical control animals (Table 3, Baseline; p < 0.05). Following normalization for 349 

body weight, basal SMA blood flow in fasted 3 day T3-SCI rats was significantly lower than 350 

controls (2.2 ± 0.2 ml/min/100g body weight vs 3.4 ± 0.4 ml/min/100g body weight, 351 

respectively; p < 0.05). In the age matched cohort of animals tested at  3 weeks after surgery, 352 

normalized basal SMA flow was significantly lower in T3-SCI rats compared to controls (1.2 ± 353 

0.2 ml/min/100g body weight vs 2.1 ± 0.2 ml/min/100g body weight,  respectively; p < 0.05). 354 

These results confirm that T3-SCI in the rat produces arterial vascular hypotension and 355 

hypoperfusion of the splanchnic vascular beds. 356 

 357 

Postprandial mesenteric arterial reflexes are reduced in T3-SCI rats 358 

Following duodenal infusion of a liquid mixed-nutrient meal (Ensure™, delivered at 359 

1ml/hr), T3-SCI rats fail to exhibit the increase in SMA blood flow that is demonstrated by 360 

control animals (Figure 3A). During 30 min and 60 min infusion of Ensure™ into the duodenum, 361 

the MAP remained significantly different between T3-SCI and control rats (Table 3; p < 0.05), 362 

however, in both T3-SCI and control rats, duodenal infusion of Ensure™ did not significantly 363 

change MAP from pre-infusion baseline values (Table 3; p > 0.05). 364 

 During the 60 minute intra-duodenal infusion of Ensure™, the peak blood flow within 365 

the SMA was significantly lower in 3 day T3-SCI rats following the nutrient challenge (Figure 366 

3B; p < 0.05) compared to controls. This significant difference in peak blood flow persisted in 367 



the rats tested 3 weeks after surgery (1.4 ± 0.2ml/min/100g body weight vs. 2.7 ± 368 

0.2ml/min/100g body weight; p < 0.05).  Laser Doppler analysis of the local duodenal perfusion 369 

in the region of Ensure™ infusion demonstrated that the percent change in blood flow within the 370 

duodenal serosa of surgical control rats was significantly elevated from baseline in comparison 371 

to 3 day T3-SCI rats which did not increase during enteral feeding (Figure 3C; p < 0.05). At 3 372 

weeks after surgery, there was no significant difference in serosal duodenal blood flow between 373 

control and T3-SCI rats (127±16% vs. 124±17%, respectively; p > 0.05). 374 

These results indicate that T3-SCI in the rat diminishes the mesenteric vascular reflexes 375 

in response to feeding. Local enterically-mediated changes in duodenal blood flow are also 376 

diminished in these same animals during the acute (3 day) phase of injury, but local regulation of 377 

duodenal microcirculation returns in longer-term survival periods. 378 

 379 

T3-SCI provokes gastrointestinal tissue necrosis and shortening of mucosal villi 380 

Upon removal of the GI tract from 3 day T3-SCI animals, it was qualitatively observed 381 

that GI mucosal tissue was compromised 3 days following injury compared to controls while  382 

mucosal integrity after 3 weeks was unremarkable (Figure 4).  For example, sections of the GI 383 

tract were described as atrophic, with hemoccult positive contents, and excised tissue was friable 384 

(data not shown). Extreme cases also included profound reduction in duodenal integrity and 385 

regions of the small intestine revealed necrosis of mucosa and submucosa, neutrophil and 386 

macrophage infiltration, and fibroplasia of serosa and submucosa.  The duodenum at 3 days 387 

following T3-SCI revealed a significant reduction in average mucosal villous height and width 388 

(Table 4, p < 0.05). The inflammatory score of randomly analyzed tissue segments was 389 



significantly elevated in the duodenum of 3 day T3-SCI rats (Table 4, p < 0.05), but not 390 

significantly different in 3 week T3-SCI rats (Table 4, p > 0.05). 391 

These data demonstrate a continuum of impaired GI tissue health immediately following 392 

T3-SCI. Taken together, our anatomical and histological data verify the profound severity 393 

produced by our surgical procedures for T3-SCI compared to surgical control animals. 394 

 395 

T3-SCI increases upper GI expression of inflammatory markers  396 

To quantify upper GI inflammation, total RNA was isolated to analyze expression of 397 

inflammatory markers commonly linked with GI inflammatory processes (19).  398 

In our experimental T3-SCI conditions, gastric Ccl2 expression was not significantly 399 

different between T3-SCI and control (Figure 5A; p > 0.05). Gastric expression of the chemokine 400 

Ccl3 demonstrated a significant increase (Figure 5A; p < 0.05) at 1 day and 3 days following T3-401 

SCI. However, after 1-week Ccl3 expression was not significantly different between T3-SCI and 402 

control (Figure 5A; p > 0.05). The post-SCI expression of Icam1 demonstrated a significant 403 

increase at 1 day and 3 days following T3-SCI that returned to stable levels within 1-week 404 

(Figure 5B; p < 0.05).    405 

Consistent with our histology findings, duodenal Ccl2 expression was only significantly 406 

different between T3-SCI and control at 3 days after T3-SCI (Figure 6A; p < 0.05). Duodenal 407 

expression of Ccl3 demonstrated a significant increase in T3-SCI rats at 1-day after injury 408 

(Figure 6B; p < 0.05). The significant differences between T3-SCI rats are interpreted to reflect 409 

that Ccl3 returned to low levels beginning at 3 days onwards. The post-SCI expression of Icam1, 410 

however, demonstrated a significant increase at 1 day and 3 days following T3-SCI (Figure 6C; p 411 

< 0.05) and returned to low levels by 1-week following T3-SCI. Both control and T3-SCI rats 412 



had a significant increase in Icam1 levels over the 3 days post-operatively. The principal findings 413 

of these data indicate that animals with T3-SCI demonstrate a significant short-term GI 414 

inflammatory response immediately following injury.  415 

 416 

Discussion 417 

The present experiments demonstrate that systemic cardiovascular derangements at 3 418 

days following a severe T3-SCI include reduced splanchnic vascular competence at rest and 419 

following duodenal infusion of a liquid mixed-nutrient meal designed to model clinical enteric 420 

supplementation. Specifically, these data indicate that: 1) the anticipated reduction in baseline 421 

mean arterial pressure is accompanied by significantly reduced basal blood flow rate through the 422 

SMA in rats 3 days after T3-SCI; 2) mean arterial pressure remains at baseline levels in response 423 

to enteral administration of a liquid mixed-nutrient meal in both control and T3-SCI rats; 3) T3-424 

SCI rats have a significantly reduced post-prandial mesenteric response following a liquid 425 

mixed-nutrient meal; 4) T3-SCI induced a brief, but significant elevation in the gastric 426 

expression of inflammatory cytokine transcripts for Icam1 and Ccl3 (MIP-1α); and 5) duodenal 427 

expression of Icam1 was most profoundly elevated after T3-SCI. The level of tissue loss at the 428 

lesion epicenter, coupled with the observed reduction in feeding and weight loss, is consistent 429 

with our previous findings in severe T3-SCI rats that demonstrated gastroparesis and delayed 430 

gastric emptying (44, 57, 60). These data lead us to propose that the clinically-recognized 431 

vascular reflex deficits in the SCI population may extend to the splanchnic vascular bed that 432 

irrigate the GI tissues as demonstrated in our experimental model of high thoracic SCI, though 433 

these deficits appear to be only during the early phase of injury. Furthermore, diminished 434 



splanchnic perfusion following T3-SCI may trigger the low grade inflammation observed in GI 435 

tissues.  436 

Systemic vascular compromise following T3-SCI 437 

A common consequence of SCI is systemic vascular dysfunction (42).  Furthermore, 438 

human studies have shown that high-level (cervical) SCIs are accompanied by the most severe 439 

hypotension and bradycardia (15-17, 29). The sympathetic preganglionic neurons within the 440 

thoracic and lumbar spinal cord normally receive descending inputs, including that from the 441 

medullary cardiovascular centers. Interruption of these supraspinal fibers following SCI results 442 

in low resting systemic arterial BP, loss of ability to regulate arterial BP, low cardiac output, low 443 

venous return, and disturbed reflex control (30, 42).  Our acute studies are in agreement with 444 

previous observations of a profound reduction in systemic arterial BP after experimental SCI (31, 445 

69). Our observation that arterial BP only partially recovers after 3 weeks is also in agreement 446 

with recent temporal studies demonstrating that arterial BP  remains chronically suppressed 447 

following mid-thoracic spinal transection (69). Beyond the means by which injury was induced, 448 

several notable differences exist between our data and the above-mentioned study. The reduction 449 

in femoral arterial BP was qualitatively greater in our model than the aortic BP described from 450 

the previous report (69). While our studies were in thiobutabarbital-anesthetized rats, rather than 451 

telemetrically-implanted awake rats, this particular anesthetic has been reported to have no 452 

deleterious effects on cardiovascular function (7).  Furthermore, our reduced femoral arterial BP 453 

during experimentation was similar to ranges previously reported in chronic SCI rats by Laird 454 

and colleagues (31). Therefore, we conclude that our observations are consistent with the post-455 

SCI hypotension reported in the literature. 456 

Visceral hemodynamics following T3-SCI 457 



It is estimated that upwards of 70% of blood volume resides within the venous 458 

circulation. Vascular stasis coupled with the absence of lower extremity muscle pumps and 459 

elevated venous flow resistance leads to venous pooling within extremities. The latter 460 

phenomena have been previously reported in experimental models of SCI and may contribute to 461 

mesenteric insufficiency (31). Our data demonstrated a reduction in basal blood flow within the 462 

SMA. The principal blood supply to the stomach and intestines arises from the gastric branch of 463 

the celiac trunk and superior  and inferior mesenteric arteries and are collectively referred to as 464 

the splanchnic vascular bed. While only one vessel from this triad of splanchnic vessels was 465 

monitored, diminished perfusion throughout the splanchnic vascular bed was inferred for all T3-466 

SCI rats.  467 

Instances of chronic mesenteric hypoperfusion in atherosclerotic disease or acute 468 

mesenteric hypoperfusion following strenuous exercise often report the presentation of 469 

abdominal or intestinal angina and hemorrhage (54, 64). With regard to the elderly population, 470 

mesenteric stenosis occurs with increasing frequency over 65 years of age (21). Symptomatic 471 

presentations were noted to occur during the postprandial phase and underscore the ramifications 472 

of widespread insufficiency of splanchnic circulation. Our findings provide initial evidence that 473 

the mesentery of SCI subjects may be vulnerable to the pathologies associated with ischemic 474 

events. 475 

The post-prandial dynamics of blood flow to the splanchnic organs in neurally-in tact 476 

animal models has been previously described (11, 58). Postprandial hyperemia in experimental 477 

animals subjects consists of a profound increase (ca. 200%) in regional GI blood flow in 478 

response to nutrients (35).  This redistribution of blood flow is compensated by reflexive 479 

increase in cardiac output and a redistribution of flow from other tissues (11). In addition, there 480 



is substantial evidence that postprandial hyperemia is locally mediated within the intestinal 481 

microvasculature through a complex and not completely understood interplay of local oxygen 482 

titers, adenosine levels, prostaglandins, sodium-induced hyperosmolarity and the degree of 483 

muscle deformation (39). Ultimately, these changes in microvasculature are under the influence 484 

of the hemodynamics of upstream mesenteric arteries. These larger caliber supply arteries and 485 

arterioles are under greater influence from extrinsic sympathetic sources (reviewed in (23). One 486 

important mechanism in postprandial hyperemia involves the release of GI peptides that have 487 

been demonstrated to exert a role in regulating postprandial hemodynamic demand through a 488 

centrally mediated reflex (49, 50).  Specifically, intestinal cholecystokinin (CCK) and gastric 489 

leptin activate subdiaphragmatic vagal afferents that, ultimately, terminate in the nucleus tractus 490 

solitarius (NTS). In addition to the role of the NTS toward the modulation of gastric-projecting 491 

preganglionic motoneurons in the vagal dorsal motor nucleus (DMN; (46), CCK-sensitive 492 

afferents terminate upon a subpopulation of NTS neurons that directly project to select 493 

cardiovascular neurons in the rostral ventrolateral medulla (RVLM).  Under normal conditions, 494 

activation of these RVLM neurons provokes an elevation of systemic sympathetic drive and 495 

vasoconstriction within skeletal muscle. Simultaneous input by NTS neurons that project to 496 

caudal ventrolateral medulla (CVLM) provokes a reduction in splanchnic sympathetic tone 497 

resulting in vasodilation within the mesentery (51).  Presympathetic vasomotor projections from 498 

both the RVLM and CVLM descend through the spinal cord and are disrupted by T3-SCI. With 499 

particular emphasis on the rat, the segmental distribution of identified cardiovascular 500 

sympathetic preganglionic neurons begins principally at the second spinal thoracic segment and 501 

progresses caudally (18). Evidence from these experiments as well as that gathered from Doppler 502 



blood flow studies of the liver (65) suggests that visceral arterial blood flow is significantly 503 

diminished in rats with acute (24-76h) SCI located at, or above mid thoracic (T5) spinal cord.      504 

Inflammation in visceral organs following T3-SCI 505 

While the GI mucosa is a richly perfused vascular bed in health, it is directly juxtaposed 506 

with the anaerobic and nonsterile lumen of the gut. As such, intestinal epithelial cells that line the 507 

mucosa experience a uniquely steep physiologic oxygen gradient in comparison with other cells 508 

of the body. Thus, the intestine is one of the most sensitive tissues to hypoxic insult and even 509 

brief periods of GI hypoxia induce the production of inflammatory mediators and dysmotility. 510 

Furthermore, there is evidence that hypoxia may be more deleterious to cells than complete 511 

anoxia (13). Experimental in vitro studies in which mitochondrial or glycolytic metabolism has 512 

been disrupted pharmacologically (thereby depleting ATP) have shown that minor reduction in 513 

ATP maintained for 12-24 hours is sufficient to induce epithelial monolayer dysfunction (63) . 514 

From a clinical standpoint, visceral hypoperfusion in the intensive-care patient leads to hypoxia 515 

and initiates an inflammatory cascade with consequent end-organ dysfunction and cervical SCI 516 

patients are, indeed, susceptible to multiple organ dysfunction (55). Based upon these 517 

observations, the dysregulation of mesenteric blood flow in acutely-injured T3-SCI rats suggests 518 

that arterial hypotension consequently diminishes mesenteric blood flow necessary to meet 519 

mucosal demands at rest and during digestion. We hypothesized that our observed GI 520 

hypoperfusion may be an underlying pathology leading to gastric dysfunction through the 521 

generalized mechanism of reduction in energy homeostasis and the initiation of cell damage, 522 

destruction, and death due to ischemia (40, 59). Furthermore, it is recognized that ischemia 523 

initiates an inflammatory cascade (73).  However, caution must be exercised when extrapolating 524 

the data from ischemia/reperfusion models and our model of T3-SCI. The acute period of high-525 

level SCI presents severe hypotension requiring vasopressor therapy (reviewed in (66). It is 526 



unclear, however, whether this period of so-called “neurogenic shock” produces a level, and 527 

duration, of mesenteric hypoperfusion that is comparable to the approximate 90% reduction of 528 

flow seen after SMA occlusion. 529 

The reperfusion of ischemic tissues involves a known, biochemically mediated event 530 

involving the increased expression of adhesion molecules and chemokines (41).  Beginning with 531 

early mast cell degranulation and histamine release (8, 27), the up-regulation of adhesion 532 

molecules and chemokines forms the early line of defense in the intestinal mucosa and leads to 533 

an inflammatory pathway which promotes neurotoxicity, leukocyte (including lymphocytes, 534 

neutrophils, and monocytes), macrophage, and astrocyte recruitment (36), endothelial damage, 535 

hypoperfusion, and apoptosis (5, 59, 73). Utilizing our model of acute T3-SCI in rats, we 536 

demonstrated the effects of T3-SCI upon Icam1, Ccl2 and Ccl3 expression within the upper -GI 537 

tract which suggests the initiation of a low grade inflammatory cascade following T3-SCI.   538 

Implications of gastrointestinal vascular dysregulation 539 

It is generally recognized that the intestinal tract is acutely sensitive to traumatic events 540 

(1). The relationship of properly regulated GI blood flow with patient morbidity or mortality is 541 

well recognized in many instances of advanced aging, trauma and critical illness (9, 34, 72). The 542 

implications of severely diminished blood flow to the GI tract following SCI are likely to mirror 543 

some aspects of these other clinical situations. Other models have shown that ischemic GI tissue 544 

reacts by releasing lactate as the mucosal-arterial pCO2 gradient increases indicating the 545 

initiation of anaerobic metabolism in the gut (26) and recruitment of pro-inflammatory cytokines 546 

and inflammatory markers. Therefore, if post-SCI hypoperfusion leads to ischemia, tissue 547 

damage and necrosis are likely to occur whereby the walls of the GI tract may become 548 

permeable, allowing bacteria to proliferate and translocate through the gut wall and into lymph 549 



nodes and blood vessels (6, 32). With inadequate splanchnic perfusion, multiple organ failure 550 

and death may ensue (25). The development of episodic hypertension, a phenomenon associated 551 

with massive sympathetic discharge that is triggered by noxious visceral or sensory stimuli 552 

below the injury level (commonly refered to as autonomic dysreflexia, (24), may also provoke 553 

periods of GI hypoxia due to hyperreactivity of the mesenteric bed (47).  While the mechanism 554 

remains incompletely understood, the impaired GI blood flow we have observed and mesenteric 555 

hyperreactivity as is likely to occur during autonomic dysreflexia may contribute to the chronic 556 

gastrointestinal dysfunction experienced by individuals with SCI (3, 12, 14, 37, 53, 56, 70).    557 

Conclusion 558 

Our novel data reveal that basal mesenteric blood flow is markedly diminished following 559 

a severe spinal cord injury at spinal T3. Furthermore, postprandial splanchnic vascular reflexes 560 

are blunted following experimental T3-SCI. We propose that changes in nutrient-vascular 561 

relationships may render the post-SCI gut susceptible to episodic ischemic and inflammatory 562 

events. Based upon clinical reports, we further propose that these changes in nutrient-vascular 563 

relationships may last for weeks after the original SCI and that these co-morbidities may 564 

contribute to the GI dysfunction observed in the SCI population.  565 
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Figure 1.   793 

A. Luxol-stained white matter from T3 spinal cords of control, 3 day postoperative (middle) and 794 
3 weeks post operative (right) rats (scale bar = 1mm).  795 

B. Graphic summary of  the percent sparing of white matter at the lesion epicenter of control, 3 796 
day or 3 week rats following a 300-kdyne contusion SCI (* p<0.05 vs. age-matched controls; † 797 
p<0.05 vs. 3 day T3-SCI). 798 

799 



Figure 2. Post-operative body weight and food intake are significantly lower in T3-SCI 800 
animals. 801 

Compared to age-matched control animals, the post-operative body weight (expressed as percent 802 
of pre-operative weight) is significantly lower following T3-SCI for the duration of the 803 
experiment (A). The mean energy intake is significantly reduced following T3-SCI for the first 804 
two weeks when compared to their age-matched cohort (B). For all measures * p<0.05 vs. age-805 
matched control. 806 

807 



Figure 3. Post-prandial hyperemia is significantly lower in T3-SCI animals. 808 

Representative traces (A) illustrating the normal post-prandial hyperemia from a 3 day control 809 
rat (top trace) while post-prandial SMA blood flow from 3 day T3-SCI rats (second trace) did not 810 
demonstrate a response to duodenal perfusion of a mixed-nutrient meal (Ensure™; infusion of 811 
rate was 1ml/hr). This disruption of postprandial response continued through 3 weeks following 812 
T3-SCI. Arrows depict the initiation of Ensure™ administration for each representative subject.  813 
(B) The peak volume of SMA blood flow reached during the intra-duodenal infusion period was 814 
also significantly reduced in 3 day and 3 week T3-SCI rats. (C) Local tissue perfusion was 815 
measured by Laser Doppler Flow of the duodenal serosa. Compared to controls , the percent 816 
change in Doppler signal vs. baseline flow was significantly lower only in 3 day T3-SCI rats.  817 

Values expressed as mean ± SEM; * P<0.05 vs. control.   818 



Figure 4. Representative images of H&E-stained duodenal sections after T3-SCI or control 819 
surgery. 820 

T3-SCI provokes altered mucosal architecture as evidenced by blunting of intestinal villi at 3 821 
days following T3-SCI when compared to surgical control animals. After 3 weeks, the height and 822 
width of intestinal villi was similar for both T3-SCI and control animals. (X100, scale bar 200 823 
μm). 824 

 825 

Figure 5. Expression levels of gastric inflammatory markers mRNA after T3-SCI. 826 

A) Gastric Ccl2 (MCP-1) mRNA expression was not significantly altered in T3-SCI rats. B) 827 
Gastric Ccl3 (MIP-1α) mRNA expression demonstrated a significant (between-groups) elevation 828 
in T3-SCI rats at 1 day and 3 days compared to control animals matched for the same post-829 
operative time point (denoted by lowercase a). C) Gastric Icam1 mRNA expression was 830 
significantly elevated in T3-SCI rats at 1 day and 3 days compared to control animals matched 831 
for the same post-operative time point. Levels of Ccl3 and Icam1 returned to baseline by 1 week 832 
post-injury. P<0.05, based on ANOVA, followed by Tukey post hoc test. (values expressed as 833 
mean ± SEM).  834 

  835 



Figure 6. Expression levels of duodenal inflammatory marker mRNA after T3-SCI . 836 

A) Duodenal Ccl2 (MCP-1) mRNA expression demonstrated a significant elevation in T3-SCI 837 
rats only at the 3 day post-operative time point compared to control animals. B) The expression 838 
of duodenal Ccl3 (MIP-1α) mRNA demonstrated a significant elevation in T3-SCI rats only at 1 839 
day post-injury compared to control animals matched for the same post-operative time point. 840 
Expression levels for T3-SCI returned to baseline by 3 days post-op. C) duodenal Icam1 mRNA 841 
expression demonstrated a significant elevation in T3-SCI rats at 1 day post-injury and 842 
continuing through 3 days post-injury compared to control animals at the same post-operative 843 
time point. The peak response for T3-SCI rats occurred in 3 day survival rats. Levels of Ccl2, 844 
Ccl3 and Icam1 returned to baseline within 1 week post-injury.. P<0.05, based on ANOVA, 845 
followed by Tukey post hoc test. (values expressed as mean ± SEM).    846 
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Table 1 1 

 2 

 3 
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 10 

Semi-quantitative measurements of inflammation scoring for gastrointestinal tissue 

Grade Description 

Grade 0: No change from normal tissue 

Grade 1: One or a few multifocal mononuclear cell infiltrates in the lamina 
propria  
 

Grade 2: Lesions involve more of the intestine than grade 1 lesions, and/or are 
more frequent. Typical changes include several multifocal, mild 
inflammatory cell infiltrates in the lamina propria composed primarily 
of mononuclear cells with a few neutrophils. Inflammation rarely 
involves the submucosa 

Grade 3: Lesions involve a large area of the mucosa or are more frequent than 
grade 2 lesions. Inflammation is moderate and involves the submucosa 
but is not transmural. Inflammatory cells are a mixture of mononuclear 
cells as well as neutrophils, and crypt abscesses are sometimes 
observed. Small epithelial erosions are occasionally present. 

Grade 4: Lesions involve most of the intestinal section and are more severe than 
grade 3 lesions. Inflammation is severe, including mononuclear cells 
and neutrophils, and can be transmural. Crypt abscesses and ulcers are 
present. 



Table 2 1 

Forward and reverse primer sequences for quantitative real time PCR (qRT-PCR) 

Gene Forward Primer Reverse Primer 

Ccl2 
(MCP-1)  

5’-TCTCTGTCACGCTTCTGGGCCT-3’ 5’-TAGCAGCAGGTGAGTGGGGCA-3’ 

Ccl3 
(MIP-1α) 

5’-TGACACCCCGACTGCCTGCT-3’ 5’-TGACACCCGGCTGGGACCAA-3’ 

Icam1 5’-TGCCAGCCCGGAGGATCACA-3’  5’-CGGGAGCTAAAGGCACGGCA-3’ 

 2 



Table 3 1 

Mean arterial pressure (mmHg) is not altered by Ensure™ infusion in 3 day T3-SCI, 3 

day surgical controls, 3 week T3-SCI and 3 week controls. 

 Baseline 30 min infusion 60 min infusion 

3 day Control 112.9 ± 4.3  109.2 ± 2.4 105.2 ± 5.0  

3 day T3-SCI 74.8 ± 4.9* 69.9 ± 5.7* 65.9 ± 7.0* 

3 week Control 127.5 ± 6.1  122.0 ± 4.5 112.8 ± 3.2  

3 week T3-SCI 90.2 ± 3.4** 90.8 ± 4.2** 88.6 ± 3.2** 

 2 

Values presented as mean ± SEM. *P<0.05 vs 3 day control. **P<0.05 vs 3 week control 3 



Table 4 1 

T3-SCI provokes an inflammatory response and blunting of mucosal villi in duodenal tissue at 

3 days after injury (*p<0.05 vs. control). 

 Experimental Groups 

Control  T3-SCI  

 

 

 

3 day  

Average inflammatory score 0.4 ± 0.2 0.9 ± 0.1 * 

Average villus height (µm) 435 ± 24 341 ± 11 * 

Average villus width (µm) 122 ± 4 102 ± 2 * 

Average crypt depth (µm) 149 ± 6 147 ± 10 

Average crypt width (µm) 52 ± 2 52 ± 2 

Villus:crypt ratio 3 ± 0.1 2 ± 0.2 

Villus height:width ratio 4 ± 0.2 3 ± 0.2 

 Control  T3-SCI  

 

 

 

3 week  

Average inflammatory score 1.75 ± 0.9 1.75 ± 0.1  

Average villus height (µm) 513 ± 12 491 ± 23  

Average villus width (µm) 121 ± 4 113 ± 4  

Average crypt depth (µm) 178 ± 8 201 ± 8 

Average crypt width (µm) 48 ± 1 44 ± 1 

Villus:crypt ratio 3 ± 0.1 2 ± 0.1 

Villus height:width ratio 4 ± 0.2 4 ± 0.1 

 2 

 3 

 4 
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