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Driven "Portulum: A Rolling Ball as a Simple Oscillating System

Abstract

A classroom demonstration, a variation of the simple swinging pendulum, is described. In our "portulum,” a
ball, driven by short blasts of air, rolls along a curved tube. The design of this device, its construction, and its
usefulness to the teaching of physics are discussed. It is also shown that the oscillations of the rolling ball have
the same mathematical form as the oscillations of the ball swinging along the same path, but with a lower
frequency.
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fgsmckton has an open laboratory system, which works well
: for this type of project. An additional commitment to pro-
iide laboratory access would be placed on the instructor in
 hose institutions with other laboratory policies.

i1 There is always a problem with unmotjvated students in
iy course. It was a pleasure to see students who were
¥ ormally unexcited by more traditional classroom tech-
niques perform well on this project. Some students were
otivated by the “fun’ aspect of the format, which was
¢ iressed in the verbal discussions, while others were stim-
I'lated by the formality of the procedure which was stressed
% the written materials. The three-stage organization of
i 1he format allows the very unmotivated students to be de-
g,tected early so that pressure can be applied.

|

In-summary, the project format described in this paper
has been successful in introducing the students to the ex-
perience of being a scientist. Anyone interested in receiving
a sample copy of the journal from this year’s course can do
so by writing the author.

1F. Murtay, Am. J. Phys. 43, 734 (1975).

. 2D. Early and C. Stutz, Am. J. Phys. 44, 953 (1976).

3D. Sparlin and L: Reinisch, Am. J. Phys. 46, 3 (1978).
4J. Backus, The Acoustical Foundations of Music (Norton, New York,

1969).
5). Rigden, Physics and the Sound. of Music (Wiley, New York,
1977). NOTICE
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'1. INTRODUCTION

. 7/

b The pendulum is°the warhorse 6f the physics teacher,
"his favorite example of a simple oscillating system. Though
 the details of its behavior aTe actually far from simple and
Jave occupied physicists and mathematicians since at least
*the time of Galileo,! it is a rare student of elementary me-
hanics who does not receive his first introduction to peri-
- ddic motion by observing a hanging mass swinging in front
of the classroom. ' o
E Il} .the following article we describe a variation on this
familiar theme: a rolling ball, driven by short blasts of air,
 Moves along a curved tube in simulation of the motion of
4 swinging mass. Since the mass in our apparatus is not
\f s8pended (i.e. “hanging under”) but supported (i.c., “borre
Pon”) it should perhaps be more properly called a “port-
Ui thap 5 pendulum.
; ¢ The portulum we describe here is relatively simple to
4 I;)Struct and provides a striking classroom demonstration
: 1 Cthoscillatory motion and mechanical resonance. Un-
& ;’-nthe simple pendulum, its mass may easil"y be constrained
trat(i)ve In paths other than a circle, especially for demon-
o ons of cyclo'ldal or “1sochronpus” motion. The dev.lce
o May be easily adapted to display the ball’s motion
] Mitatively by using photoelectric sensors mounted along
] giath to trigger timers. . '
' Fiven ec. IT we descnb.e the des1‘gn and construction of our
d}ﬁn Ib?Ortulu{n. Section III dlscus_ses th.e motion of the

athg al! and'demonstrates that this motion I'las .the same
e N Matical form as the motion of a mass swinging along
¢ °4me path, but with a lower frequency. Finally, Sec. IV
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A classroom demonstration, a variation of the simple swinging pendulum, is

described. In our “portulum,” a ball, driven by short blasts of air, rolls along a curved
tube. The désign of this device, its construction, and its usefulness to the teaching of
physics are discussed. It is also shown that the oscillations of the rolling ball have the
same mathematical form as the oscillations of a ball swinging along the same path, but

points out some possible applications of the apparatus both
to classroom teaching and to laboratory experiments.

II. CONSTRUCTION AND DESIGN

A sketch of the.mechanical system of our demonstra-
tion apparatus is shown in Fig. 1(a). A 3-in.-diam steel ball
rolls inside a bent glass tube of inside diameter slightly
larger than the ball. The tube is mounted on a ruled plexi-
glass sheet which is fixed vertically on a wooden base, so
that the entire apparatus may be conveniently set on a desk
or laboratory table.

One end of the glass tube is open. The other is plugged
with a small stopper through which we insert a thin copper
nozzle which is connected to a solenoid valve which controls
the flow of air from a compressed air line or a demonstration
gas bottle. The solenoid valve used in our apparatus can only
seal pressures below 45 psi, so a 25-psi regulator was placed
between the valve and the air line.2 The valve on this regu-
lator also allows'adjustment of the magnitude of the driving
force on the ball so that it is niot shot out of the open end of
the tube.

The motion of the ball is driven by short blasts of air
generated by electrical pulses fed to the solenoid valve. The
electrical system to do this is outlined in Fig. 1(b). For a
circular tube of 1 m radius of curvature, the natural oscil-
lation period of the ball is about 2 sec [see Eq. (3) in Sec.
IIT]. We therefore drive the solenoid with pulses derived
from a Hewlett~Packard Low Frequency Function Gen-
erator. The square-wave output of this device is used to
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trigger a variable one-shot (constructed from the ubiquitous
555 timer chip), which is adjusted to provide pulses of short
duration relative to the square-wave period. The output
from the one-shot. is connected to the base of a power
transistor which drives the solenoid. Details of the circuit
may vary depending on the type of valve used; a schematic
of the circuit in operation with our particular device is
available from the author.

The duration and frequency of the pulses can be set to
provide optimum behavior of the rolling ball. If the pulses
are short enough and if there is rapid leakage of air around
the edges of the ball, it will behave as if the driving impulse
were applied instantaneously. The actual driving function
of our portulum is more complex, of course, since at least
some of the air introduced by the valve continues to expand
behind the ball as it rolls to the right (and the ball com-
presses air ahead of itself as it rolls to the left, introducing
a damping force).

To minimize this effect, a vent hole is drilled through the
upper syrface of the curved tube at its lowest point [see Fig.
1(a)]. Once the ball rolls past this point to the right, excess
pressure is vented and the ball continues its motion as a
relatively freely rolling mass. If desired, the vent hole could
be drilled closer to the air input so that a larger fraction of
the ball’s motion could be simplified. For purposes of
demonstrating mechanical resonance, however, we like to
start the ball from rest at the bottom of the tube; this would
not be possible if'the vent hold were moved to the left.

Several glass tubes bent to different shapes can be pro-
vided for the apparatus. We initially experimented with
clear plastic tubes used for chemistry and biology labs, but
found that their inner surfaces were not uniform enough for
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smooth motion of the ball. Glass. tu‘t;.es hO\yever dohavea
disadvantage of being too smooth inside to ifisure that the ‘aj
ball rolls without sllppmg Etching the lower inside surface
of the tube by running a drop of hydrofluoric acid along ity
may be a remedy to this problem -w*

In operation, the device is simply connected to the axrh
lines, the electronics are turned on, and the frequency of the
pulses is slowly varied until the ball rolls noticeably back § ¥
and forth. The regulator valve can be used to adjust the -
amplitude of the driven oscillations.

For small classrooms the device can be viewed d1rcctly
In larger classes, the device could be backlit through the |
plexiglass or even shadowed on a wall by a lamp placedins
front of it. It could also be scaled up somewhat, although
higher pressures might be needed to drive heavier balls.

i
]
III. BEHAVIOR OF THE ROLLING BALL *
A

Our apparatus differs from a conventional pendulumin J
that our ball is not suspended by a wire or rod but rolls along* °
a track. This_method of constraint transfers some of the y
energy of translation of the ball into energy of rotation. Is § J
the general behavior of the rolling mass similar to that Of
the suspendcd mass? We consider two ideal cases. |

A. Circular motion !
It is not difficult to show that if the track on which the 3
ball rolls is circular, its motion is analogous to that of 3,
swinging mass; indeed this is a common supplementary ¢
problem in many intermediate mechanics textbooks.? Re-" k
ferring to Fig. 2, where R-is the radius of the circular path, *

L. Marschall 558
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Fig. 2. Coordinate system to describe a
ball rolling on a circular track.

ris the radius of the rblling ball, and  is the angle of de-
flection from the vertical, an equation of motion of the ball
(assuming it rolls without slipping) is given by

w5 g
0+=
TR—r

This motion is not simple hatmonic, but for small amplitude
oscillations we can approximate the motion by

sinf = 0. 1)

0+ 6=0, 2
TR—r @
which represents simple harmonic motion with a frequency

of

_1 /5 ¢
f"zvr TR—r 3)

For a swinging mass, the anafogous equations are given
by

B+ (g/L)sind = 0, @
B4 @mp=o, 0]

and / ) o it
f=GmVe/L, 6)

where L = R — r, see Fig. 2. Therefore if the;ball rolls along
a circular path it executes the same type of motion as a
swinging one, but with a frequency that is smaller by the
ratio /5 /7. : ‘ .

/
4. i‘f

B. Cycloidal pendulum

It is well known that the motion of a swinging pendu-
lum is not precisely isochronous [as can be proven by solving
the exact equation of motion, Eq. (4) above]. One of the
first lab experiments conducted in the introductory classes
at our school, for instance, demonstrates that the period of
oscillation increases noticeably with increasing amplitude.
A pendulum travelling in a cycloidal path, however, will
display isochronicity. This fact was first realized by
Huygens in 1673 who constrained a pendulum to a cycloidal

patl}ll ‘t5>y forcing it to swing between a pair of cycloidal
walls, ’

A rolling ball may more easily be constrained to follow.

a cycloid. In our apparatus the glass tube which contains
the ball is simply formed to the proper shape. The following
argument, which is far less common than the one for the
Circular pendulum, demonstrates that a ball rolling along
4 Cycloidal path without slipping does indeed execute simple
armonic motion and is therefore isochrorious.

Referring to Fig. 3, we'assume that the center of the ball
Moves along a path S arid the ball itself along the track S”.

¢ shape of S/ will, for the moment, be considered arbi-
trary, but-since the ball.is always in contact with S’, the

559
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perpendicular distance between S’ and S js r, the radius of
the ball.
We may then write
= x’ — rsinf, (7a)
y =y’ + rcosf,

where (x,y) and (x’,3’) are the coordinates of the center and

contact points of the ball and 8 is the angle between the

tangent to .S’ at (x’,y’) and the horizontal. )
Differentiating, we find

dx = dxt — rcosfdp, (8a)
dy = dy’ — rsinffdp, (8b)

from which we can easily derive an expression relating the
distance ds travelled by the center of the ball as it rolls along
a length of track ds’:

dsz =dx2+dy?=dx'?2+dy’?
— 2rdB(dx’cosf + dy’sinB) + r2dp?
= ds’2 — 2rdB(dx’ cosf + dy’ sinB) + r2dB2. (9)

Now since

_dx’ . o a4y ’
cosf3 = o and sinf3 1 (10)
we may write Eq. (9) ds
ds?=ds’ 2 —2rds’dB + r2df2 = (ds' — rdB)>  (11)
or
’ ds =ds’ —rdg. 12)

and the speed of thé center of the ball is given-by differen-
tiating Eq. (12) with respect to time:
§ =g — rB.

(13)
We also define ¥, the angle between the point of contact
of the ball and the track and a fixed point on the ball, A4,
which is in contact with the track at its lowest point (see Fig.
4). Since the ball rolls without slipping, we know that §’
= ry and we may use Eq. (13) to write
¥ =3s/r+B. (14)
We now proceed to derive an equation of motion for the

rolling ball from energy considerations. The translational
kinetic energy of the ball is given by

(15)
and the rotational kinetic energy of the ball is given by
Ew = @le? = ®IY - B)> (16)

For a uniform ball the moment of inertia about the center,
I = (%) (mr?). Substituting from Eq. (14) and simplifying

s

Etrans = ) ms 2

SI

Fig. 3. Coordinate system to
describe 2 ball rolling on an
arbitrary track.
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A b3
Fig. 4. Coordinate system to describe a ball rolling on a cycloidal
track.

we may finally write
Eror = ()ms2. (17
The total kinetic energy, adding Eqs. (15) and (17) is
thus
"Exin = Evans + Erot = ({]_O)ms (18)

Our derivation of the kinetic energy of the ball makes no
reference to the shape of its path. To specify its potential
energy we assume that the path S of the ball’s center is
specifically a cycloid given by the parametric equations.
(referring again to Fig. 4):

x = ab + asind, (19a)
(19b)

where § is a variable parameter (not a polar angle) and 2aw

y = a(l — cost),

is the distance between the cusps of the cycloid.- The element-

of path length is then
ds = \/mf = 2acos¢pde (20)
and by integration we find
s = 4asing, @n

where ¢ = /2.
Now the potential energy of the ball is given by

Epor = mgy = mga(l — cos2¢) = (mgs?/8a), (22)

and the total energy of the rolling ball, from Eqgs. (18) and
(22),is

Eiot = Egin + Epor = (1—76)ij + (g/8a)ms2.  (23)

Since this total energy is conserved, we can derive an
equation of motion for the rolling ball by differentiating Eq.
(23) with respect to time and setting the derivative equal
to zero:

dE/dt = 0 = (&5)m(255) + (g/8a)m(2ss), (24)
which readily reduces to '
§4 (5g/28a)S = 0. (25)

. This is the equation of motion of a simple harmonic os-
cillator. Clearly the rolling ball is isochronous, just like the
swinging-one, but with a frequency of

f=Gm)V () (g/a), (26)

which is 4/ as great as the frequency for a swinging cy-
cloidal pendulum.$

560 Am. J. Phys., Vol. 49, No. 6, June 1981

We point out again that the derivation of the Kinetic
equation of the ball, Eq. (18), is made with reference t thefi
shape of the track along which the ball rolls as long ag ¢}, *
radius of curvature of the track is larger than that of the bal| .
and as 1ong as the ball moves without slipping. Thus oy
the potential energy function, Eq. (22), depends op the
shape of the path (the functional relation between y and ¢
In'short, whatever the shape of the path of our rolling ball,
it will simulate the motion of a ball swinging in the sap,
path (or sliding along a frictionless wire), but with a lower
frequency.

C. Nonideal cases

Slipping of the ball may introduce measureable diffe;.
ences between ideal and real performance for our apparatys,
Differences between the acrodynamics of the ball in the
tube and the freely swinging ball may also produce djs.
crepancies between the two cases. Since we designed oyr
apparatus primarily-as a classrqom demonstration of os.
cillatory motion and mechanical resonance we have not fully
investigated these problems. The investigation of these
deviations may provide a challenging research project for
upper-classfph)j/sics majors.

IV. APPLICATIONS

A

The driven portulum we have described here was origi-
nally conceived with two.applications in mind. First, it was
desired to demonstrate the effect of different-shaped paths
on the motion of an oscillating mass. This can more easily
be done with Gur device thapwith a conventional swinging
pendulum since one negd-merely rebend the constraining
tube to a different curve to alter its path. Huygens’s method
of “constraining walls” for altering the path of a swinging

pendulum js clearly more difficult to implement in practice

and it is more difficult for students to visualize the resulting
path of motion. (They must learn that the “involute” of a
cycloid is another cycloid.)

Since, as we have seen, the rolling ball behaves like 2
more slowly swinging mass, the portulum can thus be used
as a vetfsatile substitute for a less easily adjustable suspen-
sion system. It can also be presented as a variation of the
swinging pendulum and the behavior of the two systems can
easily be compared: the longer period of the rolling ball can
be measured simply by recording the frequency setting of
the oscillator required for maximum amplitude oscilla-
tions. )

Secondly, we wished to construct an improved device for
illustrating mechanical resonance to introductory classes.
The apparatus most familiar to,us for this purpose is a mass
hung from a spring whieh is in turn attached to a rod that
can be driven up and down by a variable-speed motor. As
the speed of the motor is varied, the mass is seen to execute
the greatest oscillations when the period of the driving
motor is matched to the natural period of the spring-mass
combination (which may of course be measured by
bouncing the mass with the motor turned off). The pneu-
matic driving mechanism we use is fundamentally no less
simple than this system and, we believe, its operation is more
transparent to a classroom. Students watching a mechan-
ically driven oscillator cannot see the relatively small mo-
tions of the driving rod, nor can they read the speed dial on
the motor. Our pneumatic portulum, on the other hand,

L. Marschall 560
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n;vides a class with an audible cue, the hiss of escaping gas,
when the driving force is applied. An LED connected to the
solenoid-valve driving circuit can also provide a yisual
cue. .

In operation, of course, the demonstration apparatus is
used just like its mechanically driven couriterpart. The
natural frequency of the ball is determined by rolling it in
the tube without a driving force. The period of the driving
oscillator is then adjusted to produce maximum-amplitude
oscillations.

The device we have described has met our two major
objectives, but its usefullness may exténd beyond the
demonstration cart. For more quantitative measurements
small photoelectric detectors can be mounted on the plexi-
glass mounting sheet to trigger a tirher when the ball passes
by.” Thus the motion of the rolling ball can more easily be
monitored than the corresponding motion of a swinging one.
This setup would make our device useful as an undergrad-
uate laboratory experiment. '

Ultimately, we belie¢ve, the general design of the portu-
Jum could be modified to suit many purposes, since the
rolling ball may more easily be constrained and monitored
than a swinging one. For iristance the glass tube itself could
be evacuated and sealed off to minimize air resistance and
the ball could be driven by electromagnets triggered by
photocell gates mounted on the plastic sheet. We stress here,
however, that the form of the device destribed in Sec. 11
offers a simplicity of design and construction and a trans-
parency of operation-that is a distinct advantage in the

o
s e
,,
- <
7 < .-

general physics classroom. Whatever limitations it has, such
as departures from ideal behavior due to friction and
pneumatic effects, it also shares with its more conventional
counterparts.
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Resolving time effect on counting statistics

s
/
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The observed variance in the counts recorded from a radioactive soutce is related to
the response time of the detector, in a way which is readily exploited as an

intermediate laboratory exercise,

A fundamenta] limitation!:2 on the operation of virtually
every form of particle detector or courting system is a
_Characteristic minimum response time, or “dead time.” This
1s the time that must elapse, after the detector has responded
toan event, before it is capable of an equivalent reponse to
asubsequent event. The dead time may result from physical
Processes in the detector itself (the clearing of positive ions
after a Geiger discharge), or from characteristics of the
asSO<?1ated electronics (analog-to-digital conversion in a
Multichannel analyzer), or from a combination of both. In
2“)' case the effect is that, except in the limit of very low

| OO‘;Etmg rate, some events go undetected, and the response
stug e detector to .the true event rate is nonlinear. Ph)_lsics
) ents usually first encounter the concept of dead time,
" resolving time, in an intermediate or advanced under-
graduate laboratory. -
by one wants to measure the dea}d time of a dé"cgctor asa
con ratory exercise, the bes_t qho_;ce of detector is ahpost
ainly the Geiger tube. It is simple, inexpensive, efficient,

L can
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and slow enough (typically around 1074 sec) so that re-
sponse-time effects are easy to observe. The usual method
for inferring the dead time from counter performance is the
split-source method, which relies on the fact that the count
rdte one observes from a source is less than the sum of the
count rates observed separately from its parts, because a
higher proportion of counts are lost at the higher count rate.
(A typical example can be found in the lab manual issued
by Ortec,® Experiment 2.4.) A less familiar effect of finite
detector resolving time is that the statis‘ticdl Sluctuations
of the observed counts dre reduced when dead-tjme losses
are significant. This phenomenon can dlso be exploited in
a laboratory exercise for undergraduates. '

As the simplest model of a system with finite response
time, consider a nonparalyzable detector with a fixed re-
sponse time 7. Each event to which the detector responds
is assumed to initiate a time interval of length 7, during
which the detector is wholly unresponsive to further events.
This model gives the same first-order .effects as would 4

© 1981 American Association of Physics Teachers 561
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