The Cupola
 Scholarship at Gettysburg College

Fall 2015

Hex

Joshua R. Wagner

Gettysburg College

Follow this and additional works at: https://cupola.gettysburg.edu/student_scholarship
Part of the Computer Sciences Commons

Share feedback about the accessibility of this item.

Wagner, Joshua R., "Hex" (2015). Student Publications. 406.
https://cupola.gettysburg.edu/student_scholarship/406

This is the author's version of the work. This publication appears in Gettysburg College's institutional repository by permission of the copyright owner for personal use, not for redistribution. Cupola permanent link: https://cupola.gettysburg.edu/student_scholarship/ 406

This open access poster is brought to you by The Cupola: Scholarship at Gettysburg College. It has been accepted for inclusion by an authorized administrator of The Cupola. For more information, please contact cupola@gettysburg.edu.

Hex

Abstract

The game hex has simple rules but complex game play. A computer program was used to analyze different boards. This yielded an interesting insight in making the optimal Hex program.

Keywords

Hex Game, Monte Carlo

Disciplines

Computer Sciences

Comments

This poster was made for Professor Todd Neller's First Year Seminar, FYS 187-4: Games and Computation, Fall 2015. It was presented as part of the first CAFE Symposium, 2016.

What is Hex?

Hex is a game played on a rhombus shaped board covered in a hexagonal grid of cells.

This game is considered a combinatorial game. A combinatorial game is a game with no elements of chance and no hidden information.
Hex is further defined as a connection game. A connection game is a subcategory of combinatorial games in which the goal is to form some type of connection across a board.

First-Player Advantage

 There is a distinct advantage for the first player in Hex. Plays in the center of the board are often considered stronger. player advantage such as the swap rule.A Monte Carlo program was run five times, and the chance of winning with each first move was found. Board symmetry was accounted for as well.
Carlo program which relies on a vast number of randomly played games to estimate cell values.

Gameplay

Hex gameplay is simple.
Players alternate placing pieces of their own color on the board.
A player wins after connecting both their sides of the board.
The four corners are connected to both players' sides
Larger board sizes create increasingly complex play.

An Important Structure

 The fork is the most important piece formation in the game of Hex.A fork poses two possible potential connections between the same two pieces.
With perfect gameplay, it is impossible for an opponent to cross a fork.
There are a few examples below.

Professor Todd Neller provided the mentorship and computer program necessary to carry out this research

123456789
A 25 24 23 21 20191181513

| | 21 | 16 | 10 | 6 | 3 | 1 | 4 | 11 | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| | 20 | 12 | 7 | 3 | 2 | 3 | 7 | 12 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | $\begin{array}{l}\text { The moves } \\ \text { are ranked }\end{array}$ | F | 19 | 11 | 4 | 1 | 3 | 6 | 10 | 16 | 21 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Too Eas.y

As mentioned, the Monte Carlo program uses randomly played games to evaluate cell values. Each cell is played a certain number of times at the beginning of the program These initial plays enhance the program's exploration.
The number of games evaluated and the number of exploration games can be changed to optimize the program
The board below was used to test the effects of these values on the program's ability to play competitively. The black space is the perfect play for this game.
The program was dependably able to choose e5
(the black space) with increabibly small values.
This decision was easy because e5 is needed by
both orange and blue to complete a series of forks.
Hex is a zero-sum game meaning that when one
player loses, another wins. Forming a series of
forks and preventing orange from forming a series,
practically doubled the utility of playing in the black
cell.

A Different Approach

When using a different board setup, the program was much less dependable and chose different cells even when using the same number of games and exploration games. exploration games per cell, may give a better estimate of the value of each cell.
As a control, the program was run on the same board. This control played $2,000,000$ games and 400 exploration games per cell. In this way, both methods used the sam number of games and exploration games per cell.

