The Feasibility of Using Drones to Count Songbirds

Andrew M. Wilson
Gettysburg College

Janine M. Barr
Gettysburg College

Megan E. Zagorski
Gettysburg College

Student Authors
Janine M. Barr ’15, Gettysburg College
Megan E. Zagorski ’16, Gettysburg College

Follow this and additional works at: https://cupola.gettysburg.edu/esconf
Part of the Environmental Monitoring Commons, Environmental Studies Commons, and the Ornithology Commons
Share feedback about the accessibility of this item.


This is the author's version of the work. This publication appears in Gettysburg College's institutional repository by permission of the copyright owner for personal use, not for redistribution. Cupola permanent link: https://cupola.gettysburg.edu/esconf/1
This open access conference material is brought to you by The Cupola: Scholarship at Gettysburg College. It has been accepted for inclusion by an authorized administrator of The Cupola. For more information, please contact cupola@gettysburg.edu.
The Feasibility of Using Drones to Count Songbirds

Abstract
Point and transect counts are the most common bird survey methods, but are subject to biases and accessibility issues. To eliminate some of these biases, we propose attaching a recorder to a consumer-grade quadcopter (Unmanned Aerial Vehicle, or UAV) to estimate songbird populations from audio recordings. We conducted a blind experiment using broadcast recordings to estimate the detection radius of a compact recorder attached to a UAV, and found that the detection radius did not vary significantly when the UAV was flown at elevations of 20, 40 and 60m. We field tested our system by comparing UAV-based bird counts with standard point count surveys at 51 locations on State Game Lands 249, PA. Species richness was similar at standard and UAV point counts, but species composition differed. For most species, the number detections on UAV recordings were similar to standard counts, but UAV surveys under-sampled Mourning Doves Zenaida macroura, Gray Catbirds Dumetella carolinensis, and Willow Flycatchers Empidonax traillii. Birds with quiet or low frequency songs are likely to be under-detected by UAV-based methods, due to masking by the drone noise of the quadcopter. Recordings of bird songs from ground-based recorders show that bird song output was slightly reduced when the quadcopter was overhead. The development of quieter quadcopters would overcome the masking and the possible behavioral response issues that we highlighted. We demonstrate that low-cost UAVs provide a useful new method of surveying songbirds that is accessible to organizations and researchers with restricted budgets.

Keywords
Bird Populations, Drone, UAV

Disciplines
Animal Sciences | Environmental Monitoring | Environmental Sciences | Environmental Studies | Ornithology

Comments
The feasibility of using drones to count songbirds

A. Wilson, J. Barr, M. Zagorski
Environmental Studies Dept.
Gettysburg College, PA
awilson@gettysburg.edu

Can drones be used to survey songbirds?

Drones allow low cost access to inaccessible or dangerous terrain.

We attached a pocket digital recorder to a DJI Phantom II quadcopter, to see whether we can record bird song remotely.
Part 1 – Experiment
Janine Barr (‘15)

Part 2 – Field testing
Megan Zagorski (‘16)
Experimental design

- Blind experiment – recordings randomized by J Barr, and analyzed by A. Wilson
- Recorder at 8m below UAV with fishing line
- 3-5 songs of 6 species (source: Cornell)
- Played at volumes *approx.* natural (70-95 dB @ 1m)
- Treatments:
  - 3 altitudes (20m, 40m, 60m)
  - 11 radial distance (0-100m, 10m increments)
No significant difference in detections at 3 altitudes ($P>0.05$, chi-square tests)
Apply a “High pass” filter in Audacity.
Estimates of detection (using Program Distance)

Effective detection radius (EDR)

Chipping Sparrow

Eastern Meadowlark
If Effective Detection Radius is too small (red circle), we would not detect enough birds.
If Effective Detection Radius is too large (red circle), we would not detect too many birds! Deciphering audio with multiple individuals of same species is very tricky.
We think that our Effective Detection Radius is close to the “sweet spot”, not too large, not too small
How do UAV counts compare to “standard” counts?

Each four letter code is a different species
How do UAV counts compare to “standard” counts?

Not so good!
Analysis of Cornell recordings
Crucial – maximizing survey efficiency
Future research

Technological
- Reduce UAV noise
- Improve battery life
- Custom build microphones

Biological
- Transect counts
- Behavioral effects
<table>
<thead>
<tr>
<th>Species</th>
<th>Time</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood Thrush</td>
<td>8:01:50</td>
<td>4386505</td>
<td>5668681</td>
</tr>
<tr>
<td>Ovenbird</td>
<td>8:02:35</td>
<td>4386515</td>
<td>5668697</td>
</tr>
<tr>
<td>Veery</td>
<td>8:02:49</td>
<td>4386528</td>
<td>5668716</td>
</tr>
</tbody>
</table>
Acknowledgements

We thank the Pennsylvania Game Commission for permission to conduct research on State Game Lands. Research was supported by funds from:

- Gettysburg College Provost’s Office
- Howard Hughes Medical Institute’s Precollege and Undergraduate Science Education Program
- Margaret. A. Cargill Foundation
- Kolbe Research Fellowship
Did we see any effect on song output?

![Graph showing bird activity over time with labels 1 = quiet/far, 2 = middle, 3 = loud/close. The graph indicates a 3 minute hover period with a noticeable increase in bird activity during this time.]
Best guess Effective detection radius (EDR)

**Song Sparrow**

![Graph showing the cumulative total of detections over distance for Song Sparrow. The graph illustrates a step function with a horizontal line at 60 starting at a distance of 80 meters.]