Section XV: Biology and the Rise of the Social Sciences

Contemporary Civilization (Ideas and Institutions of Western Man)

1958

1. Charles Darwin and Organic Evolution

Robert L. Bloom Gettysburg College

Basil L. Crapster *Gettysburg College*

Harold L. Dunkelberger Gettysburg College

See next page for additional authors

Follow this and additional works at: https://cupola.gettysburg.edu/contemporary_sec15

Part of the <u>Evolution Commons</u>, and the <u>History of Science</u>, <u>Technology</u>, and <u>Medicine Commons</u>

Share feedback about the accessibility of this item.

Bloom, Robert L. et al. "1. Charles Darwin and Organic Evolution. Pt. XV: Biology and the Rise of the Social Sciences." Ideas and Institutions of Western Man (Gettysburg College, 1958), 4-20.

This is the publisher's version of the work. This publication appears in Gettysburg College's institutional repository by permission of the copyright owner for personal use, not for redistribution. Cupola permanent link: https://cupola.gettysburg.edu/contemporary_sec15/2

This open access book chapter is brought to you by The Cupola: Scholarship at Gettysburg College. It has been accepted for inclusion by an authorized administrator of The Cupola. For more information, please contact cupola@gettysburg.edu.

1. Charles Darwin and Organic Evolution

Abstract

Evolution was not a new idea. The Greeks speculated on it. In the century before Darwin many different evolutionary theories were proposed, among them notable efforts by Buffon, Lamarck, and Goethe. Their common thread was the concept that the succession of biological changes in geological time represented a fact, if not a natural law. The stumbling block was for all of them, as it had been for Cuvier, the concept of fixed species, which clashed with the vision of a distant past populated with races of plants and animals now extinct. It became evident that the idea of fixed species could not explain this. What was needed was a theory which could account for both permanence and impermanence in the natural world. This Charles Darwin supplied. [excerpt]

Keywords

Contemporary Civilization, Charles Darwin, Organic Evolution, The Origin of Species

Disciplines

Evolution | History of Science, Technology, and Medicine

Comments

This is a part of Section XV: Biology and the Rise of the Social Sciences. The Contemporary Civilization page lists all additional sections of *Ideas and Institutions of Western Man*, as well as the Table of Contents for both volumes.

More About Contemporary Civilization:

From 1947 through 1969, all first-year Gettysburg College students took a two-semester course called Contemporary Civilization. The course was developed at President Henry W.A. Hanson's request with the goal of "introducing the student to the backgrounds of contemporary social problems through the major concepts, ideals, hopes and motivations of western culture since the Middle Ages."

Gettysburg College professors from the history, philosophy, and religion departments developed a textbook for the course. The first edition, published in 1955, was called *An Introduction to Contemporary Civilization and Its Problems*. A second edition, retitled *Ideas and Institutions of Western Man*, was published in 1958 and 1960. It is this second edition that we include here. The copy we digitized is from the Gary T. Hawbaker '66 Collection and the marginalia are his.

Authors

Robert L. Bloom, Basil L. Crapster, Harold L. Dunkelberger, Charles H. Glatfelter, Richard T. Mara, Norman E. Richardson, and W. Richard Schubart

1. Charles Darwin and Organic Evolution

Evolution was not a new idea. The Greeks speculated on it. In the century before Darwin many different evolutionary theories were proposed, among them notable efforts by Buffon, Lamarck, and Goethe. Their common thread was the concept that the succession of biological changes in geological time represented a fact, if not a natural law. The stumbling block was for all of them, as it had been for Cuvier, the concept of fixed species, which clashed with the vision of a distant past populated with races of plants and animals now extinct. It became evident that the idea of fixed species could not explain this. What was needed was a theory which could account for both permanence and impermanence in the natural world. This Charles Darwin (1809-1882) supplied.

Born in England, Darwin entered the University of Edinburgh to study medicine. Finding himself unsuited to this profession, he went to Christ Church, Cambridge, to prepare for the ministry. There he obtained a degree in 1831. Having turned his attention to science, he served as naturalist on the Beagle) when it engaged in extensive exploration of the southern hemisphere (1831-1836). Darwin kept a careful journal of the voyage, and the keen observations which he recorded on geographical distribution and the interrelations between environment and organism served as a background for his later speculation. Upon his return to England, he began to gather additional data on the problem of species and variation, and published a series of scientific treatises. His most famous work, The Origin of Species (1859), was thus the result of more than twenty years of careful observation and contemplation.

In addition to his experiences on the Beagle, Darwin was influenced by his wide study of domestic plants and animals, which acquainted him with man's conscious selecting of desirable stock for his own use. His theoretical ideas came from such diverse sources as the writings of his grandfather, Erasmus

Name frome "a pase setter" family not extremely wealth but had money.
He met yoro. Dawin during this trip, but more important begathered his data
for his future work.

Darwin (1731-1802), who held a theory of evolution similar to that of Lamarck and who believed that the earth was millions of years old; the views of Malthus on overpopulation and competition; and the theory of Charles Lyell (1797-1875) that changes in the earth's surface were the result of everyday phenomena, and that what had been considered cataclysms were minor events in the perspective of geological time.

In the following selection from The Origin of Species we see how Darwin squarely faced the question of species and expounded the concept that new species were developing all around us. It is only because of the shortness of human life, he insisted, that we are unable to recognize these changes:

When on board H.M.S. 'Beagle,' as naturalist, I was much struck with certain facts in the distribution of the organic beings inhabiting South America, and in the geological relations of the present to the past inhabitants of that continent. These facts, as will be seen in the latter chapters of this volume, seemed to throw some light on the origin of species -- that mystery of mysteries, as it has been called by one of our greatest philosophers. On my return home, it occurred to me, in 1837, that something might perhaps be made out on this question by patiently accumulating and reflecting on all sorts of facts which could possibly have any bearing on it. After five years' work I allowed myself to speculate on the subject, and drew up some short notes; these I enlarged in 1844 into a sketch of the conclusions, which then seemed to me probable: from that period to the present day I have steadily pursued the same object. I hope that I may be excused for entering on these personal details, as I give them to show that I have not been hasty in coming to a decision.

My work is now (1859) nearly finished; but as it will take me many more years to complete it, and as my health is far from strong, I have been urged to publish this Abstract. I have more especially been induced to do this, as Mr. Wallace, who is now studying the natural history of the Malay archipelago, has arrived at almost exactly the same general conclusions that I have on the origin of species. In 1858 he sent me a memoir on this subject, with a request that I would forward it to Sir Charles Lyell, who sent it to the Linnean Society, and it is published in the third volume of the Journal of that society. Sir C. Lyell and Dr. Hooker, who both knew of my work — the latter having read my sketch of 1844 — honoured me by thinking it advisable to publish, with Mr. Wallace's excellent memoir, some brief extracts from my manuscripts....

In considering the Origin of Species, it is quite conceivable that a naturalist, reflecting on the mutual affinities of organic beings, on their embryological relations, their geographical distribution, geological succession, and other such facts, might come to the conclusion

We did two thing collected explained doleto prove that the evolution of species is a fact, and (2) suggested a mechanism whereby evolution takes place.

Constant production of variations, these have no advantages and they tand to

that species had not been independently created, but had descended, like varieties, from other species. Nevertheless, such a conclusion, even if well founded, would be unsatisfactory, until it could be shown how the innumerable species inhabiting this world have been modified, so as to acquire that perfection of structure and coadaptation which justly excites our admiration. Naturalists continually refer to external conditions, such as climate, food, &c., as the only possible cause of variation. In one limited sense, as we shall hereafter see, this may be true: but it is preposterous to attribute to mere external conditions, the structure, for instance, of the woodpecker, with its feet, tail, beak, and tongue, so admirably adapted to catch insects under the bark of trees. In the case of the mistletoe, which draws its nourishment from certain trees, which has seeds that must be transported by certain birds, and which has flowers with separate sexes absolutely requiring the agency of certain insects to bring pollen from one flower to the other, it is equally preposterous to account for the structure of this parasite, with its relations to several distinct organic beings, by the effects of external conditions, or of habit, or of the volition of the plant itself.

It is, therefore, of the highest importance to gain a clear insight into the means of modification and coadaptation. At the commencement of my observations it seemed to me probable that a careful study of domesticated animals and of cultivated plants would offer the best chance of making out this obscure problem. Nor have I been disappointed; in this and in all other perplexing cases I have invariably found that our knowledge, imperfect though it be, of variation under domestication, afforded the best and safest clue. I may venture to express my conviction of the high value of such studies, although they have been very commonly neglected by naturalists....

Chapter I Variation under Domestication

When we compare the individuals of the same variety or sub-variety of our older cultivated plants and animals, one of the first points which strikes us is, that they generally differ more from each other than do the individuals of any one species or variety in a state of nature. And if we reflect on the vast diversity of the plants and animals which have been cultivated, and which have varied during all ages under the most different climates and treatment, we are driven to conclude that this great variability is due to our domestic productions having been raised under conditions of life not so uniform as, and somewhat different from those to which the parent species had been exposed under nature. There is, also, some probability in the view propounded by Andrew Knight, that this variability may be partly connected with excess of food. It seems clear that organic beings

must be exposed during several generations to new conditions to cause any great amount of variation; and that, when the organisation has once begun to vary, it generally continues varying for many generations. No case is on record of a variable organism ceasing to vary under cultivation. Our oldest cultivated plants, such as wheat, still yield new varieties: our oldest domesticated animals are still capable of rapid improvement or modification.

As far as I am able to judge, after long attending to the subject, the conditions of life appear to act in two ways, — directly on the whole organisation or on certain parts alone, and indirectly by affecting the reproductive system. With respect to the direct action, we must bear in mind that in every case,... there are two factors: namely, the nature of the organism, and the nature of the conditions. The former seems to be much more important; for nearly similar variations sometimes arise under, as far as we can judge, dissimilar conditions; and, on the other hand, dissimilar variations arise under conditions

which appear to be nearly uniform....

Indefinite variability is a much more common result of changed conditions than definite variability, and has probably played a more important part in the formation of our domestic races. We see indefinite variability in the endless slight peculiarities which distinguish the individuals of the same species, and which cannot be accounted for by inheritance from either parent or from some more remote ancestor. Even strongly-marked differences occasionally appear in the young of the same litter, and in seedlings from the same seed-capsule. At long intervals of time, out of millions of individuals reared in the same country and fed on nearly the same food, deviations of structure so strongly pronounced as to deserve to be called monstrosities arise; but monstrosities cannot be separated by any distinct line from slighter variations. All such changes of structure, whether extremely slight or strongly marked, which appear amongst many individuals living together, may be considered as the indefinite effects of the conditions of life on each individual organism, in nearly the same manner as the chill affects different men in an indefinite manner, according to their state of body or constitution, causing coughs or colds, rheumatism, or inflammation of various organs......

> Chapter II Variation under Nature

Before applying the principles arrived at in the last chapter to organic beings in a state of nature, we must briefly discuss whether these latter are subject to any variation. To treat this subject properly, a long catalogue of dry facts ought to be given; but these I shall reserve for a future work. Nor shall I here discuss the various definitions which have been given of the term species. No one definition has satisfied all naturalists;

yet every naturalist knows vaguely what he means when he speaks of a species. Generally the term includes the unknown element of a distinct act of creation. The term "variety" is almost equally difficult to define; but here community of descent is almost universally implied, though it can rarely be proved. We have also what are called monstrosities; but they graduate into varieties. By a monstrosity I presume is meant some considerable deviation of structure, generally injurious, or not useful to the 'species. Some authors use the term "variation" in a technical sense, as implying a modification directly due to the physical conditions of life; and "variations" in this sense are supposed not to be inherited; but who can say that the dwarfed condition of shells in the brackish waters of the Baltic, or dwarfed plants on Alpine summits, or the thicker fur of an animal from far northwards, would not in some cases be inherited for at least a few generations? and in this case I presume that the form would be called a variety.

It may be doubted whether sudden and considerable deviations of structure such as we occasionally see in our domestic productions, more especially with plants, are ever permanently propagated in a state of nature. Almost every part of every organic being is so beautifully related to its complex conditions of life that it seems as improbable that any part should have been suddenly produced perfect, as that a complex machine should have been invented by man in a perfect state. Under domestication monstrosities sometimes occur which resemble normal structures in widely different animals. Thus pigs have occasionally been born with a sort of proboscis, and if any wild species of the same genus had naturally possessed a proboscis, it might have been argued that this had appeared as a monstrosity; but I have as yet failed to find, after diligent search, cases of monstrosities resembling normal structures in nearly allied forms, and these alone bear on the question. If monstrous forms of this kind ever do appear in a state of nature and are capable of reproduction (which is not always the case), as they occur rarely and singularly, their preservation would depend on unusually favourable circumstances. They would, also, during the first and succeeding generations cross with ordinary form, and thus their abnormal character would almost inevitably be lost.....

> Chapter III Struggle for Existence

Before entering on the subject of this chapter, I must make a few preliminary remarks, to show how the struggle for existence bears on Natural Selection. It has been seen in the last chapter that amongst organic beings in a state of nature there is some individual variability: indeed I am not aware that this has ever been disputed. It is immaterial for us whether a multitude of doubtful forms be called species or sub-species or varieties; what rank,

for instance, the two or three hundred doubtful forms of British plants are entitled to hold if the existence of any well-marked varieties be admitted. But the mere existence of individual variability and of some few wellmarked varieties, though necessary as the foundation for the work, helps us but little in understanding how species arise in nature. How have all those exquisite adaptations of one part of the organisation to another part, and to the conditions of life, and of one organic being to another being, been perfected? We see these beautiful co-adaptations most plainly in the woodpecker and the mistletoe; and only a little less plainly in the humblest parasite which clings to the hairs of a quadruped or feathers of a bird; in the structure of the bettle which dives through the water; in the plumed seed which is wafted by the gentlest breeze; in short, we see beautiful adaptations everywhere and in every part of the organic world.

Again, it may be asked, how is it that varieties. which I have called incipient species, become ultimately converted into good and distinct species which in most cases obviously differ from each other far more than do the varieties of the same species? How do those groups of species, which constitute what are called distinct genera. and which differ from each other more than do the species of the same genus, arise? All these results, as we shall more fully see in the next chapter, follow from the struggle for life. Owing to this struggle, variations, however slight and from whatever cause proceeding, if they be in any degree profitable to the individuals of a species, in their infinitely complex relations to other organic beings and to their physical conditions of life, will tend to the preservation of such individuals, and will generally be inherited by the offspring. The offspring, also, will thus have a better chance of surviving. for, of the many individuals of any species which are periodically born, but a small number can survive. have called this principle, by which each slight variation, if useful, is preserved, by the term Natural Selection, in order to mark its relation to man's power of selection. But the expression often used by Mr. Herbert Spencer of the Survival of the Fittest is more accurate, and is sometimes equally convenient. We have seen that man by selection can certainly produce great results, and can adapt organic beings to his own uses, through the accumulation of slight but useful variations, given to him by the hand of Nature. But Natural Selection, as we shall hereafter see, is a power incessantly ready for action, and is as immeasurably superior to man's feeble efforts, as the works of Nature are to those of Art.

We will now discuss in a little more detail the struggle for existence. In my future work this subject will be treated, as it well deserves, at greater length. The elder De Candolle and Lyell have largely and philosophically

shown that all organic beings are exposed to severe competition. In regard to plants, no one has treated this 'subject' with more spirit and ability than W. Herbert, Dean of Manchester, evidently the result of his great horticultural knowledge. Nothing is easier than to admit in words the truth of the universal struggle for life, or more difficult -- at least I have found it so -- than constantly to bear this conclusion in mind. Yet unless it be thoroughly engrained in the mind, the whole economy of nature, with every fact on distribution, rarity, abundance, extinction, and variation, will be dimly seen or quite misunderstood. We behold the face of nature bright with gladness, we often see superabundance of food; we do not see or we forget, that the birds which are idly singing round us mostly live on insects or seeds, and are thus constantly destroying life; or we forget how largely these songsters, or their eggs, or their nestlings, are destroyed by birds and beasts of prey; we do not always bear in mind, that, though food may be now superabundant, it is not so at all seasons of each recurring year.

I should premise that I use...[the term, Struggle for Existence] in a large and metaphorical sense including dependence of one being on another, and including (which is more important) not only the life of the individual, but success in leaving progeny. Two canine animals, in a time of dearth, may be truly said to struggle with each other which shall get food and live. But a plant on the edge of a desert is said to struggle for life against the drought, though more properly it should be said to be dependent on the moisture. A plant which annually produces a thousand seeds, of which only one of an average comes to maturity, may be more truly said to struggle with the plants of the same and other kinds which already clothe the ground. The mistletoe is dependent on the apple and a few other trees, but can only in a far-fetched sense be said to struggle with these trees, for, if too many of these parasites grow on the same tree, it languishes and dies. But several seedling mistletoes, growing close together on the same branch, may more truly be said to struggle with each other. As the mistletoe is disseminated by birds, its existence depends on them; and it may metaphorically be said to struggle with other fruit-bearing plants, in tempting the birds to devour and thus disseminate its seeds. In these several senses, which pass into each other, I use for convenience' sake the general term of Struggle for Existence.

A struggle for existence inevitably follows from the high rate at which all organic beings tend to increase. Every being, which during its natural lifetime produces several eggs or seeds, must suffer destruction during some period of its life, and during some season or occasional year, otherwise, on the principle of geometrical increase, its numbers would quickly become so inordinately great that no country could support the product. Hence, as more

individuals are produced than can possibly survive, there must in every case be a struggle for existence, either one individual with another of the same species, or with the individuals of distinct species, or with the physical conditions of life. It is the doctrine of Malthus applied with manifold force to the whole animal and vegetable kingdoms; for in this case there can be no artificial increase of food, and no prudential restraint from marriage. Although some species may be now increasing, more or less rapidly, in numbers, all cannot do so, for the world would not hold them.

There is no exception to the rule that every organic being naturally increases at so high a rate, that, if not destroyed, the earth would soon be covered by the progeny of a single pair. Even slow-breeding man has doubled in twenty-five years, and at this rate, in less than a thousand years, there would literally not be standing-room for his progeny. Linnaeus has calculated that if an annual plant produced only two seeds -- and there is no plant so unproductive as this -- and their seedlings next year produced two, and so on, then in twenty years there should be a million plants. The elephant is reckoned the slowest breeder of all known animals, and I have taken some pains to estimate its probable minimum rate of natural increase; it will be safest to assume that it begins breeding when thirty years old, and goes on breeding till ninety years old, bringing forth six young in the interval, and surviving till one hundred years old; if this be so, after a period of from 740 to 750 years there would be nearly nineteen million elephants alive, descended from the first

pair.....

The causes which check the natural tendency of each species to increase are most obscure. Look at the most vigorous species; by as much as it swarms in numbers, by so much will it tend to increase still further. We know not exactly what the checks are even in a single instance. Nor will this surprise any one who reflects how ignorant we are on this head, even in regard to mankind, although so incomparably better known than any other animal. subject of the checks to increase has been ably treated by several authors, and I hope in a future work to discuss it at considerable length, more especially in regard to the feral animals of South America. Here I will make only a few remarks, just to recall to the reader's mind some of the chief points. Eggs or very young animals seem generally to suffer most, but this is not invariably the case. With plants there is a vast destruction of seeds, but, from some observations which I have made it appears that the seedlings suffer most from germinating in ground already thickly stocked with other plants. Seedlings, also, are destroyed in vast numbers by various enemies; for instance, on a piece of ground three feet long and two wide, dug and cleared, and where there could be no choking from other plants, I marked all the seedlings of

our native weeds as they came up, and out of 357 no less than 295 were destroyed, chiefly by slugs and insects. If turf which has long been mown, and the case would be the same with turf closely browsed by quadrupeds, be let to grow, the more vigorous plants gradually kill the less vigorous, though fully grown plants; thus out of twenty species growing on a little plot of mown turf (three feet by four) nine species perished, from the other species being allowed to grow up freely.....

Chapter IV Natural Selection; or the Survival of the Fittest

How will the struggle for existence, briefly discussed in the last chapter, act in regard to variation? Can the principle of selection, which we have seen is so potent in the hands of man, apply under nature? I think we shall see that it can act more efficiently. Let the endless number of slight variations and individual differences occurring in our domestic productions, and, in a lesser degree, in those under nature, be borne in mind; as well as the strength, or the hereditary tendency. Under domestication, it may be truly said that the whole organisation becomes in some degree plastic. But the variability, which we almost universally meet with in our domestic productions, is not directly produced, as Hooker and Asa Gray have well remarked, by man; he can neither originate varieties, nor prevent their occurrence; he can preserve and accumulate such as do occur. Unintentionally he exposes organic beings to new and changing conditions of life, and variability ensues; but similar changes of conditions might and do occur under nature. Let it also be borne in mind how infinitely complex and close-fitting are the mutual relations of all organic beings to each other and to their physical conditions of life; and consequently what infinitely varied diversities of structure might be of use to each being under changing conditions of life. Can it, then, be thought improbable, seeing that variations useful to man have undoubtedly occurred, that other variations useful in some way to each being in the great and complex battle of life, should occur in the course of many successive generations? If such do occur, can we doubt (remembering that many more individuals are born than can possibly survive) that individuals having any advantage, however slight, over others, would have the best chance of surviving and or procreating their kind? On the other hand, we may feel sure that any variation in the least degree injurious would be rigidly destroyed. This preservation of favourable individual differences and variations, and the destruction of those which are injurious, I have called Natural Selection. or the Survival of the Fittest. Variations neither useful nor injurious would not be affected by natural selection, and would be left either a fluctuating element, as perhaps we see in certain polymorphic species, or would ultimately become fixed, owing to the nature of the organism and the

nature of the conditions.

Several writers have misapprehended or objected to the term Natural Selection. Some have even imagined that natural selection induces variability, whereas it implies only the preservation of such variations as arise and are beneficial to the being under its conditions of life. one objects to agriculturists speaking of the potent effects of man's selection; and in this case the individual differences given by nature, which man for some object selects, must of necessity first occur. Others have objected that the term selection implies conscious choice in the animals which become modified; and it has even been urged that, as plants have no volition, natural selection is not applicable to them! In the literal sense of the word, no doubt, natural selection is a false term; but who ever objected to chemists speaking of the elective affinities of the various elements? -- and yet an acid cannot strictly be said to elect the base with which it in preference combines. It has been said that I speak of natural selection as an active power or Deity; but who objects to an author speaking of the attraction of gravity as ruling the movements of the planets? Every one knows what is meant and is implied by such metaphorical expressions; and they are almost necessary for brevity. So again it is difficult to avoid personifying the word Nature; but I mean by Nature, only the appreciate action and product of many natural laws. and by laws the sequence of events as ascertained by us. With a little familiarity such superficial objections will be forgotten

We have good reason to believe, ... that changes in the conditions of life give a tendency to increased variability; and in the foregoing cases the conditions have changed, and this would manifestly be favourable to natural selection, by affording a better chance of the occurrence of profitable variations. Unless such occur, natural selection can do nothing. Under the term of "variations," it must never be forgotten that mere individual differences are included. As man can produce a great result with his domestic animals and plants by adding up in any given direction individual differences, so could natural selection, but far more easily from having incomparably longer time for action. Nor do I believe that any great physical change, as of climate, or any unusual degree of isolation to check immigration, is necessary in order that new and unoccupied places should be left, for natural selection to fill up by improving some of the varying inhabitants. For as all the inhabitants of each country are struggling together with nicely balanced forces, extremely slight modifications in the structure or habits of one species would often give it an advantage over others; and still further modifications of the same kind would often still further increase the advantage, as long as the species continued under the same conditions of life and profited by similar means of

subsistence and defence. No country can be named in which all the native inhabitants are now so perfectly adapted to each other and to the physical conditions under which they live, that none of them could be still better adapted or improved; for in all countries, the natives have been so far conquered by naturalised productions, that they have allowed some foreigners to take firm possession of the land. And as foreigners have thus in every country beaten some of the natives, we may safely conclude that the natives might have been modified with advantage, so as to have better resisted the intruders.

As man can produce, and certainly has produced, a great result by his methodical and unconscious means of selection, what may not natural selection effect? Man can act only on external and visible characters: Nature, if I may be allowed to personify the natural preservation of survival of the fittest, cares nothing for appearances, except in so far as they are useful to any being....

It may metaphorically be said that natural selection is daily and hourly scrutinising, throughout the world, the slightest variations, rejecting those that are bad, preserving and adding up all that are good; sitently and insensibly working, whenever and wherever opportunity offers, at the improvement of each organic being in relation to its organic and inorganic conditions of life. We see nothing of these slow changes in progress, until the hand of time has marked the lapse of ages, and then so imperfect is our view into long-past geological ages, that we see only that the forms of life are now different from what they formerly were.....

Chapter XV

Recapitulation and Conclusion ... Authors of the highest eminence seem to be fully satisfied with the view that each species has been independently created. To my mind it accords better with what we know of the laws impressed on matter by the Creator, that the production and extinction of the past and present inhabitants of the world should have been due to secondary causes, like those determining the birth and death of the individual. When I view all beings not as special creations, but as the lineal descendants of some few beings which lived long before the first bed of the Cambrian system was deposited, they seem to me to become ennobled. Judging from the past, we may safely infer that not one living species will transmit its unaltered likeness to a distant futurity. And of the species now living very few will transmit progeny of any kind to a far distant futurity; for the manner in which all organic beings are grouped shows that the greater number of species in each genus, and all the species in many genera, have left no descendants, but have become utterly extinct. We can so far take a prophetic glance into futurity as to foretell that it will be the common and widely-spread species, belonging to the larger and dominant groups within each class, which will ultimately prevail and procreate new and dominant species. As all the living forms of life are the lineal descendants of those which lived long before the Cambrian epoch, we may feel certain that the ordinary succession by generation has never once been broken, and that no cataclysm has desolated the whole world. Hence we may look with some confidence to a secure future of great length. And as natural selection works solely by and for the good of each being, all corporeal and mental endowments will tend to progress towards perfection.

It is interesting to contemplate a tangled bank. clothed with many plants of many kinds, with birds singing on the bushes, with various insects flitting about, and with worms crawling through the damp earth, and to reflect that these elaborately constructed forms, so different from each other, and dependent upon each other in so complex a manner, have all been produced by laws acting around us. These laws, taken in the largest sense, being Growth with Reproduction; Inheritance which is almost implied by reproduction; Variability from the indirect and direct action of the conditions of life, and from use and disuse: a Ratio of Increase so high as to lead to a Struggle for Life, and as a consequence to Natural Selection, entailing Divergence of Character and the Extinction of less-improved forms. Thus, from the war of nature, from famine and death, the most exalted object which we are capable of conceiving, namely, the production of the higher animals, directly follows. There is grandeur in this view of life, with its several powers, having been originally breathed by the Creator into a few forms or into one; and that, whilst this planet has gone cycling on according to the fixed law of gravity, from so simple a beginning endless forms most beautiful and most wonderful have been, and are being evolved. *

By a strange coincidence another Englishman, Alfred Russell Wallace (1823-1913), independently advanced a similar theory of natural selection, and although biologists of the nineteenth century gave credit to both men, the theory of evolution is universally identified with the name of Darwin. The array of data which he had presented was impressive. His cautious approach to his material was above reproach. For the majority of biologists he had answered the basic question by disproving the fixity of species and by emphasizing progressive variation.

^{*} Charles Darwin, The Origin of Species by Means of Natural Selection, or The Preservation of Favored Races in the Struggle for Life (New York: D. Appleton and Co., 1901), I, 1-4, 7-10, 51-53, 75-80, 83-84, 97-99, 100-103; II, 304-306.

Wallace - of the last India la.

Although Darwin proposed his theory as a purely scientific concept, two factors caused an extended controversy. While avoiding discussion of the evolution of man, he had repeatedly compared plant or animal populations with human communities. Even more disconcerting was the implication in any theory of evolution that man the animal is part and parcel of the process. The public demanded an unequivocal statement by Darwin. The following excerpt is from his reply, The Descent of Man (1871):

The nature of the following work will be best understood by a brief account of how it came to be written. During many years I collected notes on the origin or descent of man, without any intention of publishing on the subject, but rather with the determination not to publish, as I thought that I should thus only add to the prejudices against my views. It seemed to me sufficient to indicate, in the first edition of my Origin of Species, that by this work "light would be thrown on the origin of man and his history;" and this implies that man must be included with other organic beings in any general conclusion respecting his manner of appearance on this earth. Now the case wears a wholly different aspect. When a naturalist like Carl Vogt ventures to say in his address as President of the National Institution of Geneva (1869), "personne, en Europe au moins, n'ose plus soutenir la création indépendante et de toutes pièces, des espèces," it is manifest that at least a large number of naturalists must admit that species are the modified descendants of other species; and this especially holds good with the younger and rising natural-The greater number accept the agency of natural selection; though some urge, whether with justice the future must decide, that I have greatly overrated its importance. Of the older and honored chiefs in natural science, many unfortunately are still opposed to evolution in every form.

In consequence of the views now adopted by most naturalists, and which will ultimately, as in every other case, be followed by other men, I have been led to put together my notes, so as to see how far the general conclusions arrived at in my former works were applicable This seemed all the more desirable as I had never deliberately applied these views to a species taken singly. When we confine our attention to any one form, we are deprived of the weighty arguments derived from the nature of the affinities which connect together whole groups of organisms -- their geographical distribution in past and present times, and their geological succession. The homological structure, embryological development, and rudimentary organs of a species, whether it be man or any other animal, to which our attention may be directed, remain to be considered; but these great classes of facts afford, as it appears to me, ample and conclusive evidence in favor of the principle of gradual evolution.

The strong support derived from the other arguments should, however, always be kept before the mind.

The sole object of this work is to consider, firstly, whether man, like every other species, is descended from some preexisting form; secondly, the manner of his development; and thirdly, the value of the differences between the so-called races of man. As I shall confine myself to these points, it will not be necessary to describe in detail the differences between the several races -- an enormous subject, which has been fully discussed in many valuable works. The high antiquity of man has recently been demonstrated by the labors of a host of eminent men, beginning with M. Boucher de Perthes; and this is the indispensable basis for understanding his I shall, therefore, take this conclusion for origin. granted, and may refer my readers to the admirable treatises of Sir Charles Lyell, Sir John Lubbock, and others. Now shall I have occasion to do more than to allude to the amount of difference between man and the anthropomorphous apes; for Prof. Huxley, in the opinion of most competent judges, has conclusively shown that in every single visible character man differs less from the higher apes than these do from the lower members of the same order of Primates.

This work contains hardly any original facts in regard to man; but, as the conclusions at which I arrived, after drawing up a rough draft, appeared to me interesting, I thought that they might interest others. It has often and confidently been asserted, that man's origin can never be known; but ignorance more frequently begets confidence than does knowledge; it is those who know little, and not those who know much, who so positively assert that this or that problem will never be solved by science. The conclusion that man is the co-descendant with other species of some ancient, lower, and extinct form, is not in any degree new. Lamarck long ago came to this conclusion, which has lately been maintained by several eminent naturalists and philosophers;.....

Man scans with scrupulous care the character and pedigree of his horses, cattle, and dogs, before he matches them; but when he comes to his own marriage he rarely, or never, takes any such care. He is impelled by nearly the same motives as are the lower animals when left to their own free choice, though he is in so far superior to them that he highly values mental charms and virtues. On the other hand, he is strongly attracted by mere wealth or rank. Yet he might by selection do something not only for the bodily constitution and frame of his offspring, but for their intellectual and moral qualities. Both sexes ought to refrain from marriage if in any marked degree inferior in body or mind; but such hopes are Utopian and will never be even partially realized until the laws of inheritance are thoroughly known. All do good service who aid toward this end. When the principles of

breeding and of inheritance are better understood, we shall not hear ignorant members of our legislature rejecting with scorn a plan for ascertaining by an easy method whether or not consanguineous marriages are injurious to man.

The advancement of the welfare of mankind is a most intricate problem: all ought to refrain from marriage who cannot avoid abject poverty for their children; for poverty is not only a great evil, but tends to its own increase by leading to recklessness in marriage. other hand, as Mr. Galton has remarked, if the prudent avoid marriage, while the reckless marry, the inferior members will tend to supplant the better members of society. Man, like every other animal, has no doubt_advanced to his present high condition through a struggle for existence consequent on his rapid multiplication: and if he is to advance still higher he must remain subject to a severe struggle. Otherwise he would soon sink into indolence, and the more highly-gifted men would not be more successful in the battle of life than the less gifted. Hence our natural rate of increase, though leading to many and obvious evils, must not be greatly diminished by any means. There should be open competition for all men; and the most able should not be prevented by laws or customs from succeeding best and rearing the largest number of offspring. Important as the struggle for existence has been and even still is, yet as far as the highest part of man's nature is concerned there are other agencies more important. For the moral qualities are advanced, either directly or indirectly, much more through the effects of habit, the reasoning powers, instruction, religion, etc., than through natural selection: though to this latter agency the social instincts, which afforded the basis for the development of the moral sense, may be safely attributed.

The main conclusion arrived at in this work. namely, that man is descended from some lowly-organized form, will, I regret to think, be highly distasteful to many persons. But there can hardly be a doubt that we are descended from barbarians. The astonishment which I felt on first seeing a party of Fuegians on a wild and broken shore will never be forgotten by me, for the reflection at once rushed into my mind -- such were our ancestors. These men were absolutely naked and bedaubed with paint, their long hair was tangled, their mouths frothed with excitement, and their expression was wild, startled, and distrustful. They possessed hardly any arts, and, like wild animals, lived on what they could catch; they had no government, and were merciless to every one not of their own small tribe. He who has seen a savage in his native land will not feel much shame, if forced to acknowledge that the blood of some more humble creature flows in his veins. For my own part, I would as soon be descended from that heroic little monkey, who

braved his dreaded enemy in order to save the life of his keeper; or from that old baboon, who, descending from the mountains, carried away in triumph his young comrade from a crowd of astonished dogs -- as from a savage who delights to torture his enemies, offers up bloody sacrifices, practises infanticide without remorse, treats his wives like slaves, knows no decency, and is haunted by the grossest superstitions.

Man may be excused for feeling some pride at having risen, though not through his own exertions, to the very summit of the organic scale; and the fact of his having thus risen, instead of having been aboriginally placed there, may give him hopes for a still higher destiny in the distant future. But we are not here concerned with hopes or fears, only with the truth as far as our reason allows us to discover it. I have given the evidence to the best of my ability; and we must acknowledge, as it seems to me, that man with all his noble qualities, with sympathy which feels for the most debased, with benevolence which extends not only to other men but to the humblest living creature, with his godlike intellect which has penetrated into the movements and constitution of the solar system -- with all these exalted powers -- Man still bears in his bodily frame the indelible stamp of his lowly origin. *

Scientists directed two major criticisms against Darwin's theory of evolution, which postulated and relied on a continuous succession of small variations to explain the origin of species. He did not explain either the source of these variations or the mechanism by which they could be inherited. Darwin willingly admitted these shortcomings, but replied that variation does occur, whatever its cause or explanation, and thus provides a basis for a working theory. He was critical of his own concepts and definitions, and consistently warned his reader about their limitations, a warning which his contemporaries did not always heed. Meanwhile, the study of genetics shed new light on the possibility of inheritable variations.

An obscure Augustinian monk, Gregor Mendel (1822-1884), living in Austria-Hungary, experimented with the garden pea and recognized that certain inheritable properties or characteristics, such as height and color, followed a mathematical pattern. By pure accident, he had stumbled upon the outward expression of the mechanism of inheritance. Mendel's experiments were published in the proceedings of a local scientific society and were overlooked for almost forty years. They were finally uncovered in 1900. The germ theory of inheritance merged with experimental genetics, and cell structures were proven to be

^{*} Charles Darwin, The Descent of Man, and Selection in Relation to Sex (New York: D. Appleton and Co., 1871), I, 1-4, II, 385-387.

the bearers of heredity.

In 1901 Huge De Vries (1848-1935), a Dutch botanist who was instrumental in the rediscovery of Mendel, came upon the spontaneous appearance of "sports," or major variations, in the evening primrose. These bred true and hence could be considered new varieties. De Vries called these forms mutations and proposed the theory that such discontinuous and major variations, rather than Darwin's continuous and minor variations, explain the rise of new species. However, mutations are too infrequent in nature and those produced experimentally are too unstable to compete or survive. De Vries' theory, therefore, gave at best only a partial answer to the question of variation.

A century has elapsed since the appearance of The Origin of Species. The Darwinian theory of evolution, modified but solidly supported by subsequent experimental data, is probably the most fruitful concept ever proposed in biology. It has been absorbed into twentieth century thought.