
Computer Science Faculty Publications Computer Science

10-28-2006

Pedagogical Possibilities for the N-Puzzle Problem
Zdravko Markov
Cenral Connecticut State University

Ingrid Russell
University of Hartford

Todd W. Neller
Gettysburg College

See next page for additional authors

Follow this and additional works at: https://cupola.gettysburg.edu/csfac

Part of the Artificial Intelligence and Robotics Commons

Share feedback about the accessibility of this item.

This is the publisher's version of the work. This publication appears in Gettysburg College's institutional repository by permission of
the copyright owner for personal use, not for redistribution. Cupola permanent link: https://cupola.gettysburg.edu/csfac/5

This open access conference proceeding is brought to you by The Cupola: Scholarship at Gettysburg College. It has been accepted for
inclusion by an authorized administrator of The Cupola. For more information, please contact cupola@gettysburg.edu.

Markov, Zdravko. "Pedagogical Possibilities for the N-Puzzle Problem." Proceedings of the 36th ASEE/IEEE Frontiers in Education
Conference (October 28-31, 2006) San Diego, CA.

http://cupola.gettysburg.edu/?utm_source=cupola.gettysburg.edu%2Fcsfac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cupola.gettysburg.edu/?utm_source=cupola.gettysburg.edu%2Fcsfac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cupola.gettysburg.edu/csfac?utm_source=cupola.gettysburg.edu%2Fcsfac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cupola.gettysburg.edu/compsci?utm_source=cupola.gettysburg.edu%2Fcsfac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cupola.gettysburg.edu/csfac?utm_source=cupola.gettysburg.edu%2Fcsfac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=cupola.gettysburg.edu%2Fcsfac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.google.com/a/bepress.com/forms/d/1h9eEcpBPj5POs5oO6Y5A0blXRmZqykoonyYiZUNyEq8/viewform
mailto:cupola@gettysburg.edu

Pedagogical Possibilities for the N-Puzzle Problem

Abstract
In this paper we present work on a project funded by the National Science Foundation with a goal of unifying
the Artificial Intelligence (AI) course around the theme of machine learning. Our work involves the
development and testing of an adaptable framework for the presentation of core AI topics that emphasizes the
relationship between AI and computer science. Several hands-on laboratory projects that can be closely
integrated into an introductory AI course have been developed. We present an overview of one of the projects
and describe the associated curricular materials that have been developed. The project uses machine learning
as a theme to unify core AI topics in the context of the N-puzzle game. Games provide a rich framework to
introduce students to search fundamentals and other core AI concepts. The paper presents several pedagogical
possibilities for the N-puzzle game, the rich challenge it offers, and summarizes our experiences using it.

Keywords
Artificial Intelligence Education, Games, Machine Learning, N-Puzzle Problem, Search

Disciplines
Artificial Intelligence and Robotics | Computer Sciences

Authors
Zdravko Markov, Ingrid Russell, Todd W. Neller, and Neli Zlatareva

This conference proceeding is available at The Cupola: Scholarship at Gettysburg College: https://cupola.gettysburg.edu/csfac/5

https://cupola.gettysburg.edu/csfac/5?utm_source=cupola.gettysburg.edu%2Fcsfac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages

Session S2F

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

S2F-1

Pedagogical Possibilities for the N-Puzzle Problem

Zdravko Markov1, Ingrid Russell 2, Todd Neller3, and Neli Zlatareva4

1 Zdravko Markov, Central Connecticut State University, markovz@ccsu.edu
2 Ingrid Russell, University of Hartford, irussell@hartford.edu
3 Todd Neller, Gettysburg College, tneller@gettysburg.edu
4 Neli Zlatareva, Department of Computer Science, Central Connecticut State University

Abstract - In this paper we present work on a project
funded by the National Science Foundation with a goal of
unifying the Artificial Intelligence (AI) course around the
theme of machine learning. Our work involves the
development and testing of an adaptable framework for
the presentation of core AI topics that emphasizes the
relationship between AI and computer science. Several
hands-on laboratory projects that can be closely integrated
into an introductory AI course have been developed. We
present an overview of one of the projects and describe the
associated curricular materials that have been developed.
The project uses machine learning as a theme to unify core
AI topics in the context of the N-puzzle game. Games
provide a rich framework to introduce students to search
fundamentals and other core AI concepts. The paper
presents several pedagogical possibilities for the N-puzzle
game, the rich challenge it offers, and summarizes our
experiences using it.

Index Terms – Artificial Intelligence Education, Games,
Machine Learning, N-Puzzle Problem, Search.

INTRODUCTION

Search is a fundamental concept to the Computer Science data
structures and algorithms courses as well as to the artificial
intelligence course. In AI the concept of search is usually
introduced by using the idea of state space representation of
games. Games provide a rich framework to introduce students
to search fundamentals in a motivating and entertaining way.
Simple games with large state space serve best this purpose
because they illustrate the huge computational cost of problem
solving that humans can easily do.

The N-puzzle game is among the classical games that
have been used extensively in this area. Along with its basic
role as an illustrative example, the N-puzzle game can be used
for lab experiments and student projects as well. Its simple
representation and the possibility to change the size of the
board (the parameter N) allow students to easily implement
various approaches to solve the game at different levels of
complexity. While using this game in our AI courses, we have
found an interesting application of the N-puzzle framework in
teaching machine learning [7]. This is a classical situation in
AI, where changing the representation brings new insights into
a well known problem. Instead of a state-space representation,
we consider the Explanation-Based Learning (EBL) setting
with a domain theory defined as a set of facts describing the

basic moves of the game. Given a pair of an initial and a goal
state (a training example), the search algorithm finds the
shortest path between them (explanation or proof). Then
applying the Explanation-Based Generalization (EBG)
techniques, the path is generalized so that it can be used later
to match other initial states and bring the search algorithm
directly to the goal state, without the resource-consuming
exploration of the huge state space of the game. With carefully
chosen training examples, useful rules for typical moves can
be learned and then integrated into the search algorithm to
achieve better performance. In this way we illustrate the
basics of EBL, theory revision, and other concepts related to
analytical learning approaches.

We present a project that uses machine learning as a
theme to unify core AI topics typically covered in the AI
course using the N-puzzle game. Further in the paper we
present several pedagogical possibilities for the game, the rich
challenges it offers, and summarize our experiences using it.

This work is part of a larger project Machine Learning
Laboratory Experiences for Introducing Undergraduates to
Artificial Intelligence (MLExAI). An overview of this NSF-
funded work and samples of other course materials developed
under this grant are published in [2, 3] and are available at the
project website at http://uhaweb.hartford.edu/compsci/ccli.
We will first present an introduction to project MLExAI. This
will be followed by a presentation of the N-puzzle project and
how machine learning is used as a theme to tie together the
core AI concepts of search and knowledge representation and
reasoning that are typically covered in an introductory AI
course. Our experiences using the N-puzzle project in our
introductory AI course and its role in enhancing student
learning experience are also discussed.

PROJECT MLEXAI

Project MLExAI is funded by the National Science
Foundation with a goal of unifying the Artificial Intelligence
(AI) course around the theme of machine learning. Our work
involves the development and testing of an adaptable frame-
work for the presentation of core AI topics that emphasizes the
relationship between AI and computer science. A suite of
adaptable hands-on laboratory projects that can be closely
integrated into an introductory AI course is being developed.

Our work incorporates machine learning as a unifying
theme for the AI course. Machine learning is inherently con-
nected with the AI core topics and provides methodology and
technology to enhance real-world applications within many of

Session S2F

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

S2F-2

these topics. Machine learning also provides a bridge between
AI technology and modern software engineering. In his
article, Mitchell discusses the increasingly important role that
machine learning plays in the software world and identifies
three important areas: data mining, difficult-to-program
applications, and customized software applications [6].

We have developed a suite of adaptable, hands-on
laboratory projects that can be closely integrated into an
introductory AI course. Each project involves the design and
implementation of a learning system which will enhance a
particular commonly-deployed application. The goal is to
enhance the student learning experience in the introductory
artificial intelligence course by (1) introducing machine
learning elements into the course, (2) implementing a set of
unifying machine learning laboratory projects to tie together
the core AI topics, and (3) developing, applying, and testing
an adaptable framework for the presentation of core AI topics
which emphasizes the important relationship between AI and
computer science in general, and software development in
particular. The N-puzzle game, presented here, provides a
good framework for illustrating conceptual AI search in an
interesting and motivating way. In [7], we presented how the
N-puzzle problem can be used to introduce machine learning
concepts into the undergraduate introductory AI course. Here,
the objective of this project is to use Analytical (Explanation-
Based) Learning as a theme to tie together core AI concepts of
search and knowledge representation and reasoning that are
typically covered in an introductory AI course. Hands-on
experiments with search algorithms combined with an
Explanation Based Learning (EBL) component give students a
deep, experiential understanding of the basics of EBL and also
of core AI concepts typically covered in such a course.

THE N-PUZZLE GAME

 In its most popular 8-puzzle version the game consists of a
3x3 board with 8 tiles and an empty square. One may move
any tile into an orthogonally adjacent empty square (no
diagonal moves or moves outside the board are allowed). The
problem is to find a sequence of moves that transform an
initial board configuration into a goal configuration. Below is
an example of an initial and a goal configuration.

 Initial configuration Goal configuration

The solution is a sequence of 7 moves (swaps between a tile
and the empty tile 0): 5-0, 6-0, 0-2, 0-3, 6-0, 0-5, 0-8.

This simple game provides a rich framework for defining
challenging problems and small projects, which can be used in
the undergraduate artificial intelligence course and other
computer science courses, which include the topic of search.
In the next sections we discuss possible problems and example
solutions, which can be used in these courses.

PROLOG IMPLEMENTATION

In the context of the AI course the most popular
implementation language for search algorithms (and for other
techniques too) is LISP. However our preference for this
project is Prolog due to the following reasons:
• The Prolog code is very concise and easily understood by

students because of the language declarative nature. The
authors’ experience also shows that Prolog representa-
tions and algorithms can be used by students at query
level without the need of going into programming details.

• By simple queries students can experiment with basic
components of AI algorithms and easily combine them in
more complex ones without the need of programming.
This feature of Prolog will be illustrated in this paper.

• Prolog suits very well other important AI topics such as
first order logic and reasoning because it is based on two
techniques fundamental to these topics – unification and
resolution.

• The Prolog meta-programming features (run time
modification of the database) allow straightforward
implementation of the Explanation-Based Generalization
techniques that we use in our analytical learning
framework illustrated with the N-puzzle problem.

• There exists an excellent implementation of the language
– SWI-Prolog [10], which is simple, efficient and free,
has a very good documentation and comes with many
additional useful modules and libraries.

Further in the paper we shall illustrate some of these ad-

vantages of using Prolog for teaching search in AI. We have
made available a number of Prolog programs that we have
developed to accompany the AI course [4]. An introduction to
Prolog can be found in [5]. Prolog implementations of major
AI algorithms including search are found in [1].

STATE SPACE REPRESENTATION

 For brevity hereafter we discuss a downsized version of the
game – the 5-puzzle problem. In this representation tiles are
numbered 1, 2, 3, 4, 5. The empty square (no tile) is
represented by 0. The state of the game is represented by a list
of tiles (including 0), where their position in the list
corresponds to their board position. For example, the structure
s(0,1,2,3,4,5) corresponds to the following board:

0 1 2

3 4 5

The state transitions are represented by reordering tiles in
the list. For this purpose we use variables, so that the number
of transitions that have to be described is minimized. Positions
are mapped to variables, which hold the actual tile numbers as
follows:

A B C

D E F

1 6 2
4 5 3
7 0 8

1 2 3
4 5 6
7 8 0

Session S2F

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

S2F-3

For example, moving the empty tile from position A to
position B is represented as transforming state
s(A,B,C,D,E,F) into state s(B,A,C,D,E,F), where all
variables except for A (which holds the 0) can take tile
numbers form 1 to 5 (all different). This generalized transition
represents 5! actual transitions between game states. The
constraint for the empty tile is represented by using 0 instead
of a variable. For each position of the empty tile (0) we have
two or three transitions. We show below 5 Prolog facts
representing the transitions when the empty tile is in position
A and position B (we use the name arc, because these are
actually arcs in the state space graph):

% empty tile in position A
arc(s(0,B,C,D,E,F),s(B,0,C,D,E,F)).
arc(s(0,B,C,D,E,F),s(D,B,C,0,E,F)).

% empty tile in position B
arc(s(A,0,C,D,E,F),s(0,A,C,D,E,F)).
arc(s(A,0,C,D,E,F),s(A,C,0,D,E,F)).
arc(s(A,0,C,D,E,F),s(A,E,C,D,0,F)).

By querying the Prolog database (after the facts above are
loaded) we can easily see how the transitions work. For
example,

?- arc(s(0,1,2,3,4,5),X).
X = s(1, 0, 2, 3, 4, 5) ;
X = s(3, 1, 2, 0, 4, 5)

These are the two possible moves if the empty tile is in
position A. We can easily generate 2 or more step transitions
by extending the query. All alternative solutions can be
printed by adding fail at the end. For example, the following
query prints all states that can be reached from
s(0,4,5,1,2,3) by two transitions.

?- arc(s(0,4,5,1,2,3),X),arc(X,Y),
 writeln(Y),fail.
s(0, 4, 5, 1, 2, 3)
s(4, 5, 0, 1, 2, 3)
s(4, 2, 5, 1, 0, 3)
s(0, 4, 5, 1, 2, 3)
s(1, 4, 5, 2, 0, 3)

Other types of query-based experiments include searching for
paths between two states. For example,

?- arc(s(0,4,5,1,2,3),X),arc(X,Y),
 arc(Y,s(4,2,5,1,0,3)).

No

The answer “No” means that there is no path with 3 transitions
between states s(0,4,5,1,2,3) and s(4,2,5,1,0,3).
However, if we add one more arc then such a path exists.

?- arc(s(0,4,5,1,2,3),X),arc(X,Y),
 arc(Y,Z),arc(Z,s(4,2,5,1,0,3)).

X = s(4, 0, 5, 1, 2, 3)
Y = s(0, 4, 5, 1, 2, 3)
Z = s(4, 0, 5, 1, 2, 3)

This kind of experiment actually solves the puzzle however
with a predefined number of moves. It is also a natural way to
introduce the general recursive approach to search, which in
Prolog is straightforward – we need to add the following
simple definition to the database:

path(X,Y,[]) :- arc(X,Y).
path(X,Y,[Z|P]) :- arc(X,Z), path(Z,Y,P).

This definition is an excellent illustration of the declarative
programming style of Prolog. It reads: “There is a path
between state X and state Y, if (the symbol “:-“ stands for
logical “if” or implication “←”) there is an arc between them,
or if there is an arc to another state Z, such that there is a path
from Z to Y.” The third argument is a list that holds the states
between the start and end states. Its explanation can be omitted
from class discussions because it involves some list processing
details which are not needed for the purposes of this project.

Now the previous queries can be answered by using the path
predicate.

?- path(s(0,4,5,1,2,3),s(4,2,5,1,0,3),P).

P = [s(4,0,5,1,2,3)] ;

P = [s(4,0,5,1,2,3),s(0,4,5,1,2,3),
 s(4,0,5,1,2,3)] ;
…

Note that the search for alternatives (entering a semicolon
after the answer) may continue forever. This is a nice way to
illustrate loops in search and to show ways how loops can be
avoided (see the repeated state in the list).

At this point students should be able to understand the
basic idea of the state-space representation and to use simple
Prolog queries to experiment with it. Also they should
understand the basic idea of recursion and how it helps
searching state space. We would suggest the following
additional experiments, questions and assignments for
independent work:
1. Complete the set of facts to implement all possible

transitions from all possible current states (positions of
the empty tile). How many are needed?

2. Change the representation accordingly and implement the
state space representation of the 8-puzzle problem.

3. Investigate the state space by experimenting with more
state space transitions at query level. What is the
branching factor? Are there repeated states and how
many?

4. Use the path predicate to find paths between states.
Investigate when and why infinite loops occur. Suggest
ideas to avoid loops.

5. What kind of search does the path predicate implement –
depth-first or breadth-first?

SEARCH ALGORITHMS

The next step is to introduce students to search algorithms –
depth-first, breadth-first and iterative deepening. Again there
is no need to go into the details of the Prolog implementation

Session S2F

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

S2F-4

of these algorithms. The only thing students need to know is
the parameters of the corresponding Prolog predicates so that
they can be used at query level. For example, a description
such as the following one can be found as a comment in the
file search1.pl, which includes the Prolog code for uninformed
search algorithms [5].

breadth_first(+[[Start]],+Goal,-Path,
 -ExploredNodes)

The plus sign (+) indicates input parameters and the minus
(-) – output ones. The input parameters have to be
instantiated, while the output ones should be free variables.
Below is an example of solving the puzzle with breadth-first
search.

?- breadth_first([[s(4,5,3,0,1,2)]],
 s(1,2,3,4,5,0),P,N),length(P,L).

P = [s(1,2,3,4,5,0), s(1,2,3,4,0,5),
 s(1,0,3,4,2,5), s(0,1,3,4,2,5),
 s(4,1,3,0,2,5), s(4,1,3,2,0,5),
 s(4,1,3,2,5,0), s(4,1,0,2,5,3),...]
N = 1197
L = 19

For brevity Prolog does not print long answers and uses
“…” instead. If one wants to see the whole path it should be
included in a direct output primitive, like writeln(P).

The next step is to discuss informed (heuristic search)
algorithms – best-first, A-star and beam search. The
advantage of using heuristics is measured in terms of time and
space complexity. These two measures are in fact reported by
the search algorithms. The returned value of the
ExploredNodes parameter is an indication of time
complexity. The variable called “NewQueue”, which can be
found in the code, holds the size of the queue used by the
algorithms. This size shows the space complexity. By
inserting “length(NewQueue,N),writeln(N)” in the code
the queue size can be monitored.

Suggested student projects related to uninformed and
informed search that use our N-Puzzle include:
1. Download uninformed and informed search algorithms

(depth-first, breadth-first, iterative deepening, best-first,
A-star, beam search) from [4] and test the uninformed
search algorithms with the transition s(4,5,3,0,1,2)
=> s(1,2,3,4,5,0).

2. Use uninformed search to solve the 8-puzzle problem
with initial state s(2,3,5,0,1,4,6,7,8) and goal state
s(0,1,2,3,4,5,6,7,8):

• Compare breadth-first, iterative deepening and
depth-first.

• Explain why depth-first fails.
• Figure out an approach to find game states that

can be solved.
3. Implement a heuristic function for the informed search

algorithms (see [8], Chapter 4) and solve the 8-puzzle
with initial state s(2,3,5,0,1,4,6,7,8) and goal state
s(0,1,2,3,4,5,6,7,8).

4. Use best-first, a-star and beam search. For beam search
try n = 100, 10, 1. What changes? Explain why beam
search fails with n=1?

5. Compare the results with depth-first, breadth-first and
iterative deepening.

6. Collect data about the time and space complexity of
solving the above problems with uninformed and
informed search algorithms. Analyze the results.

EXPLANATION-BASED LEARNING

There are two major approaches to learning – inductive and
deductive. The inductive learning algorithms find regularities
in data and create descriptions or predict values for the target
concept. Deductive learning systems use domain knowledge
and have some ability to solve problems. The objective of
deductive learning is to improve the system's knowledge or
system's performance using that knowledge. This task could
be seen as knowledge reformulation or theory revision.
Explanation-Based Learning (EBL) uses a domain theory to
construct an explanation of the training example, usually a
proof that the example logically follows from the theory.
Using this proof the system filters the noise, selects the aspects
of the domain theory relevant to the proof, and organizes the
training data into a systematic structure. This makes the
system more efficient in later attempts to solve the same or
similar examples. The basic components of EBL are the
following [7, 8]:
• Target concept. The task of the learning system is to find

an effective definition of this concept. Depending on the
specific application the target concept could be a
classification rule, theorem to be proven, a plan for
achieving goal, or heuristic to make a problem solver
more efficient (e.g. a state space search heuristic).

• Training example. This is an instance of the target
concept. For example, this may be a good (efficient)
solution in a state space search.

• Domain theory. Usually this is a set of rules and facts
representing domain knowledge. They are used to explain
the training example as an instance of the target concept.

• Operationality criteria. Some means to specify the form
of the concept definition. In other words this is the
language of expressing the target concept definition,
which is usually a part of the language used in the domain
theory. In out setting this is the language of first order
logic and the constraints associated with the domain
theory (e.g. the empty tile 0).

In the form outlined above, EBL can be seen as partial

evaluation. In terms of theorem-proving, this technique is also
called unfolding, i.e. replacing body goals with the bodies of
the rules they match, following the order in which goals are
reduced (depth-first). Hence in its pure form an EBL system
doesn't learn anything new, i.e. all the rules inferred belong to
the deductive closure of the domain theory. This means that
these rules can be inferred from the theory without using the
training example at all. The role of the training example is
only to focus the theorem prover on relevant aspects of the

Session S2F

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

S2F-5

problem domain. Therefore EBL is often viewed as a form of
speed-up learning or knowledge reformulation. Consequently
EBL can be viewed not as a form of generalization, but rather
as specialization, because the rule produced is more specific
(applicable to fewer examples) than a theory itself. All this
however does not undermine EBL as a Machine Learning
approach. There are small and well defined theories, however
practically inapplicable. For example, consider the game of
chess. The rules of chess combined with an ability to perform
unlimited look-ahead on the board states will allow a system
to play well. Unfortunately this approach is impractical. An
EBL system, given well chosen training examples, will not
add anything new to the rules of playing chess, but will
actually learn some heuristics to apply these rules, which
might be practically useful. The N-Puzzle domain is another
typical example of this approach. As the search space is huge,
any practical solution requires heuristics. And the role of EBL
is to learn such heuristics from examples of successful
searches.

EBL IN THE N-PUZZLE DOMAIN

In this part of the project, students are asked to incorporate
Explanation-Based Learning (EBL) into the N-puzzle
problem. This allows them to better understand the concept of
analytical learning, and to see how learning improves
performance of search algorithms. The goal is to introduce the
student to Analytical (Explanation-Based) Learning using the
classical AI framework of search. Hands-on experiments with
search algorithms combined with an EBL component give the
student a deep, experiential understanding of the basics of
EBL and the role it plays in improving the performance of
search algorithms in particular and problem solving
approaches in general. The problem solving component in our
setting for EBL is an uninformed search algorithm that is able
to find the shortest path in a graph. As the goal of EBL is to
improve the efficiency, the algorithm can be simple and not
necessarily efficient. Iterative deepening and breadth-first
search are good choices, because they have high
computational complexity. Thus after applying EBL the
speed-up would be easily measured by the reduction of the
size of the path between initial and goal states and the run time
and memory usage.

First we specify a training example, as a pair of start and
end states. Let us consider the transition from state
s(4,5,3,0,1,2) to s(5,1,3,4,2,0). According to the
EBL principles, the training example is an instance of the
target concept. So, we have to run the algorithm in order to
verify that this is a correct training example, i.e. it is an
instance of a correct target concept:

?- breadth_first([[s(4,5,3,0,1,2)]],
 s(5,1,3,4,2,0),P,N).

P = [s(5,1,3,4,2,0), s(5,1,3,4,0,2),
 s(5,0,3,4,1,2), s(0,5,3,4,1,2),
 s(4,5,3,0,1,2)]
N = 13

The next step is Explanation-Based Generalization (EBG). In
our setting, EBG is simply substituting constants for
variables. Following the representation adopted here, this
results in a new generalized transition from state
s(A,B,C,0,E,F) to state s(B,E,C,A,F,0), where the
following substitutions apply: A=4, B=5, C=3, E=1, F=2.
Note that instead of a variable in position D we use the
constant 0. This is needed to keep the constraint of the empty
tile (as we explained in the state space representation).

The objective of EBL is improving the domain theory.
This is achieved by adding the new target concept definition to
the domain theory. In the particular case this means adding a
new arc to the database of facts that will allow the search
algorithm to use the new generalized state transition.

arc(s(A,B,C,0,E,F), s(B,E,C,A,F,0)).

It is important to note that the new state transition
generated by EBL should be used first by the search
algorithm. We achieve this by adding the new fact in the
beginning of the database. To preserve the completeness of the
algorithm (in EBL terms, completeness of the theory), the new
transitions should not replace the original ones (one-tile
moves). Rather, it should be just added, thus expanding the
search space with new transitions.

The newly learned EBL state transition may represent
useful search heuristics. To achieve this, however, the training
examples have to be carefully chosen. They should represent
expert strategies to solve the game or at least pieces of such
strategies. In fact, our training example was chosen with this
idea in mind. Thus, the newly learnt concept (the new fact in
the database) improves the efficiency of the algorithm. This
can be shown with the same pair of start and finish states that
produced a path of 19 states with standard breadth-first search.

?- breadth_first([[s(4,5,3,0,1,2)]],
 s(1,2,3,4,5,0),P,N),length(P,L).

P = [s(1,2,3,4,5,0), s(4,1,3,0,2,5),
 s(4,1,3,2,0,5), s(4,1,3,2,5,0),
 s(4,1,0,2,5,3), s(4,0,1,2,5,3),
 s(4,5,1,2,0,3), s(4,5,1,0,2,3),...]
N = 647
L = 13

Now the path has only 13 states, which means that the new
transition is used twice during the search. Note also that the
number of explored nodes is reduced from 1197 to 647, which
is an indication of improvement in time complexity.

For the EBL phase, we suggest the following student
assignments:
1. Identify useful search heuristics and generate and verify

the corresponding EBL training examples.
2. Perform experiments with training examples and update

the state transition database manually. Then measure the
improvement in terms of time and space complexity after
the EBL step.

3. Implement automatic update of the theory given a training
example. This includes verifying the example, EBL
generalization and incorporating the new generalized

Session S2F

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

S2F-6

transition into the search algorithm (adding an arc to the
database).

4. Evaluate the effect of learning if too many or bad
examples are supplied.

KNOWLEDGE REPRESENTATION AND REASONING

As previously stated, the goal of project MLExAI is to use
machine learning as a theme to tie together core AI concepts
in an effort to enhance student experiences in the introductory
AI course. In addition to search techniques, knowledge
representation and reasoning are considered to be core AI
topics in the course. The N-puzzle project has been used to
introduce students to some basic notions of knowledge
representation and reasoning. The EBL framework used in the
project can provide the intuition for this. In EBL, the
transitions between game states are considered as domain
knowledge (theory) and the graph search algorithm as a
deductive reasoning system. In these terms a solution of the
game is an example that logically follows from the theory and
the EBG step is a theory specialization (refinement). Further,
the notion of incomplete theory can be illustrated by
unreachable game states (if some state transitions are
removed).

THE N-PUZZLE GAME IN DATA STRUCTURES

Most of the components of the N-puzzle project can be used in
the data structures course. The game representation is a good
exercise for dynamic data structures such as records or
objects. Various aspects of memory optimization can be
discussed in this context. The other important topic is trees
and graphs, which are used for the implementation of the N-
puzzle state space. For this topic basic graph algorithms as
depth-first search and breadth-first search can be studied and
their implementations based on queues can be discussed.
Heuristics for evaluating the game states can be used to
introduce the A* algorithm. Because of its large state space
the N-puzzle game is suitable for discussing the computational
complexity of graph search algorithms and various ways to
improve their efficiency.

DISCUSSION AND EXPERIENCES

Over the last two years, we have used the curricular materials
relating to uninformed and informed search in the data
structures and algorithms course with positive results. The
complete N-puzzle project presented here along with other
projects developed as part of project MLExAI have been
tested in the introductory AI course over the last two years.

Evaluation forms filled out by students as well as feedback
from students revealed a high level of satisfaction with the
course. Students in the AI course liked being able to apply the
problem solving techniques to a “real” situation and to see
how they worked. Their experience with the course heightened
their awareness of the importance of AI as well as their ability
to see a variety of situations in which it could be used. They
felt that they had a good understanding of both artificial
intelligence and machine learning as a result of taking this

course. Students also stated that they would like to learn more
about both areas. They felt that they had gained a good grasp
of AI problem solving techniques and wanted to have more
opportunities to apply them. Students indicated that they had
a very positive experience in the courses using this material.

These curricular materials as well as the modules
developed under the MLExAI project have been revised based
on our experiences. Further testing of the material is currently
underway. Modifications and enhancement to the projects are
ongoing as we continue to use and test the material. A
comprehensive evaluation of the project is also being planned.

CONCLUSION

We presented curricular material that incorporates machine
learning as a unifying theme to teach fundamental concepts
typically covered in the introductory artificial intelligence
courses. This was done in the context of the N-puzzle game.
Additional pedagogical possibilities for the N-puzzle were
also presented. Our experiences using the material are also
discussed. The projects were well received by the students.
By using projects involving games, we provided additional
motivation for students. While illustrating core concepts, the
projects introduced students to an important area in computer
science, machine learning, thus motivating further study.

ACKNOWLEDGEMENT

This work is supported in part by National Science Foundation
grant DUE CCLI-A&I Award Number 0409497.

REFERENCES

[1] Bratko, I. Prolog Programming for Artificial Intelligence (Third
Edition), Addison-Wesley, 2000.

[2] Kumar, A., Kumar D., I. Russell, “Non-Traditional Projects in the
Undergraduate AI Course”, Proceedings of the SIGCSE 2006
Conference, ACM Press, March 2006.

[3] Markov, Z., I. Russell, T. Neller, Enhancing Undergraduate AI Courses
through Machine Learning Projects”, Proceedings of the Frontiers in
Education Conference, IEEE Press, November 2005

[4] Markov, Z., Artificial Intelligence Course,
www.cs.ccsu.edu/~markov/ccsu_courses/ArtificialIntelligence.html

[5] Markov, Z., Quick Introduction to Prolog,
www.cs.ccsu.edu/~markov/ccsu_courses/prolog.txt

[6] Mitchell, T., Machine Learning, McGraw Hill, 1997.

[7] Russell, I., Z. Markov, N. Zlaterava, “Introducing Machine Learning
from an AI Perspective”, Proceedings of the 13th International
Conference on Artificial Neural Networks, June 2003.

[8] Russell, S. and P. Norvig, Artificial Intelligence: A Modern Approach
(Second Edition), Prentice Hall, 2003.

[9] Russell, S. and P. Norvig, Artificial Intelligence: A Modern Approach,
Author's Website, http://aima.cs.berkeley.edu/.

[10] SWI-Prolog home page, http://www.swi-prolog.org/

	10-28-2006
	Pedagogical Possibilities for the N-Puzzle Problem
	Zdravko Markov
	Ingrid Russell
	Todd W. Neller
	See next page for additional authors

	Pedagogical Possibilities for the N-Puzzle Problem
	Abstract
	Keywords
	Disciplines
	Authors

	untitled

