
Gettysburg College Open Educational Resources

Fall 9-12-2018

Programming for the Web: From Soup to Nuts:
Implementing a complete GIS web page using
HTML5, CSS, JavaScript, Node.js, MongoDB, and
Open Layers.
Charles W. Kann III
None

Follow this and additional works at: https://cupola.gettysburg.edu/oer

Part of the Databases and Information Systems Commons, and the Other Computer Sciences
Commons

Share feedback about the accessibility of this item.

This open access book is brought to you by The Cupola: Scholarship at Gettysburg College. It has been accepted for inclusion by an
authorized administrator of The Cupola. For more information, please contact cupola@gettysburg.edu.

Kann, Charles W. III, "Programming for the Web: From Soup to Nuts: Implementing a complete GIS web page using HTML5, CSS,
JavaScript, Node.js, MongoDB, and Open Layers." (2018). Gettysburg College Open Educational Resources. 5.
https://cupola.gettysburg.edu/oer/5

http://cupola.gettysburg.edu/?utm_source=cupola.gettysburg.edu%2Foer%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cupola.gettysburg.edu/?utm_source=cupola.gettysburg.edu%2Foer%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cupola.gettysburg.edu/oer?utm_source=cupola.gettysburg.edu%2Foer%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cupola.gettysburg.edu/oer?utm_source=cupola.gettysburg.edu%2Foer%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=cupola.gettysburg.edu%2Foer%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=cupola.gettysburg.edu%2Foer%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=cupola.gettysburg.edu%2Foer%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.google.com/a/bepress.com/forms/d/1h9eEcpBPj5POs5oO6Y5A0blXRmZqykoonyYiZUNyEq8/viewform
https://cupola.gettysburg.edu/oer/5?utm_source=cupola.gettysburg.edu%2Foer%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cupola@gettysburg.edu

Programming for the Web: From Soup to Nuts: Implementing a complete
GIS web page using HTML5, CSS, JavaScript, Node.js, MongoDB, and
Open Layers.

Description
This book is designed to be used as a class text but should be easily accessible to programmers interested in
Web Programming. It should even be accessible to an advanced hobbyist.

The original goal behind this text was to help students doing research with me in Web based mapping
applications, generally using Open Layers. The idea was to provide persistent storage using REST and simple
http request from JavaScript to store the data on a server.

When teaching this class, I became painfully aware of just how little students know about Web Programming.
They did not know how to format a REST request as a URL, or the methods that could be used when sending
the requests to be processed. Even worse, they did not know that REST used URLs, or that there were
different request types in URL.

Most could not tell me what the server was, or how it worked. Even fewer could tell me the different types of
servers (e.g. Rails type, Sinatra type, EJB, etc), or what types of services they offered. They did not know how
to access the server through a simple HTML api such as Postman.

Many did not know HTML, and a lot of those who knew something about HTML knew little beyond how to
format text on a web page. There was very little JavaScript knowledge in the class, and most had not even heard
of libraries such as JQuery, Vue, or Bootstrap.

These were all junior and senior computer science students, and the types of positions many of them were
interviewing for would require this type of knowledge. Yes, they could learn it on the job. And I know this is
not the foundational skills that many CS faculty believe students should learn. But there is a lot of good
foundational material to be found in Web Programming, and I have had a lot of good feedback from students
who have graduated or done an internship where they state even if they do not use all of this material, it is nice
to be able to understand what others in the company are talking about.

Because of the experience with the REST interface, I petitioned the CS department of one of the schools I was
an adjunct at to offer a class in Web Programming. This book is the result of having taught that class 3 times at
3 different schools. Its purpose is to provide an overview of how to program for the web. It is still largely client
side, but that is something I hope to address in a future version of the textbook

This material in this textbook is ubiquitous in industry, and I really believe that there is utility in being able to
communicate with others about the concepts without having 5-10 years’ experience seeing all of the various
pieces of a full stack application for the Web. The book is written to try to be as technology agnostic as
possible, trying to emphasize concepts over implementations.

This book is also designed to help students understand how to use Web Programming with interfaces and
libraries such as Open Layers, which is a mapping interface that can be run on a Web Browser client.

This book can be used as the main text for a class in Web Programming. It is not intended to be used as the
only source of material in such a class, but as the guide to the class. Most of the material can be easily

This book is available at The Cupola: Scholarship at Gettysburg College: https://cupola.gettysburg.edu/oer/5

https://cupola.gettysburg.edu/oer/5?utm_source=cupola.gettysburg.edu%2Foer%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages

supplemented by information on the Web.

Disciplines
Databases and Information Systems | Other Computer Sciences

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

This book is available at The Cupola: Scholarship at Gettysburg College: https://cupola.gettysburg.edu/oer/5

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://cupola.gettysburg.edu/oer/5?utm_source=cupola.gettysburg.edu%2Foer%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages

Charles W. Kann

Programming for the Web:

Implementing a complete GIS web page using HTML5,

CSS, JavaScript, Node.js, Mongo, and Open Layers.

From Soup

To Nuts

PROGRAMMING FOR THE WEB: 2

© Charles W. Kann III

 277 E. Lincoln Ave.

 Gettysburg, Pa

All rights reserved.

This book is licensed under the Creative Commons Attribution 4.0 License

Last Update: Tuesday, Sept. 11, 2018

This book is available for free download from:

http://chuckkann.com/books/WebDesignFromSoupToNuts.doc.

Contact me at: chuck@chuckkann.com

Phone #: 7170-778-4176

http://creativecommons.org/licenses/by/4.0/
http://chuckkann.com/books/WebDesignFromSoupToNuts.doc
mailto:chuck@chuckkann.com
http://creativecommons.org/licenses/by/4.0/

3 PROGRAMMING FOR THE WEB:

Other books by Charles Kann

Kann, Charles W., "Digital Circuit Projects: An Overview of Digital Circuits Through

Implementing Integrated Circuits - Second Edition" (2014). Gettysburg College Open

Educational Resources. Book 1.

http://cupola.gettysburg.edu/oer/1

Kann, Charles W., "Introduction to MIPS Assembly Language Programming"

(2015). Gettysburg College Open Educational Resources. Book 2.

http://cupola.gettysburg.edu/oer/2

Kann, Charles W., "Implementing a One Address CPU in Logisim" (2016). Gettysburg College

Open Educational Resources. 3.

http://cupola.gettysburg.edu/oer/3

http://cupola.gettysburg.edu/oer/1
http://cupola.gettysburg.edu/oer/2
http://cupola.gettysburg.edu/oer/3

PROGRAMMING FOR THE WEB: 4

Forward

This book is designed to be used as a class text but should be easily accessible to programmers

interested in Web Programming. It should even be accessible to an advanced hobbyist.

The original goal behind this text was to help students doing research with me in Web based

mapping applications, generally using Open Layers. The idea was to provide persistent storage

using REST and simple http request from JavaScript to store the data on a server.

When teaching this class, I became painfully aware of just how little students know about Web

Programming. They did not know how to format a REST request as a URL, or the methods that

could be used when sending the requests to be processed. Even worse, they did not know that

REST used URLs, or that there were different request types in URL.

Most could not tell me what the server was, or how it worked. Even fewer could tell me the

different types of servers (e.g. Rails type, Sinatra type, EJB, etc), or what types of services they

offered. They did not know how to access the server through a simple HTML api such as

Postman.

Many did not know HTML, and a lot of those who knew something about HTML knew little

beyond how to format text on a web page. There was very little JavaScript knowledge in the

class, and most had not even heard of libraries such as JQuery, Vue, or Bootstrap.

These were all junior and senior computer science students, and the types of positions many of

them were interviewing for would require this type of knowledge. Yes, they could learn it on the

job. And I know this is not the foundational skills that many CS faculty believe students should

learn. But there is a lot of good foundational material to be found in Web Programming, and I

have had a lot of good feedback from students who have graduated or done an internship where

they state even if they do not use all of this material, it is nice to be able to understand what

others in the company are talking about.

Because of the experience with the REST interface, I petitioned the CS department of one of the

schools I was an adjunct at to offer a class in Web Programming. This book is the result of

having taught that class 3 times at 3 different schools. Its purpose is to provide an overview of

how to program for the web. It is still largely client side, but that is something I hope to address

in a future version of the textbook

This material in this textbook is ubiquitous in industry, and I really believe that there is utility in

being able to communicate with others about the concepts without having 5-10 years’ experience

seeing all of the various pieces of a full stack application for the Web. The book is written to try

to be as technology agnostic as possible, trying to emphasize concepts over implementations.

This book is also designed to help students understand how to use Web Programming with

interfaces and libraries such as Open Layers, which is a mapping interface that can be run on a

Web Browser client.

This book can be used as the main text for a class in Web Programming. It is not intended to be

used as the only source of material in such a class, but as the guide to the class. Most of the

material can be easily supplemented by information on the Web.

5 PROGRAMMING FOR THE WEB:

A suggested 14 week class at an advanced undergraduate level would be as follows:

Week Chapter Topics

1 2 Basic HTML, and form definition using HTML

2-3 3 Processing a form in html:

1. Procedural programming, decisions and loops

2. Functions

3. Events

4. Onload event to set event listeners

5. Unobtrusive JavaScript

6. Immediately Invoked Function Expressions (IIFE)

7. JQuery

8. Form processing

9. Lambda functions and functional programming

4 4 CSS

5-6 5 JavaScript objects:

1. JSON

2. Constructor Functions

3. Prototypes

4. Functions and Closures

5. Object Oriented Models in JavaScript

7-9 6 CRUD interfaces

1. Designing an interface

2. Designing the data objects

3. Implementing a simple CRUD interface

4. Persistent storage to local storage

Persistent storage using a server

1. Node.js

2. Sails

3. REST

4. HTTP requests

10-11 7 Map applications using Open Layers

11-14 Group or individual projects

This book is currently almost done. The last section of the last chapter is mostly just code for the

map application using persistent storage, there really isn’t a lot of discussion of the application.

However, I need to have the text out this week for a class, and I will probably not get a ton of

time to work on it for the semester. I believe the rest is useful enough that I wanted to release it.

I have plans for a number of additions to the book. These include more use of ECMA6+

concepts I think will be useful (modules, arrow functions, etc), an extension to the map

application using more unstructured data, and the inclusion of more server-side functionality,

including linking and using NoSQL capabilities of MongoDB and possibly JSON in MySQL.

PROGRAMMING FOR THE WEB: 6

Table of Contents
Chapter 1 Introduction ... 15

Chapter 1.1 About this Book .. 15

Chapter 1.2 What you will learn ... 16

Chapter 1.3 What is in this Book .. 17

Chapter 2 HTML ... 19

Chapter 2. 1 HTML Text, Tags, and Attributes ... 19

Chapter 2. 2 Standard HTML Tags .. 21

Chapter 2. 3 Document Structure Tags and A Simple Web Page .. 23

Chapter 2.3. 1 Quick Check ... 25

Chapter 2. 4 Creating Forms in HTML .. 25

Chapter 2.4.1 The <label> tag .. 26

Chapter 2.4.2 The <input> tag ... 26

Chapter 2.4.3 <input type = ”text”> ... 27

Chapter 2.4.4 <input type = ”checkbox”> ... 28

Chapter 2.4.5 <input type = ”radiobutton”> .. 28

Chapter 2.4.6 <input type = ”number” > ... 29

Chapter 2.4.7 <input type = ” date”> ... 30

Chapter 2.4.8 <input type = ”button”> ... 30

Chapter 2.4.9 Final Example .. 30

Chapter 2.4.10 Quick Check .. 32

Chapter 2. 5 Conclusion ... 32

Chapter 2. 6 Problems .. 32

Chapter 3 JavaScript and processing a simple form processing .. 33

Chapter 3. 1 Starting a JavaScript program .. 33

Chapter 3.1. 1 Inserting JavaScript into an HTML file .. 33

Chapter 3.1. 2 JavaScript Comments ... 34

Chapter 3.1. 3 Output from a JavaScript program ... 35

Chapter 3.1. 4 First JavaScript program ... 36

Chapter 3.1. 5 Quick Check ... 38

Chapter 3. 2 Primer on JavaScript .. 38

Chapter 3.2. 1 Variable Types .. 38

Chapter 3.2. 2 Arrays ... 40

Chapter 3.2. 3 Procedural constructs .. 41

7 PROGRAMMING FOR THE WEB:

Chapter 3.2. 4 if statement ... 42

Chapter 3.2. 5 Sentinel control loops - while statement ... 44

Chapter 3.2. 6 Counter Control loops - for statement .. 45

Chapter 3.2. 7 Iterator loops – for/in and for/of for foreach statements 46

Chapter 3.2. 8 Functional iterator – forEach .. 47

Chapter 3.2. 9 Functions .. 47

Chapter 3.2. 10 Quick Check ... 48

Chapter 3. 3 Events, Onload Event and JQuery ... 48

Chapter 3.3. 1 Associating a call back with an event ... 49

Chapter 3.3. 2 Handling an Event – Unobtrusive JavaScript ... 49

Chapter 3.3. 3 Handling an Event – onload event .. 51

Chapter 3.3. 4 JQuery ready function .. 54

Chapter 3.3. 5 Using JQuery to access an DOM variable .. 55

Chapter 3.3. 6 Quick Check ... 56

Chapter 3. 4 Processing Form elements using JQuery and Unobtrusive JavaScript............ 56

Chapter 3.4. 1 Including JQuery .. 58

Chapter 3.4. 2 Adding an Event Callback to a Button ... 59

Chapter 3.4. 3 Processing a textbox ... 60

Chapter 3.4. 4 Processing a checkbox .. 61

Chapter 3.4. 5 Processing radio buttons ... 62

Chapter 3.4. 6 The final web page to process a form ... 64

Chapter 3.4. 1 Quick Check ... 66

Chapter 3. 5 Functional Programming in JavaScript ... 66

Chapter 3. 6 Exercises .. 67

Chapter 4 CSS and styling a web page .. 69

Chapter 4. 1 Web Page Header and Footer .. 69

Chapter 4.1. 1 CSS Syntax ... 70

Chapter 4.1. 2 Semantic Tags... 71

Chapter 4.1. 3 Setting up the header block .. 71

Chapter 4.1. 4 Changing the background and text colors .. 72

Chapter 4.1. 5 Changing the font size using the <p> tag ... 73

Chapter 4.1. 6 Dividing up the header block .. 75

Chapter 4.1. 7 Managing CSS .. 78

Chapter 4.1. 8 Quick Review ... 80

PROGRAMMING FOR THE WEB: 8

Chapter 4. 2 Adding the form to the page .. 80

Chapter 4. 3 Exercises .. 86

Chapter 5 Objects in JavaScript... 88

Chapter 5. 1 Why Use ECMA 5 as a basis? ... 90

Chapter 5. 2 Is JavaScript just plain weird? ... 90

Chapter 5. 3 Basic Objects in JavaScript ... 93

Chapter 5.2. 1 Simple Objects .. 94

Chapter 5.2. 2 Objects are Property Maps ... 95

Chapter 5.2. 3 JavaScript Object Notation (JSON) .. 96

Chapter 5.2. 4 JSON Serialization and Object Composition ... 98

Chapter 5. 4 Constructor Functions and Prototype Objects ... 100

Chapter 5.4. 1 Constructor Function and Object Creation ... 100

Chapter 5.4. 2 Passing parameters to a Constructor Function ... 102

Chapter 5.4. 3 Constructor Functions and JSON ... 104

Chapter 5.4. 4 Abstracting behavior and prototypes .. 105

Chapter 5.4. 5 Inheritance and Polymorphism ... 108

Chapter 5.2. 1 JSON and prototype properties... 109

Chapter 5.2. 2 Finding the JavaScript Constructor Function in the DOM 110

Chapter 5. 5 Scoping in JavaScript .. 112

Chapter 5.4. 1 Undeclared variables .. 113

Chapter 5.4. 2 The let keyword .. 113

Chapter 5.3. 1 Closures .. 115

Chapter 5. 6 A simple JavaScript OOP Model... 116

Chapter 5.6.1 A first JavaScript Object Model .. 116

Chapter 5. 7 A JavaScript object model that includes encapsulation and data hiding 118

Chapter 5. 8 Unstructured Data .. 120

Chapter 5. 9 Conclusion ... 121

Chapter 5. 10 Exercises .. 121

Chapter 6 CRUD, Objects, and Events.. 122

Chapter 6.1 CRUD Interface ... 122

Chapter 6.1. 1 Overall Application Design .. 123

Chapter 6.1. 2 Creating the CSS and HTML definition ... 125

Chapter 6.1. 3 Application Data ... 129

Chapter 6.1. 4 Mapping the object to data fields ... 132

9 PROGRAMMING FOR THE WEB:

Chapter 6.1. 5 Application behavior – events .. 136

Chapter 7 Creating a server for the persistent storage of our CRUD application 144

Chapter 7.1 Creating and Accessing a Server Using Node.js, Sails 144

Chapter 7.1.1 Node.js ... 144

Chapter 7.1.2 npm .. 145

Chapter 7.1.3 Installing Sails ... 145

Chapter 7.1.4 Implementing your Sails application ... 146

Chapter 7.2 Accessing a Server Using Node.js, Sails ... 148

Chapter 7.2.1 Getting started with Postman ... 150

Chapter 7.2.2 Creating data .. 151

Chapter 7.2.3 Retrieving Data .. 152

Chapter 7.2.4 Updating and Deleting records .. 155

Chapter 7.2.5 Summary of CRUD REST server transactions .. 157

Chapter 7.3 Communicating with the server using JavaScript ... 158

Chapter 7.3.1 Sending a transaction to the server .. 158

Chapter 7.3.2 What it means to be asynchronous .. 160

Chapter 7.3.3 Create a record ... 162

Chapter 7.3.4 Read, Update, and Delete .. 163

Chapter 7.4 Integrating the CRUD application with the server .. 164

Chapter 7.4.1 Changes to the application ... 164

Chapter 7.4.2 Populating the drop-down list of map items .. 164

PROGRAMMING FOR THE WEB: 10

Figure 1 - Tree layout of an html document ... 22
Figure 2 – Output from the first Web Page... 25

Figure 3 – Final Web Page ... 37
Figure 4 - Error message processing a form element before it is defined 51
Figure 5 - Example HTML header.. 70
Figure 6 - First pass at the web page header ... 73
Figure 7 - Second pass at the web page header .. 74

Figure 8 - Third pass at the web page header ... 75
Figure 9 – Un-styled div sections ... 76
Figure 10 – Completed web page header .. 78
Figure 11 – Completed web page header .. 81
Figure 12 – Completed web page header .. 82

Figure 13 – Completed web page header .. 86

Figure 14 - Tray Dispenser ... 91
Figure 15 - Composite object to be written to JSON .. 98

Figure 16 - Recursive search for property in linked property maps ... 106

Figure 17 – Wire Frame design for CRUD interface in Pencil... 124
Figure 18 – HTML implementation of the wire frame design .. 129

Figure 19 – Data items found in the design .. 130
Figure 20 – buttons with functionality to be defined .. 137
Figure 21 – Response from server when URL is called from Chrome 149

Figure 22 – Response from server when URL is called from Firefox .. 149
Figure 23 – Postman GET request that is the same as Figure 21 ... 150

Figure 24 – Postman POST request creating a new object on the server 152
Figure 25 – Postman GET request after several objects have been stored on server 153

Figure 26 – Postman GET request to retrieve a single object... 154
Figure 27 – Postman GET request to retrieve a single object that is not found 155

Figure 28 – Postman PATCH (or Put) request to update an object .. 156
Figure 29 – Postman DELETE request to delete an object .. 157
Figure 30 – REST transaction summary ... 157

Figure 31 – JavaScript output illustrating asynchronous request and responses 160
Figure 32 – XMLHttapRequest server request with a race condition .. 161

Figure 33 – Server request with the race condition fixed ... 162

11 PROGRAMMING FOR THE WEB:

Program 1 = Image Tag ... 21
Program 2 – HTML template ... 21

Program 3 – First HTML Web Page ... 24
Program 4 – Using a label tag ... 26
Program 5 – Using no label tag... 26
Program 6 – Input text box ... 27
Program 7 – Text boxes different by case of name .. 27

Program 8 = readonly attribute .. 28
Program 9 – Checkbox Example .. 28
Program 10 – Radio Button Example ... 29
Program 11 – Number Input Example .. 29
Program 12 – Integer Number Input Example .. 30

Program 13 – Date input Example .. 30

Program 14 – Button Example .. 30
Program 15 Complete Form Example .. 32

Program 16 – Line comment in JavaScript .. 34

Program 17 - Block comment in JavaScript .. 35
Program 18 - Block comment in a function ... 35

Program 19 - Why you should not use block comments in a function .. 35
Program 20 - Output to HTML DOM from JavaScript ... 35
Program 21 - Ouput to HTML DOM with HTML tags ... 36

Program 22 - Writing to the console log .. 36
Program 23 - alert dialog box .. 36

Program 24 First JavaScript Program ... 37
Program 25 - Declaring a variable using let in JavaScript ... 38

Program 26 - Dynamic Typing in JavaScript .. 38
Program 27 - Static typing failing when casting in Java ... 39

Program 28 - Program works in JavaScript as variable type is changed 39
Program 29 - Creating an array variable by assigning the variable to an array literal 40
Program 30 - Creating an array by calling a Constructor function .. 40

Program 31 - Assigning array values ... 41
Program 32 - Showing how arrays automatically creates new space .. 41

Program 33 - Format of an if statement ... 42
Program 34 - Format of if-else statement .. 42
Program 35 - Format of if-else statement .. 42
Program 36 - Format of if - else if - else statement ... 42
Program 37 - if statement that fails in Java .. 43

Program 38 - if statement that works in Java ... 43
Program 39 - Examples of true conditions in JavaScript ... 43

Program 40 - Incorrect result of using = for condition variable .. 44
Program 41 - Examples of comparison operators with strings .. 44
Program 42 - Schema for a Sentinel Control loop ... 44
Program 43 - Implementation of a Sentinel Control loop in JavaScript 45
Program 44 - Schema for a Counter Control loop ... 45

Program 45 - Translating a Counter Control loop into a for statement 45
Program 46 - Implementation of a Counter Control loop .. 46

PROGRAMMING FOR THE WEB: 12

Program 47 - Printing an array using a Counter Control loop ... 46
Program 48 – Printing an arraying using a for/in iterator .. 46

Program 49 - Printing an arraying using a for/of iterator .. 47
Program 50 - Implementatiton of the speed function .. 47
Program 51 - Sentinel Control loop program using a function to calculate speed. 48
Program 52 - Using a form element in the head before it is defined. .. 49
Program 53 - Using a form element in the head before it is defined. .. 50

Program 54 - Setting a callback function in an onLoad event ... 52
Program 55 - Program showing function being called rather than being set to a variable. 52
Program 56 - Setting an event callback function using an anonymous function. 53
Program 57 - Using the JQuery $(document).ready() function ... 55
Program 58 - JQuery 3.0 ready function .. 55

Program 59 - Using JQuery to access a DOM variable ... 56

Program 60 - HTML form to be processed in Chapter 3.4 .. 58
Program 61 – Inserting JQuery into the form .. 59

Program 62 - Head of HTML file to associate a button with a function 60

Program 63 - Retrieving the text from a textbox using the JQuery array format. 60
Program 64 - Processing textboxes with JQuery ... 61

Program 65 - Processing checkboxes with JQuery .. 62
Program 66 - For Loop to process radio buttons ... 63
Program 67 - Final program to process a form .. 66

Program 68 - Final program to process a form .. 67
Program 69 - Final program to process a form .. 67

Program 70 - CSS syntax ... 70
Program 71 – Attribute Selectors ... 71

Program 72 – Header definition ... 72
Program 73 – Header attribute settings .. 72

Program 74 – Making the text 150% of the normal size ... 73
Program 75 - Combining the header and p tags ... 74
Program 76 – Paragraph text only affecting the header of the document 75

Program 77 - Dividing the header into 3 divisions. ... 76
Program 78 - Completed header .. 78

Program 76 - WebMapExample.css file .. 79
Program 80 - MapExample.html.. 79
Program 81 – Form CSS example ... 83
Program 82 – CSS with form completed example... 85
Program 83 - Implementation of a simple Map object. ... 94

Program 84 - Adding a center point to the simple map object .. 95
Program 85 - Printing an object out as a hash ... 96

Program 86 - Map object to be written to JSON format .. 97
Program 87 - JSON output of Map object ... 97
Program 88 - Program to stringify and parse a JSON object ... 98
Program 89 - Complex object to be serialized to JSON .. 99
Program 90 - JSON serialization of a complex object. .. 100

Program 91 - Creating two objects by setting them to different object literal values 101
Program 92 - Using a Map Constructor Function .. 102

13 PROGRAMMING FOR THE WEB:

Program 93 - Passing parameters to a Constructor Function ... 103
Program 94 - Using a Constructor Function to reconstruct an object.. 104

Program 95 - Using a Constructor Function to reconstruct a JSON object 105
Program 96 - Accessing the print function in the Map prototype object 108
Program 97 – Polymorphism in JavaScript ... 109
Program 98 - Reconstructing the protocol chain for a JavaScript object 110
Program 99 - Map Constructor Function setting the __cfName variable 111

Program 100 - getObjectFromJSON function ... 111
Program 101 - Using the getObjectFromJSON function to reconstruct the object 112
Program 102 - Calling an inner function from an outer function. ... 115
Program 103 - Running an inner function after an outer function has completed. 115
Program 104 - Map object definition ... 118

Program 105 - Object example with encapsulation and data hiding ... 120

Program 106 – CSS for CRUD interface ... 126
Program 107 – HTML CRUD interface .. 129

Program 108 – Map object definition .. 132

Program 109 – Library functions for the CRUD application .. 136
Program 110 – Applications events set in the onLoad function .. 143

Program 111 – api/models/MapData.js file ... 147
Program 112 – display after sails have started correctly ... 148
Program 113 – Input object for Postman POST request .. 151

Program 114 – XMLHttpRequest example ... 158
Program 115 – XMLHttpRequest example with a race condtion .. 161

Program 116 – XMLHttpRequest server request with race condition fixed 161
Program 117 – XMLHttpRequest Post example ... 163

Program 118 – XMLHttpRequest example to read a record ... 163
Program 118 – XMLHttpRequest example to delete a record ... 164

Program 120 – XMLHttpRequest example to load the drop-down ... 165
Program 121 – Complete Map CRUD application with server to persist data 169

PROGRAMMING FOR THE WEB: 14

Part I: The Basic Components of Web
Pages

Part I of this text is an introduction to the basic concepts needed for this textbook. Part I of the

book provides a first introduction to HTML, CSS, and JavaScript. It covers basic HTML, CSS,

and JavaScript syntax, the basic functionality of JQuery, and how to handle events in JavaScript.

It also introduces JavaScript lambda functions, and how to implement events in unobtrusive

JavaScript by using Immediately Invoke Function Expressions (IFFE) in an onload event

function. It will end with a brief introduction to Functional Programming.

15 PROGRAMMING FOR THE WEB:

Chapter 1 Introduction

Chapter 1.1 About this Book

This book is intended for readers who have an understanding of some computer programming

language, such as Java, C#, C++, or Python, and want to learn how to create map applications for

the World Wide Web (or just Web). It was written for Junior Computer Science (CS) college

students1. These students will have had at least 1-2 courses in one programming language, such

as the ones mentioned above, as well a class in Data Structures. Most of these students will not

be familiar with any technologies for the programming for the Web.

Some non-programmers will argue that all is needed for web pages is a Content Management

Systems (CMS) such as Word Press, Joomla, Scala, or any number of tools targeted at non-

programmers. While it is possible to create perfectly reasonable web sites with a CMS, these

tools are designed to manage content and are thus very limited. The core technologies for Web

browsers are Hyper Text Markup Language (HTML), Cascading Style Sheets (CSS), and

JavaScript2, and to access any real power for a web application requires that a programmer be

familiar with these technologies. Even end users using a CMS often need to access HTML, CSS,

or JavaScript for some specific functionality.

The need to know the core technologies of the web, HTML, CSS, and JavaScript, is also

necessary for programmers who are using other languages for Web development such as C#,

Python, or Java. Even though these languages provide templating engines, the output from these

engines is HTML, CSS, and JavaScript. To understand the input and output of templating

engines, programmers should know about the target Web core technologies that these templating

tools target.

The style of the book will not be like a traditional textbook. It will have problems at the end of

each chapter, but those are so the reader can test their knowledge of the subjects presented and

learn the concepts at a deeper level than I can present in the written portion. The tone of the

book is also more conversational, and the format more like a tutorial than a textbook. This is in

keeping with my style of interacting with students.

This text will follow material to develop one application, a simple Map Viewer in Open Layers,

from soup to nuts. The phrase “soup to nuts” is an American English idiom which means “the

whole thing”. It comes from the idea that a traditional American meal starts with a soup course

and ends with sweets and nuts. This book was written with this paradigm in mind. It intends to

present just enough material that a student can learn the languages, tools, and concepts needed to

implement a mapping application. The mapping application presented is the starting point for

students doing research with me on mapping projects.

1 The specific purpose for writing this book was to prepare students who wanted to do mapping projects in

JavaScript. While writing this book, it has been used in various stages of development to teach classes on Enterprise

Computing.
2 The general consensus of the Web development community is to move away from JavaScript to Web Assembly.

At the time this was written (July 2018), the specification for Web Assembly is still being developed

(https://webassembly.org/roadmap/). Even once it is completed, there will be support for JavaScript in Web

Assembly. So, JavaScript will remain a core technology for the Web for a long time.

https://webassembly.org/roadmap/

PROGRAMMING FOR THE WEB: 16

Chapter 1.2 What you will learn

The purpose of this text is to present more than just how to create a web site. It specifically

looks to introduce students to the following topics:

1. Implementation of a complete Web Create-Read-Update-Delete (CRUD) application,

from soup to nuts. It will start defining the basic functionality of an application, and in a

step wise fashion implement the final application. All the technologies and steps needed

to do this will be covered, though not in detail.

This book is designed to make up for what it lacks in depth with what it includes in

breath.

2. A basic overview of all the technologies needed to implement a web page. After

completing this book, you will be able to implement simple CSS, HTML, JavaScript,

JQuery, a CRUD interface, a simple REpresentational State Transfer (REST) interface,

and use OpenLayers and the other tools to create a simple map program that goes beyond

what most programmers can do in Google Maps.

This book is not intended to be about any one technology. After completing this book,

the reader will still have to learn technologies they will use in detail. However the reader

should know a little about each of the technologies, and how they all fit together. In most

organizations this is important since most programmers are not responsible for all parts of

a large project but must know how their part fits in to the bigger picture.

3. How to use events in JavaScript programs. You will know that the HTML DOM exists,

and that it contains a lot of useful information. You will be able to use some standard

JavaScript libraries like JQuery. You will be able to use OpenLayers to implement GIS

and other image-based layering programs. You will be able to build a Node.js server

with a framework. You will know what a NoSQL database is, and some of the reasons to

choose between a NoSQL and Relational database.

This book will not prepare anyone to interview for positions in these technologies, but

you will have a background that will make learning them easier. And you will

understand the environment surrounding these tools.

4. How to design, write and use mapping applications, which is an area of interest to me,

and why this book was written. Juxtaposing symbolic information in a data space to

highlight the interplay that the information is fascinating to me.

The reader with note that what I refer to as a map is far from the more traditional view of

a map. The one I normally use comes from Wikipedia and defines a map as “a symbolic

depiction highlighting relationships between elements of some space.3” Note that

nowhere does this definition mention geography, which is what most people think about

when discussing a map.

Even within geography, there are multiple different types of maps. For example:

3 https://en.wikipedia.org/wiki/Map

https://en.wikipedia.org/wiki/Map

17 PROGRAMMING FOR THE WEB:

a. Printed maps, such as would be found in an Atlas. These will be called referred to

as static geographic maps.

b. Graphic Information Systems (GIS), such as Google Maps. These maps allow a

user to examine a geographical space from multiple zoom levels, and search for

and place markers. They will be referred to as GIS and are more interactive than

their static cousins.

c. Maps not intended to be to scale and are thus not true linear geographical maps.

These maps will be referred to as non-linear maps. Examples are subway and

metro maps, bus routes, directions from a friend, and many historic maps. These

maps are arguably more common and less well defined than linear maps.

Constraining maps to geography is far too limiting. Maps can be pictures, where each person

in the image is at a point on the map. Maps can be networks, representations of data, ways to

solve a problem, or possible outcomes of events such as what must happen for a team to

make the playoffs. When implementing maps in this textbook the OpenLayers opensource

program will be used. OpenLayers works with any GIS maps server for geographic data, but

by its design of layers on images offers far more possibilities than GIS mapping software

products.

Chapter 1.3 What is in this Book

As to how to use this book, it is divided into sections, and each of those sections is further

divided into chapters. The overall layout of the books is as follows:

I. The Basics Components of Web Pages

This section covers the basic elements needed to create a web application. An overview

of HTML, CSS, and JavaScript, up to the ability to create and process a simple form, will

be covered. The topics will be:

Chapter 3 HTML

1. HTML Text, Tags, and Attributes

2. Standard HTML Tags

3. Document Structure Tags and Simple Web Page

4. Creating Forms in HTML

Chapter 4 JavaScript

5. How to insert JavaScript into an html file.

6. Getting input and output from JavaScript.

7. Commenting in JavaScript.

8. Variables and arrays.

9. The procedural constructs if, for, and while

10. Functions and iterators

11. Events and event processing using callback functions.

12. Principals and usage of Unobtrusive JavaScript and IFFE.

PROGRAMMING FOR THE WEB: 18

Chapter 5 CSS

13. CSS syntax

14. Styling sections of a web page

15. Styling a JavaScript form

16. CSS selectors

17. CSS and separate file management.

II. JavaScript Objects and a CRUD application

III. Implementing a Web Server using Node.js and MongoDb

IV. Mapping Application

The material in Part I of this text tends to be fairly simple for Junior/Senior CS students. I would

expect that a reasonable Junior CS student could cover it in 2-3 weeks. The material in Part II is

generally new to the students, and will require slightly more time, probably 3-4 weeks. The

server material is mostly generated programmatically, so if the only the AJAX part of the

application is covered without a lot of discussion about the server implementation, this section

should take 2-3 weeks. The GIS portion using Open Layers should be able to be covered in 2-3

weeks. If an aggressive schedule is maintained through the material, there should be 3-6 weeks

at the end of the semester for students to do a project of their choosing.

19 PROGRAMMING FOR THE WEB:

What you will learn

In this chapter, you will learn:

1. HTML text, tags, and attributes

2. HTML container tags

3. Standard HTML tags

4. HTML document structure

5. How to include an image

6. How to create form elements:

a. Text Boxes

b. Radio Buttons

c. Check Boxes

d. Buttons

Chapter 2 HTML

This chapter is designed as a brief overview of HTML. HTML is the language used to mark-up

(or layout) Web pages. It consists of tags which are embedded in strings of text. These tags are

instructions in a web page to control things such as formatting. For example, the emphasis

() tag is used to provide emphasis to a string, and the strong () tag is used to bold

text.

The evolution of HTML has caused it to be much more than a program that can format

documents. It can be used to include information for other languages. For example, the

<script> tag can be used include JavaScript source code within the current document, and the

<style> tag can be used to include an external file containing Cascading Style Sheets (CSS). It

can be integrated with these other languages to then be used as an infrastructure for write

complex programs, such as form-based systems, mapping systems, and other useful programs

that can be run from a browser.

This chapter will cover the basics of creating simple HTML web pages and creating the HTML

portion of an interactive form. In subsequent sections of Part I of this book CSS will be used to

style the form, and JavaScript will be used to provide interactivity with the form and to process

the form.

Chapter 2. 1 HTML Text, Tags, and Attributes

HTML was derived from Standard Generalized Markup Language (SGML). SGML was

designed as a markup language, to allow a writer to markup (or annotate) a document. Markup

languages have been around since at least the 1970’s, when the author used one on a

DECSYSTEM-10 to format school papers. Perhaps the most popular pure markup language still

in use is LaTeX, which is used for mathematical, scientific, and engineering documents.

The idea behind a markup language is that a document could be marked-up with tags to tell a

program processing the input how to render the text. For example, the following HTML code:

PROGRAMMING FOR THE WEB: 20

</center>The <i>quick</i> brown fox jumped over the lazy
dog</center>

would be rendered as:

The quick brown fox jumped over the lazy dog

Markup languages were the precursors of word processing programs that became popular in the

1980’s with the PC revolution. The word processing programs, as they used a What-You-See-Is-

What-You-Get (WYSIWYG) interface, which is much easier for a novice computer user to

interface with than a markup language. WYSIWYG editors eventually and took over the market

for word processing, with a few exceptions such as LaTeX, as mentioned earlier.

SGML was originally a traditional markup language, and hyperlinks between documents were

added to create HTML. In the beginning the purpose was to link physics papers together in a

web of documents. HTML started with with a browser introduced at CERN in 1990, HTML has

expanded far beyond the wildest vision of its creators, but still maintains its markup character.

HTML still consists of text and tags. Over time, HTML has evolved from its roots, and is no

longer seen simply as a way to format a document. The HTML language is now used to define

the content (or contextual meaning) of items on a web page, and the tags have evolved to

represent this new role. Most of the original tags specifying how to format text, such as bolding

(), centering (<center>) or italicizing (<i>), are now considered obsolete and their use is

discouraged. Bolding is now done by the content tag strong , and italicizing is done by

the content tag emphasis . Formatting is done based on the content tags using CSS, and

interactivity is defined using embedded JavaScript programming using the <script> tag. HTML

has become much more than a simple markup language, but to understand HTML it is important

to understand its roots as a markup language.

The tags in HTML are key words defined between a less than sign (<) and a greater than sign

(>), though when using HTML, it is more common to call them angle brackets. Between the

angle brackets are HTML tags and attributes. For example, the HTML tag to bold text is the

word strong, so to bold text the tag would be used. The tag represents actions to be

taken by the program that processes the marked-up text.

HTML tags are not case sensitive, so the tags <i> and <I> are equivalent.

Most tags are applied to a block of text, and apply to the block of the text they enclose. All tags

are closed using a slash (/tag), as in the example above where lazy caused

the word lazy to be bolded.

The tags shown above are called block4 tags in that the first tag (e.g. <i>) specifies where to

begin italicizing the text, and the closing tag (e.g. </i>) specifies where to stop indenting the

text. The text or other information between the two tags is called a block.

4 The terms block and container tags are often used interchangeably in HTML. This text will make a distinction

between a block and container tag. Semantically it is easier to refer to a block tag as referring to an attribute to

apply to all the elements in the block, such as italicizing or bolding the text in the above example. Other tags, such

as the div or table tag contain other HTML elements and will be called container tags.

21 PROGRAMMING FOR THE WEB:

Sometimes a tag, such as a break tag (
) or image tag (<image>) are empty, in the sense that

they simply run a command, and do not apply an attribute to the text. In the case of the
 tag,

the meaning is to simply skip a line, so it does not affect any text or any other element. It could

be written as
</br>. However, HTML provides a short cut for this type of tag. The tag can

be closed between the angle brackets that opened it. The
 tag can be written as
.

As the br tag shows, tags can be used to do many things in HTML other than just markup text.

For example, tags can be used to tell the HTML processor to include a picture. If a picture exists

in the same directory as the web page, the image can be included on the page by adding the

following tag into the HTML for the page:

<image src=”dog.jpg” />

Program 1 = Image Tag

This line of code includes the picture from the file dog.jpg in the web page. The tag is the image

tag, but the image needs an attribute to indicate where to find the picture. For the image tag the

attributed used to find the picture is the src tag.

Attributes are data that fill in details needed to implement the desired behavior for the tag. All

tags can have some attributes, and these will be looked at in more detail later.

Chapter 2. 2 Standard HTML Tags

There are 4 HTML tags that are considered standard for all web pages. These tags are the

<html>, <head >, <title>, and <body> tags. A strict HTML5 web page is required to have these

4 tags, and many IDE’s will automatically insert these 4 tags in a page for you when you start an

HTML page. Since these 4 tags are always recommended for every web page, I personally keep

a template, shown below, that I copy when I begin all web pages.

<html>

 <head>

 <title>Please change this to the title of your page </title>

 </head>

 <body>

 </body>

</html>

Program 2 – HTML template

This template code can be represented as a top-down tree, as shown below. In this tree the html

tag is used to contain 2 elements, the head and the body. Likewise, the head section contains the

title, and as we will see shortly, the head and the body sections will contain many other HTML

elements. Thus, we will call these 3 tags container tags. The title only contains a block of text,

so it is a block tag.

PROGRAMMING FOR THE WEB: 22

Figure 1 - Tree layout of an html document

These four tags (html, head, title, and body) are special in that they define the structure of an

HTML document and are called Document Structure tags. This will be covered more fully in the

next section. But first there are some points to be made about how to structure HTML files.

In the file in Program 2, note that each container tag (html, head, and body) is indented to show

the hierarchical structure of the document representing the tree in Figure 2.1. This is not

required by the HTML processor, as the processor is just looking at strings of instructions and

text and ignoring any program format. However, indenting makes it easier for the developer and

maintainer of web pages to understand what is going on in the program5.

The second thing I always recommend writing html code is to end all container tags when the

beginning tag is entered. This means when <head> is entered, the </head> is immediately

entered. This is the automatic behavior of many IDEs. The reason to enter a close tag when

opening a container tag is to enforce boundaries on the ideas and concepts that are being

expanded in the container. This does not make sense to many novices, who seem to see ideas as

unstructured information that starts at the top of the document and just streams to the end.

Novice ideas often appear (to me) to be a jumble of thoughts. They do not see a purpose in

creating boundaries or structure to express of idea. This is true in all areas of academia,

including unreadable papers and documentation. This is why indenting, and container

boundaries are so important to enforce a structured way of presenting the ideas. And why a basic

course in CS, which teaches this structuring, can be important for students of any major.

But since this concept of structuring ideas is such an enigma to students, I give a practical reason

for entering the enter the closing tag when the opening tag is entered. If the closing tag is not

5 I make it a point to never help a student with poorly formatted code, as it is frustrating to me to try to understand,

and simply insults my sensibilities. The student must format it correctly, then I will help them work on their

programs. The most useful outcome of this policy is the vast majority of the time is it results in a comment from the

student, “never mind, I figured it out”. Poor formatting nearly always represents confusion about the bounds of

specific content and fixing the formatting fixes the confusion.

23 PROGRAMMING FOR THE WEB:

immediately entered, it is likely to be completely forgotten and lead to other problems. Though

the best reason for students seems to be so they don’t lose points on a test.

Chapter 2. 3 Document Structure Tags and A Simple Web Page

An HTML document is divided into two main sections, the head and the body. The reason for

this division is that the head is to contain metadata, and the body is to contain the information to

be displayed on the web page.

To understand this difference, it is important to understand the meaning of the term metadata.

According to Dictionary.com, the meta prefix means: “a prefix added to the name of something

that consciously references or comments upon its own subject of features”6. Hence metaphysics

is a physics about physics, a meta-analysis is a study of studies, etc.

Metadata is what its name implies, data about the data on a web page. It defines how the page is

to interpret the data which it will process. For example, functions that are used in a web page are

defined in the head. How to handle events and interpret the CSS tags are also defined in the

head. Anything that is used to define the behavior of the page is in the head of the document.

As important as what is in the head is what is not in the head of the HTML document. The head

should not output any information (or data) to be placed on the web page. Functions and other

structures defined in the head should return strings to be printed in the body, and not printed to

the page in the head. If the statement is defining something to be rendered on the page itself, it

does not belong in the head.

This implies (correctly) that the body of an HTML document should contain anything that is

rendered and placed on the web page. Any text to be displayed, images to be rendered, or forms

to be processed belong in the body of the document. And again, the body should not contain any

metadata such as functions, CSS, or code to handle events.

Nothing in HTML enforces this policy, but there are few good reasons to violate it. And when

the data in the head and body are mixed, it generally shows that the programmer did not have a

clear concept of what the page is to do.

In the Document Structure, the <title> tag is shown as metadata. This is because the title is what

appears on the tab in the browser, and not rendered on the page.

Program 3 is a simple HTML web page to illustrate the concepts covered so far. Note that the

program uses the large heading (<h1>), and paragraph (<p>) block tags, and the <image> tag,

which have not been covered. As has been stated before, this text is not to be a text on learning

html, CSS, JavaScript, or any other language or program. It intends to provide enough detail to

allow a motivated intermediate programmer, specifically students doing research with myself,

enough background to start that research. A complete list of HTML tags can be found at:

https://www.w3schools.com/tags/, and many tutorials exist on how to use them in web pages.

Readers interested in more functionality of the tags can easily look them up on the WWW7. But

6 https://www.dictionary.com/browse/meta?s=t
7 In my experience, the best search engine by far for looking up information when programming is Google. Other

search engines tend to assume a context for the terms and bring up a lot of noise pages not related to programming.

https://www.w3schools.com/tags/
https://www.dictionary.com/browse/meta?s=t

PROGRAMMING FOR THE WEB: 24

it is expected that the readers of this text are sufficiently advanced that they can research and

learn the implementation details of this type of material.

Enter Program 3 is entered into a file with a “.html” extension. Note that the file must have

some form of a .html (e.g. .htm, etc.) extension for the browser to recognize it as an html file.

Place a jpeg picture (any picture) into a file named dog.jpg, and open the file in a browser such

as Chrome, Firefox, Safari, IE, or MS Edge8. You should get a page similar to Figure 2-2.

<html>

 <!--

 Author: Charles Kann

 Date: 5/17/2017

 Purpose: A first example of an HTML program

 -->

 <head>

 <title>First HTML Web Page </title>

 </head>

 <body>

 <h1>First page</h1>

 <p>

 This is a first page of text, and shows how to

 insert a picture of a dog

 into a page.

 </p>

 <image src="dog.jpg/>

 <p>

 This page also shows how to handle text using the

 paragraph (<p>)symbol, as well as how to show

 the < and > symbols in html text.

 </p>

 </body>

</html>

Program 3 – First HTML Web Page

In this program, comments in html begin with a (<!--) tag and continue until a (-->) tag. There is

a comment at the start of this document to provide a preamble comment for the file. The need

for file preamble comments, and commenting code correctly, is stressed in every introductory

programming course I have ever encountered. However, it seems as though students believe

such commenting is not useful, only applies to introductory classes and/or the first language they

learned. They throw out these lessons as soon as they think they can safely get away with it.

That is why at every level student programs need to be graded on commenting, and a poorly

commented program by a senior should be given an F, even if it works. Commenting is not

something to be avoided. It is always good practice, and it will be good practice in web

development also.

8 For simple HTML, the choice of the browser matters very little, though each browser will likely render the page

differently. When beginning JavaScript, the browsers are very different, and some do not implement the JavaScript

standard correctly, and will fail on valid JavaScript code. I suggest using the latest Chrome or Firefox browsers, and

all of the material in this text has been tested to work with Chrome.

25 PROGRAMMING FOR THE WEB:

Figure 2 – Output from the first Web Page

Chapter 2.3. 1 Quick Check

1. What symbol is used to start an HTML tag. What symbol is used to end an HTML tag.

2. What 4 tags should you use in all HTML documents?

3. How do you close an HTML block tag? How do you close an empty tag?

4. What is a tag? What is an attribute?

5. What tags in the web page?

6. What are document structure tags?

7. What tags should be present in all web pages? What are they used for?

8. Give some examples of tags that have attributes. What are the attributes?

9. What happens to text that spans across multiple lines in the HTML source file?

10. What do you think the < and > symbols do? What other symbols do you think are often

specified this way in HTML.

Chapter 2. 4 Creating Forms in HTML

The next part of this chapter will show how to implement form elements in HTML. Form

elements are things like labels, checkboxes, radio buttons, textboxes, buttons and other elements

PROGRAMMING FOR THE WEB: 26

often use to interact with and gather information from users. Form elements are a major method

of creating user interaction with a web page.

All form elements contain a name or id which can be accessed from JavaScript. All form

elements have a set of attributes (or properties) that can later be used in JavaScript and CSS to

manipulate them.

This section will only implement the form elements. To implement interactivity in a form

normally requires JavaScript and will be covered in a subsequent chapter.

Chapter 2.4.1 The <label> tag

The <label> is used to put a label on the page and associate it with another HTML element.

Since the <label> tag simply puts text on the screen, why use a label rather than just putting the

text into the HTML? For example, the following two HTML examples will appear the same to

the user:9

<label id="label1" for="title">Title: </label>

<input type="text" id="title" size="20" />

Program 4 – Using a label tag

Title:

<input type="text" id="title" size="20" />

Program 5 – Using no label tag

These two examples will appear the same on a web page, with the string “Title:” followed by a

textbox. There are two advantages to using the label tag. The first is that when using a <label>

tag, the label itself can be given an id, and that id can be used later in JavaScript to manipulate

and modify the label.

The second advantage of a <label> is it can be used to reference an <input> value by setting

the for attribute to the id of the field it corresponds to. When the for attribute is set in a label,

clicking on the label places the cursor in the corresponding field.

Complete documentation for the <label> tag can be found at:

https://www.w3schools.com/tags/tag_label.asp.

Chapter 2.4.2 The <input> tag

The <input> tag tells the HTML interpreter program that the data to follow defines a user

interaction that can be queried later for content. The type of user interaction will be specified in

the type attribute. The different types of input types can be found at

https://www.w3schools.com/tags/tag_input.asp.

9 Note that when using code fragments, the entire html file is not included. The <html>, <head>, <title>, and

<body> tags are omitted. This is to save space and to emphasize the concept being introduced. This is no way

sanctions or recommends ever dropping these tags in a html file.

https://www.w3schools.com/tags/tag_label.asp
https://www.w3schools.com/tags/tag_input.asp

27 PROGRAMMING FOR THE WEB:

There is one word of caution about many of the types that can be used as inputs. All of the types

listed at the W3 Schools web site are not implemented in all browsers, and many of the types are

implemented differently in different browsers. Using some of these types could (and likely will)

lead to a very different user experience for a Chrome user and a Firefox or Safari user. The page

designer should be aware of these differences, and plan for and test carefully when implementing

a web page.

This section will only document a few input types. The ones that are selected are largely the

ones which show how to implement interactions that are used in this textbook. The form

implemented is one for adding maps to an application and will be used as an example through

much of the text.

The input types to be looked at in the following sections are text, checkbox, radio button,

number, date, and button.

Chapter 2.4.3 <input type = ”text”>

The first type of input we will look at is type=”text”, or the textbox. This is the default type

for an input tag. If you expect some other type of field, and get a textbox, check and see if

something is misspelled in the type of the input tag.

A textbox is an input box into which a user can type text, as was seen previously in Programs 4

and 5. The line:

<input type="text" id="title" size="20" />

Program 6 – Input text box

created a text box that contained 20 characters, and with an attribute id of name. Note that the

id is a unique identifier for a field; it must be unique on the page. In a later example the name

attribute will be introduced. A field can have a name, id, or both, and the field can be referenced

by its name or id. A name is different from an id in that a name does not have to be unique on a

page; many different elements can have the same name. In fact, in the radio button example, we

will rely on the fact that the elements all have the same name. An id must be unique on a Web

page.

While HTML is not case sensitive, the strings used for the id and name are case sensitive.

Consider the following example.

<input type="text" id="title" size="20" />

<input type="text" id="Title" size="20" />

Program 7 – Text boxes different by case of name

In this case, two textboxes with different ids, one title and the other Title, are created.

The identifiers for id and name fields in this text will use standard camel casing for ids and

names, with the first letter lower case, and lower-case letters in the rest of the identifier except

for the first letter of new words (e.g. myTitle)

PROGRAMMING FOR THE WEB: 28

There are many attributes other than id and name that can be assigned to an input field, and the

overview URL of the <input> tag above should be referenced to find them. For example, a

Boolean value of readonly can be set on a text box to disallow changes via user input. The string

contained in the text box is stored in a field named value and can be set or change in a JavaScript

program, but the user cannot enter data into this field.

<input type="text" id="title" size="20" readonly value="My Map" />

Program 8 = readonly attribute

Chapter 2.4.4 <input type = ”checkbox”>

A checkbox is a box which allows a user to choose a single, discrete option. A checkbox is

normally shown on a web page as a square box. To implement a checkbox, use an input tag and

set the type attribute to checkbox. Normally the input tag will also have an id attribute, and a

Boolean attribute checked can be added to indicate if the box is checked by default or not. Two

formats for a check box, one checked and the other not, are shown below.

Note the use of the
 (break) tag in this program. The break tag is used to move the output

to the next line.

<label id="label1" for="resize">Allow map to be resized: </label>

<input type="checkbox" id="resize"/>

<label id="label2" for="recenter">Allow map to be recentered:" </label>

<input type="checkbox" id="recenter" checked />

Program 9 – Checkbox Example

Chapter 2.4.5 <input type = ”radiobutton”>

A radio button is similar to a checkbox in that it is a Boolean selection. It is different from a

checkbox in that radio buttons form a group, and only one item in any group of radio buttons can

be selected. For example, consider two sets of options in Program 10. The first set of options

determines the type of map to display: an XYZ Map or a Stamen Map. The second set of

options determines the size of the map (600x480, 1024x768, or 1280x800). As shown in

the following example, these form two groups by having the name common between the buttons

in the group. In the first case, the name for both of the buttons is mapType, and the choice is

between the XYZ Map or the Stamen Map. In the second case the screenSize is the name

common between the buttons, and the choices are 600x480, 1024x768 or 1280x800.

Radio buttons are implemented in HTML by setting the input type attribute to radio. Radio

buttons are normally round and are then grouped to show the mutually exclusive options. In

HTML, the grouping of options is accomplished using name attribute. All radio buttons with the

same name are in one group. The following code implements two groups of radio buttons. Note

that even though it has no purpose right now, the value attributes are being set for these radio

buttons. The values will be used in processing these radio buttons later in JavaScript.

29 PROGRAMMING FOR THE WEB:

<p>

 Type of Map

 <input type="radio" name="maptype" id="XYZMap" value="XYZ Map"/>

 <label id="label1" for="XYZMap">XYZ map </label>

 <input type="radio" name="maptype" id="StamemMap" checked />

 <label id="label2" for="StamenMap">Stamen Map </label>

</p>

<p>

 Screen Size

 <input type="radio" name="screenSize" checked id="600x480"

 value="600x480"/>

 <label id="label3" for="XYZMap">600x480 </label>

 <input type="radio" name="screenSize" id="1024x768"

 value="1024x768"/>

 <label id="label4" for="XYZMap">1024x768 </label>

 <input type="radio" name="screenSize" id="1280x800"

 value="1280x800"/>

 <label id="label5" for="XYZMap">1280x800 </label>

</p>

Program 10 – Radio Button Example

Chapter 2.4.6 <input type = ”number” >

The input type number limits the input for the field to be numeric. The value can be a whole

number or a decimal number, but only the numbers 0-9 and the decimal point can be entered

(comma is not allowed). If the browser does not support a number type, the type defaults to a

text, and a standard textbox is used.

The following example implements number fields for the latitude and longitude for the

center of a map. Note that the entry is to be a fixed point (decimal) value.

<p>

 Center of Map

 <label id="label1" for="lat">Latitude </label>

 <input type="number" id="lat"/>

 <label id="label2" for="long">Latitude </label>

 <input type="number" id="long"/>

</p>

Program 11 – Number Input Example

The number field can also be used to represent a range of value, as in the following example. Be

careful however as a user can type in a number outside of this range. And while this statement

implies that the value is an integer value, the user can enter decimal values.

<p>

 <label id=label3" for="age">Age</label>

 <input type="number" id="age" min="0" max="115" />

</p>

PROGRAMMING FOR THE WEB: 30

Program 12 – Integer Number Input Example

Chapter 2.4.7 <input type = ” date”>

The last form field covered is a date. The reason the date type is covered is to make a point that

the browsers can be completely inconsistent in how they implement input types, particularly the

input types that were implemented in HTML5, such as number and date. The format of entering

the date, the return value from the date, whether or not a date picker is displayed, and the look

and feel of the date picker if it is displayed are all browser dependent. The Quick Check

questions at the end of this section will ask you to experiment with this field.

Only the most basic format of the date input type is shown here. It is suggested that the reader

look at this date field across sever browsers to see how it is different in each one.

<p>

 <label id="label1" for="creationDate">Creation Date </label>

 <input type="date" id="creationDate"/>

</p>

Program 13 – Date input Example

Chapter 2.4.8 <input type = ”button”>

An input type of button creates a button. Buttons are normally placed on a form to trigger

processing of the form when they are clicked. How the processing of the form is accomplished

will be covered later in the chapter on JavaScript. For now, only the placing of the button on the

form will be shown.

The button will have an id attributed so that actions can be assigned to the button in JavaScript.

The text that is displayed in the button will be contained in the value attribute. A normal

definition of a button would be as follows:

<input type="button" id=”processForm” value="Process Form" />

Program 14 – Button Example

Chapter 2.4.9 Final Example

The following example combines all of the elements seen in this chapter to create a single,

working form. This form does not yet have any functionality, which will be introduced in the

next chapter on JavaScript. The form is also not styled, which will be covered in the chapter on

Cascading Style Sheets (CSS).

<html>

 <head>

 <title>Map Example Input Screen</title>

 </head>

 <body>

 <h1>Map Example Input Screen</h1>

 <p>

 <label id="l1" for="title">Title</label>

31 PROGRAMMING FOR THE WEB:

 <input type="text" id="title" size="20">

 </p>

 <p>

 Map Options

 <label id="l2" for="resize">Allow map to be resized:

 </label>

 <input type="checkbox" id="resize"/>

 <label id="l3" for="recenter">

 Allow map to be recentered:

 </label>

 <input type="checkbox" id="recenter" checked />

 </p>

 <p>

 Type of Map

 <input type="radio" name="maptype" id="XYZMap"

 value="XYZ Map"/>

 <label id="label1" for="XYZMap">XYZ map </label>

 <input type="radio" name="maptype" id="StamemMap"

 value="StamemMap" checked />

 <label id="label2" for="StamenMap">Stamen Map

 </label>

 </p>

 <p>

 Screen Size

 <input type="radio" name="screenSize" checked

 id="600x480" value="600x480"/>

 <label id="label3" for="XYZMap">600x480 </label>

 <input type="radio" name="screenSize" id="1024x768"

 value="1024x768"/>

 <label id="label4" for="XYZMap">1024x768 </label>

 <input type="radio" name="screenSize" id="1280x800"

 value="1280x800"/>

 <label id="label5" for="XYZMap">1280x800 </label>

 </p>

 <p>

 Center of Map

 <label id="label1" for="lat">Latitude </label>

 <input type="number" id="lat"/>

 <label id="label2" for="long">Latitude </label>

 <input type="number" id="long"/>

 </p>

 <p>

 <label id="label1" for="creationDate">Creation Date

 </label>

 <input type="date" id="creationDate"/>

 </p>

 <input type="button" value="Process Form" />

 </body>

</html>

PROGRAMMING FOR THE WEB: 32

Program 15 Complete Form Example

Chapter 2.4.10 Quick Check

1. What are the advantages of using a <label> tag rather than just using text in an HTML

document?

2. What tag is used to ask for input from a user?

3. What are the different types attributes for the <input> tag? Which of these are newly defined

in HTML5?

4. Explain a radio button group, and how it works.

5. What are the tags and attributes in the example form?

6. Run the final web page in at least 2 browsers, and document as many differences between

how the form is rendered in each browser.

Chapter 2. 5 Conclusion

This chapter gives an overview of the HTML that will be necessary to continue using the rest of

the text. The reader should now know what a markup language is, and why HTML is structured

as it is. The reader should also be familiar with the sections of an HTML document, and what

type of data go into the head and body of an HTML document. The differences between a tag

and an attribute should also be clear.

Finally, the user should have a sufficient understand of HTML that they can implement a simple

form in HTML.

Chapter 2. 6 Problems

1. Create a form for an application of your choice. The application can be for a realtor, a

schedule at work, your favorite team’s roster, or any topic you choose. Use as many form

elements as you can, but at a minimum you must use text boxes, check boxes, and radio

buttons.

33 PROGRAMMING FOR THE WEB:

What you will learn

In this chapter, you will learn:

1. Inserting JavaScript into an HTML file

2. How to output HTML from JavaScript to the Web page

3. How to print debug output to the console.

4. Branching (if) and looping (while and for) program control structures

5. Using Arrays as you would in a more traditional language such as Java or C++

6. Implementing and calling functions

7. Lambda functions

8. JQuery syntax and onload event

9. Assigning functions to handle events in the onload event using Immediately Invoked

Function Expressions (IIFE)

10. Functional programming

Chapter 3 JavaScript and processing a simple form processing

This chapter will cover JavaScript with the goal of processing the simple form created in Chapter

2. Programmers from other languages will recognize most of the material in this chapter, as

procedural programming in JavaScript is the similar to other languages C derived languages.

Even the material on events, lambda functions, IIFE, and functional programming will have

analogues to concepts that students will have already studied.

The chapter will also include an introduction to JQuery, mostly to replace functions like

document.getElementById or to introduce the $(document).ready() function. The goal in

this chapter is to treat JQuery as a way to short cut examples. The more important reason to

introduce JQuery is it is often treated as if it is part of the base JavaScript language. When

looking for JavaScript examples online the examples will use JQuery in the examples and to

understand these examples some simple JQuery knowledge is useful.

The goal of this chapter is to become familiar with basic JavaScript syntax and to begin learning

how to structure programs in JavaScript. Future chapters will continue to cover JavaScript

objects and how to abstract applications that will be used in the mapping applications this book

will present.

Chapter 3. 1 Starting a JavaScript program

The next 3 subsections will describe how to insert a JavaScript program into an HTML file, how

to insert comments into JavaScript, and how to write output to the HTML page. At the end, one

example of all 3 sections will be given.

Chapter 3.1. 1 Inserting JavaScript into an HTML file

JavaScript is used to create interactivity in a HTML web page. JavaScript is not part of HTML

but is a scripting language that is contained in an HTML document and is interpreted by a

PROGRAMMING FOR THE WEB: 34

JavaScript engine in the browser. It is inserted into an HTML file by enclosing the JavaScript

program between <script> and </script> tags10.

The following points should be remembered when implementing JavaScript:

1. JavaScript is not HTML. If you place JavaScript source in a non-scripting portion of an

HTML web page, it will likely just print out on the page. If you place HTML source in a

JavaScript portion of the page, the JavaScript program will likely fail with completely

unpredictable consequences. Only use JavaScript programs inside of script tags.

2. HTML is not case sensitive. The <i> and an <I> tag are interchangeable. For

consistency and readability, one case should be selected and used, but there is no rule that

says a body tag cannot be entered as <bODy>. However, JavaScript is case sensitive. The

variables Name and name are different. Keywords are always lower case (for, while,

etc), and using their uppercase equivalent will not work.

3. JavaScript statements should end with a “;” (semicolon). However, in most cases the

language does not care if you include this semicolon or not. This text will attempt to

always use the semicolon to end all statements11, as it is considered good practice.

Chapter 3.1. 2 JavaScript Comments

Comments in JavaScript are the same as comments in C derivative languages. There are two

types of comments. The first type of comment is a line comment. A line comment is signified by

a //, and all of the subsequent text on that line is a comment. An example of declaring a variable

and commenting is illustrated on the following line.

let loopCount; // Counter for string processing loop

Program 16 – Line comment in JavaScript

The second type of comment is a block comment. Block comments begin with a /* and continue

until the program has a */. The following is a block comments.

/*

10 HTML was designed to handle scripting languages other than JavaScript. The <script> tag contains an attribute

named language, and it is still possible to find HTML code that uses the <script language=”javascript”> tag.

However, no scripting language except JavaScript was ever seriously used in HTML. The <script> tag now does

not need the language attribute, and it is seldom used unless some scripting language other than JavaScript is used.
11 When teaching introductory class in JavaScript for non-majors, I often drop semicolons as

they are confusing to students with no programming background. For example, an if statement

that uses a semicolon, such as “if (a == 1);”, is the source of much confusion to novice

programmers, and it really does not serve a good purpose to go through the pain of explaining

why the if has a null statement, and what that means.

35 PROGRAMMING FOR THE WEB:

 This function calculates the velocity given the speed and time

*/

Program 17 - Block comment in JavaScript

Often novice and even intermediate level programmers will use these two types of comments

interchangeably. This can lead to problems, particularly when commenting out lines of code

while debugging. For example, consider the following code block where the comment for the

variable is done using a block comment.

function f() {

 let loopCount; /* Counter for string processing loop */

}

Program 18 - Block comment in a function

If something is wrong with the function, a common debugging tactic is to put a line of code in

the program to show the program is entered, and then to comment out the rest of the program:

function f() {

 console.log(“in function f”);

 /*

 let loopCount; /* Counter for string processing loop */

 */

}

Program 19 - Why you should not use block comments in a function

This comment will not work, as /* and */ tokens are not matched. The /* signals the start of the

comment, and the comment ends when a */ is encountered. The highlighted /* and */ tokens are

matched above. This leave the */ at the end of the function outside of a comment, and this will

produce an error.

A good rule for using line and block comments is to use block comments for the documentation

of a function that appears before the function. Comments that occur inside of the function

should use line comments. This is the commenting strategy used in this book.

Chapter 3.1. 3 Output from a JavaScript program

JavaScript program output is normally written either to the web page that contains it, the console

if it is information that is only of use to a programmer, or to a dialog box. These three options

are explained below.

• Output can be written it on the web page so that the user can see it. To write HTML code

on the document, the document.write() function is used. The document.write()

function can be used to write any HTML formatted string of information to the web page.

For instance, to write the string “This is my first web page with JavaScript…” from

JavaScript, the following line of JavaScript can be added to the body of the web page.

document.write(“This is my first web page with JavaScript…”);

Program 20 - Output to HTML DOM from JavaScript

PROGRAMMING FOR THE WEB: 36

The string passed to the document.write() function can be any HTML formatted string.

The document.write() function does not simply output text on the page;

document.write writes the text to the document, and the document will then correctly

parse and render the output in the HTML string on the web page. To write a page

heading, the following string can be written to the document:

document.write(“<h1>First JavaScript Program</h1>”)

Program 21 - Ouput to HTML DOM with HTML tags

Any valid html tag or statement can be written to a page, as the string which is written is

effectively written to and interpreted as HTML by the browser processing the page.

• The second way to produce output is used for debugging and involves printing

information which is not intended to be seen by the normal user. This output is written to

the web page console. The console is used to write output that is intended to be used by

programmers and others who might be supporting this site. The web console can be

accessed from all major browsers, but how to access it and even some constraints on how

the information is displayed are different for every browser. For example, in Chrome the

browser the ctrl-shift-i key will bring up the developer tools, and from there the console

can be selected. You should search the internet on how to access the Web Console for

your specific browser.

The Web Console is an invaluable place to write debug output, and other information that

a programmer might want the program to produce but not let the end users see. To write

to the Web Console, pass a JavaScript element (string, object, etcetera) to the

console.log() function, as in the following line of code.

console.log("The program is running")

Program 22 - Writing to the console log

• The final way to output (and input) text from a program is to use a dialog box. Here only

the output dialog box, created by using the alert function, is shown. Input will

generally be handled in forms, so input dialogs, except for specialized dialogs such as file

dialogs, are not that useful, and so are not covered. To create an output dialog box, run

the alert function as follows.

alert(“Something”);

Program 23 - alert dialog box

Chapter 3.1. 4 First JavaScript program

The following JavaScript program shows how to combine all of the elements described in the

last 3 sections.

<html>

 <head>

 <title>First JavaScript Program </title>

 </head>

37 PROGRAMMING FOR THE WEB:

 <body>

 <script>

 /*

 This is an example of JavaScript

 */

 console.log("The program is running") // Write to the console

 document.write("<h1>First JavaScript Program</h1>") //Print head

 document.write("This is my first web page with JavaScript.");

 document.write("
This is on a new line");

 alert(“Here is an alert box”);

 </script>

 </body>

</html>

Program 24 First JavaScript Program

The result of running this html is the following web page.

Figure 3 – Final Web Page

PROGRAMMING FOR THE WEB: 38

Chapter 3.1. 5 Quick Check

1. How is JavaScript code included in an HTML file?

2. How many <script></script> tags can be present in an HTML file?

3. What are the different types of comments that can be used in HTML and JavaScript?

4. What happens if you put an HTML comment in JavaScript? What happens if you put a

JavaScript comment in HTML?

5. Can you mix HTML and JavaScript code? What happens if you mix them?

6. How can you use HTML tags in JavaScript code?

7. What is a dialog?

8. Give an example of when you would use console.log, document.write, and alert.

Chapter 3. 2 Primer on JavaScript

This section covers the basic procedural constructs of the JavaScript language. It covers the

material that most programmers will be familiar with: variables, procedural constructs

(branching and loops), and functions. While some concepts will be different from how most

readers are used to thinking about them, all of the concepts here should be similar to concepts the

readers already know. It is thus a primer, or elementary introduction, to JavaScript.

Chapter 3.2. 1 Variable Types

Variables in JavaScript are declared using a let12 statement (see important footnote below). For

example, the variable loopCount can be declared as follows:

let loopCount;

Program 25 - Declaring a variable using let in JavaScript

To someone coming from a strongly typed language such as Java, this statement is strange in that

it does not declare the type of the variable, only that the variable exists. This is because

JavaScript is a dynamic (or loosely) typed language. The type of the variable is the type of the

last value that was assigned to it. A variable can, and very often does, change type during the

execution of a program. This is illustrated in the following code fragment, where aVar is

changed from a number to a string.

let aVar = 7; // aVar is a number

aVar = “a string”; // aVar is now a string

Program 26 - Dynamic Typing in JavaScript

Dynamic typing is something that a programmer coming from a strongly typed language must

become accustom to and requires the programmer to carefully consider their code or strange

bugs can be introduced. Consider, for example, the following Java code fragment:

int aVar = 7;

12 ECMAScript 6 has deprecated the var keyword in favor of the let keyword. Except for cases such as loop

variables, they are generally equivalent. If you see a var statement when reading code on the web, you can mostly

set it to a let statement when reading it. The differences are not important at this point.

39 PROGRAMMING FOR THE WEB:

String s = "6";

aVar = aVar + s;

Program 27 - Static typing failing when casting in Java

This code fragment will cause a type cast compiler error in Java, as the + sign casts the value of

aVar to a string on the right-hand-side(rhs) of the equation, does concatenation to a string that is

returned, and then tries to set the string to aVar, an int, which is invalid. The equivalent code

fragment in JavaScript simply converts the variable aVar to a string, and performs concatenation,

yielding the possible erroneous result of a string containing “76”.

<script>

 let aVar = 7;

 let s = "6";

 aVar = aVar + s;

 alert(aVar);

</script>

Program 28 - Program works in JavaScript as variable type is changed

If the let keyword does not define a type, why use it? The purpose of the let keyword is to

define the scope of a variable. It can be dropped altogether, in which case the variable defaults

to global scope. The scope of a variable has three possibilities in JavaScript (ES6): global,

function, and local scope. The rules of scope are as follows. A variable is declared with a let in

a block, other than a function it is a local variable. A variable declared with a let that is

contained in a function block defaults to the function where it is scoped. A variable not declared

in any block, or a variable that is not declared using the let keyword, has global scope.

These scoping rules are not as easy as they might appear. And since we are not yet using

functions, variables in this section will have global or local scope. If the variable is declared in a

block (between {}) it is a local variable, otherwise it is global scope. However, whether it is

global or local should not have an impact on the examples in this section.

This text will recommend that the reader use the let keyword to declare all variables. Scope

plays a different, and I would argue a larger, role in JavaScript than many other languages. Later

in this text it will always be required, as not using it leads to endless confusion. Therefore, I

strongly recommend the reader get into the habit of using the let keyword now. But any further

elucidation of the word let will have to wait until later in the text.

There are 6 primitive types in JavaScript and one complex variable type called an Object.

Information on the Object and Symbol types will be deferred until later in the text, but the other

5 primitive types are13:

• Boolean: A Boolean is a binary logical value containing either true or false.

• Number: There is only one number type in JavaScript, and it is a 64-bit IEEE 754 double

precision (or floating point) number14. The number can also be used as an integer value,

13 For more information on JavaScript primitive, see https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Data_structures.
14 For more information on IEEE 754 double format, see https://en.wikipedia.org/wiki/Double-precision_floating-

point_format.

PROGRAMMING FOR THE WEB: 40

and when used as an integer it will have 52 bits binary precision (or 15 digits precision),

and allow integer values from -2251799813685248…2251799813685247

• String: A string is a textural representation of data. It consists of indexed 16-bit character

values

• Null: A variable having a null value is defined and has a value, but that value is the null.

• Undefined: A variable that has not been assigned a value.

Some novice programmers have difficulties with the difference between null and undefined

values. To have a null value, there must be a declared variable. It must be a variable, but the

variable has no value. However undefined means the variable is not declared. Understanding

this difference is common, and many web pages can be found using Google to find more

information on it.

Chapter 3.2. 2 Arrays

Arrays in JavaScript are not like arrays in languages that most students are familiar with. Arrays

in JavaScript are in reality map structures (normally called hashes or associative arrays) that use

an index as a key. Even when used with an index, JavaScript arrays behave more like a Java

ArrayList than a Java array. However, having warned the reader about the complexity of the

JavaScript array, that complexity will be deferred until later in the text. For now, arrays will be

treated like arrays in most of the languages the readers will be familiar with.

An array can be created in two ways. The first way to create an array is to set a variable equal to

an array literal, as in the following example.

var weekDays = [“Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”]

Program 29 - Creating an array variable by assigning the variable to an array literal

As this example shows, to initialize an array in JavaScript, the variable is set to an array literal,

or a value that is an array, and uses square brackets ([]) to contain the array members. This is a

small difference from C derivative languages that use curly braces ({}) for array initialization.

JavaScript will often look similar to other languages, but programmers should be careful as there

are small syntax differences15.

The second way to create an array is to call the Array() constructor function16, and passing the

optional size of the array.

var weekDays = new Array(5);

Program 30 - Creating an array by calling a Constructor function

15 This syntax difference in array initialization represents more than just a small syntax difference. It is the first hint

that an array and an array variable are semantically different in JavaScript than in other languages.
16 Note that the Array() function is a JavaScript constructor function. The use of the constructor function requires

the new operator and creates a JavaScript object. JavaScript objects, and the prototypes used to create them, will be

covered in more detail later. For readers interested in more information, there are many web sites that cover Java

objects, such as https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes.

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes

41 PROGRAMMING FOR THE WEB:

Once again there is more than just a syntactic difference in using parenthesis (()) rather than

square brackets ([]) when creating an array, and this will become apparent later when the

semantic meaning of an array is looked at in more detail.

The members of the array are accessed using the square brackets, [], and should be familiar to

most reader.

weekDays[0] = “Monday”;

weekDays[1] = “Tuesday”; // etc.

Program 31 - Assigning array values

Arrays are zero based, as in most programming language, so the first element in the array is

array[0], and the second element in the array is array[1], etc.

Arrays in JavaScript automatically allocate space when needed, like a Java ArrayList. So, the

following code would result in a weekDays array consisting of 5 members, not an

ArrayIndexOutOfBounds exception as in Java.

weekDays = new Array(2);

weekDays[0] = “Monday”;

weekDays[1] = “Tuesday”;

weekDays[2] = “Wednesday”;

weekDays[3] = “Thursday”;

weekDays[4] = “Friday”;

Program 32 - Showing how arrays automatically creates new space

Even though the true nature of arrays in JavaScript has been hinted at here, the examples used so

far should at least look familiar to the reader and will be sufficient for the rest of this chapter.

Chapter 3.2. 3 Procedural constructs

There is a famous computer science theorem, the “Boehm-Jacopini Structured Programming

Theorem”, which holds that all programs can be generated using only three programming

constructs:

1. A sequence which is just one statement after another.

2. A branch, such as an if statement.

3. A loop, such as a while or for loop.

A sequence is easy to understand, as one statement follows. The other two structures will be

covered in more detail in the subsequent sections of this chapter.

Once again, the purpose of this book as a primer for preparing students to work with map

applications is emphasized. There are a number of different JavaScript control structures, such

as do-while switch, etcetera, that are not covered. This does not mean that they are not useful;

however, they do not provide value to the purpose of this text. As was stated at the beginning of

this text, this is not a text on JavaScript or any other technology, but a basic overview of

technologies and how they fit together.

PROGRAMMING FOR THE WEB: 42

Chapter 3.2. 4 if statement

if statements correlate almost exactly to if statements in Java/C/C++/C#/etcetera. The format

of an if statement follows:

if (condition) statement;

Program 33 - Format of an if statement

In the if statement, the condition represents a variable or expression that reduces to a single value

that is treated like a logic having values true and false.

To use an if statement, the condition is reduced to a logic value and checked if it is true or false.

The statement after the condition is run if the value is true.

The statement after the condition is any valid JavaScript statement. The statement could be a

single line of code, a block of code between two curly braces, or a null statement. The following

code fragment shows these three possibilities.

if (x < 100)

 x = x = 1; // statement is a single line of code

if (x < 100){

 x = x + 1; // statement is a block of code

 y = y – 1;

}

if (x < 100); // statement is null

Program 34 - Format of if-else statement

Each if statement can contain a corresponding else condition that is executed when the

condition in the if statement is false, as show below.

if (condition) statement; // Do if true

else statement; // do if false

Program 35 - Format of if-else statement

Finally, if and else statements can be combined to create if…else if…else blocks

if (condition) statement;

else if (condition) statement;

else statement;

Program 36 - Format of if - else if - else statement

All of these branch operations should be familiar to programmers coming from nearly any

language. It is assumed that the reader will be familiar with these statements, and they will not be

covered in any more detail.

There is one big difference between the if statement in JavaScript and some other languages like

Java and C#. This difference has to do with the condition. The condition for if statement in

Java/C# must be a boolean value of true/false. If any type other than a boolean is used for a

43 PROGRAMMING FOR THE WEB:

condition, the compiler will produce an error. This is why the following statement produces a

compiler error. The condition is set from the return value of the assignment (=) operation, which

has a value of a long, not a Boolean.

long k = 12;

if (k = 7) alert (“true”);

Program 37 - if statement that fails in Java

In this case, the user probably wanted to use the comparison (==) operator. The == operator

returns a Boolean value, so the statement with the == operator is valid.

k = 12;

if (k == 7) alert (“true”);

Program 38 - if statement that works in Java

There are a number of things to cover here. First, the assignment (=) and comparison (==)

operators return values. It is hoped that readers are familiar with this idea that an operator is like

a function and returns a value. Further it shows that the == statement always returns a logical

value (or boolean) value. Finally it shows that Java/C# only allow boolean values for the

condition variables.

In JavaScript, the condition variable for an if statement can be of any type, which is the same as

in C/C++. The condition variable is not a boolean value; instead the condition value is false if it

is 0 and otherwise true. It does not matter what the type of the condition variable is, it is not

checked in JavaScript.

But because JavaScript allows the condition variable to be of any type, the following examples

are all perfectly legitimate in JavaScript. The first 4 result in non-zero values, and would be true.

The last two result in values of 0, and return false.

<script>

// The following are all true

if (true) alert("true");

if (7) alert ("true");

if("false") alert("true")

var1 = 9

 if (var1 = 7) alert("true")

// The following are false

if (0) ;

else alert("false")

var2 = 9

 if (va2 = 0);

 else alert("false")

</script>

Program 39 - Examples of true conditions in JavaScript

This becomes an issue is when using the assignment (=) operator and the comparison (==) for

values. Consider the following code fragment, where the programmer incorrectly typed the

assignment operator (=) instead of the comparison operator (==)

PROGRAMMING FOR THE WEB: 44

k = 12;

if (k = 7) alert (“true);

Program 40 - Incorrect result of using = for condition variable

This statement always returns true since the assignment operator (=) sets the value of k to 7, and

then returns a value of 7, which is true. If k were set to 0, this statement would always return

false. This problem is addressed in most IDE’s, but that does not remove it from the language,

and it is a problem the programmer must always be aware of.

Other than the assignment (=) and comparison (==) operators, the other logical condition

operation will look familiar to most programmers, and correctly return Boolean values. The

condition statement supports all of the normal comparison operations, such as ==, >, <, >=, and

<=. The logical &&, ||, and ! also work, and short circuit as expected.

Usefully these logical operations even work on string types, so it is possible to write the

following.

let a = “name”;

if (a == “name”); // true

if (a >= “abcd”); // false

Program 41 - Examples of comparison operators with strings

Chapter 3.2. 5 Sentinel control loops - while statement

There are generally three types of looping constructs: A sentinel control loop loops until some

condition is met; a counter control loop, that loops a specified number of times; and an iterator,

that loops over some data structure such as an array and performs an operation on each member

of that data structure. These three looping constructs are often associated with while

statements, for statements, and iterator loop17.

These three types of loops will be covered in the next three sections. This section will cover the

sentinel control loop, implemented with a while statement.

The schema18 for a sentinel control loop is the following:

Process the initial input, and set the initial loop condition

Check the loop condition

 Process the data for each iteration of the loop

 Process the new input, and update the loop condition

End of loop

Program 42 - Schema for a Sentinel Control loop

17 An iterator is implemented in Java as an extended for loop, but the syntax for these differ widely in different

languages.
18 A schema is “a representation of a plan or theory in the form of an outline or model”,

https://www.google.com/search?q=schema&ie=utf-8&oe=utf-8. The term schema and plan will generally be used

in this text to discuss such structures, where schema is used to talk about the model what is to be done, and a plan is

the implementation of a program structure. Experienced programmers have learned and internalized a large number

of these schemas and tend to see programs less in terms of how the code progresses, but the schemas needed to solve

a problem.

https://www.google.com/search?q=schema&ie=utf-8&oe=utf-8

45 PROGRAMMING FOR THE WEB:

The following JavaScript program shows an implementation of a sentinel control loop. In this

plan, the user is asked to input, using the JavaScript prompt() function, a numeric value. The

program then squares the number, uses the JavaScript alert() function to print the result back

to the user, and prompts the user for the next number. This is repeated zero or more times until

the users enters the sentinel value, -1, at which point the loop stops.

<script>

 let inputValue = prompt("please enter a number, or -1 to stop")

 while(inputValue != -1) {

 alert(inputValue + " squared is " +

 (inputValue * inputValue))

 inputValue = prompt("please enter a number, or -1 to stop")

 }

</script>

Program 43 - Implementation of a Sentinel Control loop in JavaScript

Chapter 3.2. 6 Counter Control loops - for statement

A Counter Control loop is a loop that runs a fixed number of times based on an input variable.

The schema for a counter control loop is the following:

Initialize the counter

Check the counter for ending value

 Process the data for this value of the counter

 Increment the counter value

End of loop

Program 44 - Schema for a Counter Control loop

Because three steps (initialization, check, and incrementing a counter) in the Counter Control

Schema always occur, they are included in many languages using a for statement. The for

statement in many languages implements these three steps as follows:

for (initialization; end condition check; increment) {

 Process for each element;

}

Program 45 - Translating a Counter Control loop into a for statement

The following JavaScript program shows the implementation of a counter control loop19. In this

plan, the user is asked for an input (n). The sum of all odd numbers from 1 to n is calculated and

output using the alert() function.

Note the use of the let keyword here to indicate the variable i is scoped to a local block and is

thus local scoped in the for block. The variables total and inputValue are outside of any

block and are global scoped.

<script>

 let inputValue = prompt("please enter a number")

 let total = 0

19 This schema is really a more complicated schema to calculate a sum of numbers, however it contains a counting

loop schema.

PROGRAMMING FOR THE WEB: 46

 for (let i = 1; i <= inputValue; i = i + 2) {

 total = total + i;

 }

 alert("The sum of odd numbers from 1 to " +

 inputValue + " is " + total);

</script>

Program 46 - Implementation of a Counter Control loop

Chapter 3.2. 7 Iterator loops – for/in and for/of for foreach
statements

An iterator is a looping structure that iterates over all of the members of an array. To understand

an iterator, consider the weekDays array defined earlier.

let weekDays = [“Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”]

The members of this array could be printed out using a standard for loop as follows:

<script>

 let weekDays = ["Monday", "Tuesday", "Wednesday", "Thursday",

 "Friday"]

 for (let i = 0; i < weekDays.length; i++) {

 alert(weekDays[i])

 }

</script>

Program 47 - Printing an array using a Counter Control loop

The for/in iterator allows the weekDays array to be processed in a simpler syntax. The for/in

equivalent to the Program 47 is shown in Program 48. The value x is set to the index of the first

member in the array, and the iterator sets x to the next array index until all members of the array

are processed. Note that the implementation of a for/in loop seems strange but will become

apparent later when the true nature of arrays in JavaScript is covered.

<script>

 let weekDays = ["Monday", "Tuesday", "Wednesday", "Thursday",

 "Friday"]

 for (let x in weekDays) {

 alert(weekDays[x])

 }

</script>

Program 48 – Printing an arraying using a for/in iterator

JavaScript also has a for/of statement, which is an iterator that iterates over the values in the

array rather than the array indices. The following is an example of the for/of iterator:

<script>

 let weekDays = ["Monday", "Tuesday", "Wednesday", "Thursday",

 "Friday"]

 for (let day of weekDays) {

 alert(day);

 }

</script>

47 PROGRAMMING FOR THE WEB:

Program 49 - Printing an arraying using a for/of iterator

Chapter 3.2. 8 Functional iterator – forEach

There is one other type of iterator, the forEach iterator. This iterator is executed by providing a

function to be called for each array member and illustrates how functional programming works.

The forEach iterator will be covered at the end of the chapter after functions have been covered

and will be used to introduce the reader to Lambda Functions in Functional Programming.

Chapter 3.2. 9 Functions

Functions in JavaScript are similar to methods in Java or C#, or functions in C. They are used to

abstract behavior. Functions are declared using the function statement, followed by the name of

the function, an open parenthesis, arguments to the function, a close parenthesis, and a block

which contains the body of the function. For example, a function which takes two input value

distance and time, and returns the speed would look as follows:

<script>

 function speed(distance, time) {

 return distance / time;

 }

</script>

Program 50 - Implementatiton of the speed function

Functions represent metadata as they provide some abstracted behavior to be used by data from

the web page, and so the function definitions are generally found in the head of a document.

Calling functions is part of the information on the web page and occurs in the body of the

document. The following is an example of a web page that prompts the user for values of

distance and time and prints out the speed. The program exits when a value of “-1” is entered for

the distance.

<html>

 <head>

 <title>Speed web page.</title>

 <script>

 function speed(distance, time) {

 return distance / time;

 }

 </script>

 </head>

 <body>

 <script>

 let d = prompt("Enter the distance, -1 to end")

 while (d != -1) {

 let t = prompt("Enter the time to travel the distance")

 alert(d / t);

 d = prompt("Enter the distance, or -1 to end")

 }

 </script>

 </body>

</html>

PROGRAMMING FOR THE WEB: 48

Program 51 - Sentinel Control loop program using a function to calculate speed.

Chapter 3.2. 10 Quick Check

1. What is the purpose of the let keyword in JavaScript?

2. How is the type of a variable determined?

3. What datatypes exist in JavaScript?

4. What is an undefined variable? How does it differ from a null variable?

5. What types of scoping are available in JavaScript? What is the default scope of a variable?

6. What 3 types of control structures are needed to create programs? Give an example of each

in a language you are familiar with.

7. What three looping types exist in most programming languages? Give an example of each

type in a language you are familiar with.

8. True or false: All operators (including the assignment (=) operator) return values.

9. What is short-circuiting of a logical operator? Show how this can be used to protect a

program from a zero divide.

10. Do operators return values?

11. What is the result of operators returning values for condition variables for if, while, or for

loops.

12. The text said an if condition can have a null statement. What is a null statement? Why is it a

bane to novice programmers? Why does JavaScript allow null statements?

13. Can a for or while condition have a null statement?

14. Does using the comparison operator (==) work for strings in Java/C#/C++/Python?

15. Functions are said to have “positional parameters” in JavaScript. What is the difference

between a positional and a keyword parameter?

16. Do functions always return a value? What do you think is returned if nothing is specified?

17. In your own words, explain what is meant that “functions are data” in JavaScript. This is

used to defined Lambda functions. If you are familiar with Lambda functions in Java, are

Lambda functions in Java really data? If not, what are they?

18. What happens if you write the following code: specifically, does it work, and if it does, what

is the length of the people array? What is the value of people [0]? What is the value of

people [5]?

let people = Array(2);

people(1) = “Nick”

people(2) = “Ann”

people(7) = “Carol”

Chapter 3. 3 Events, Onload Event and JQuery

One important paradigm that is implemented in JavaScript is Event Based Programming (EBP).

Events are asynchronous actions that occur (or are raised) while the program is running. These

actions (or events) are often generated by the user, such as clicking a button or changing the

value in a text field. But events can also occur from asynchronous action of the program, such as

loading the web page or the completion of reading of a file. The events which are raised are then

associated with a callback function that handles the event.

49 PROGRAMMING FOR THE WEB:

Chapter 3.3. 1 Associating a call back with an event

Associating a call back with an event is illustrated in the following program.

<html>

 <head>

 <title>Error using event </title>

 <script>

 function pressFunction() {

 alert("You pressed me");

 //document.write("You pressed me");

 };

 </script>

 </head>

 <body>

 <input type="button" id="myButton" value="Press me"

 onClick="pressFunction();"/>

 </body>

</html>

Program 52 - Using a form element in the head before it is defined.

In this example, the click event (called onClick) is associated with the function pressFunction,

which is metadata and defined in the head of the html page. When a user clicks on the button

that says, “Press me”, it calls the function associated with the click even, the pressFunction, and

an alert box is shown saying “You pressed me”.

This is the complete life cycle of events and call backs. An event (click) is mapped to a callback

function (pressFunction). When the event is raised (the user clicks the button), the event call

back function is called.

The rest of this section will explain how you should implement these in JavaScript.

Chapter 3.3. 2 Handling an Event – Unobtrusive JavaScript

Because event (or callback) functions are run in response to events from the program, they are

metadata. This implies that when writing an HTML page, it is normal for a programmer to define

functions to handle events coming from form elements in the head of the html document. A

standard know as Unobtrusive JavaScript says that all JavaScript should be maintained in the

head of the document, so setting the onClick as part of the button definition is considered bad

practice.

The correct way to assign a callback function is as follows. First it is important to know that all

components on a web page are contained in a Document Object Model, or DOM. The DOM is

very important when writing JavaScript for a browser, as nearly everything is in the DOM.

However, for now you should know that buttons, text fields, checkboxes, etcetera, are all stored

as objects in the DOM.

Unobtrusive JavaScript says that the call back should be assigned by retrieving the button, in this

case the button named “myButton” from the DOM using the getElementById method. The click

PROGRAMMING FOR THE WEB: 50

event for this button is then assigned to an anonymous function which is then called when the

button is pressed. This is shown in Program 53 below.

<html>

 <head>

 <title>Error using event </title>

 <script>

 document.getElementById("myButton").click = function() {

 alert("You pressed me");

 };

 </script>

 </head>

 <body>

 <input type="button" id="myButton" value="Press me" />

 </body>

</html>

Program 53 - Using a form element in the head before it is defined.

However, there is a problem with this program. The form elements, such as a button, are defined

in the body of the page, and that is after the attempt to use it to set its callback occurs in the

head. As the following JavaScript program shows, this results in an error when trying to

reference the button before it is defined. Note this error occurs in the browser console, which is

not directly viewable to the user. If you do not know how to use the browser console, you

should Google how to access it for the browser you are using (accessing the console is different

for every browser, but is available in every browser).

51 PROGRAMMING FOR THE WEB:

Figure 4 - Error message processing a form element before it is defined

How to handle this problem will be the subject of the next section.

Chapter 3.3. 3 Handling an Event – onload event

To handle the problem of needing to access the button in the head, an event is defined that is

raised after the form is loaded, and all form elements are defined. This event is called an

onLoad event. The onLoad event occurs after the form is loaded, and thus after all the form

elements have been processed and are available to be referenced. A callback function attached to

the onLoad event can safely reference form elements in the body, knowing that the form is

completely loaded, and the body of the HTML file is processed. This is shown in the following

example.

<html>

 <head>

 <title>Using onLoad event </title>

 <script>

 function myOnLoad() {

 document.getElementById("myButton").onclick = function() {

 alert("You pressed me");

 }

 }

 window. Onload = myOnLoad;

 </script>

PROGRAMMING FOR THE WEB: 52

 </head>

 <body>

 <input type="button" id="myButton" value="Press me" />

 </body>

</html>

Program 54 - Setting a callback function in an onLoad event

This small piece of code is complex, so it will be covered in some detail here. First a function,

myOnLoad is defined, and it is in this function that the myButton’s click event is associated with

the function to alert the user. The function myOnLoad is not called, so it is defined but not yet

executed.

The next line of code, window.onload = myOnLoad, associates the myOnLoad method with the

onLoad event. This tells the HTML DOM to run the myOnLoad function when the onLoad event

is raised, after the page is loaded. This means that the button myButton has been defined and can

be associated with the listener to alert a message when the button is pressed. This part is fairly

simple, at least in a big picture sense, to understand.

What is much more complex is that the function myOnLoad is not called in the statement

window.onload = myOnLoad, but the function is assigned to the variable window.onload

and called later when the onLoad event is raised. To see this, compare the previous program

with the next program, which includes the parenthesis in the assignment of the window.onload

variable. This is a common mistake by novice programmers, as most novices have been taught

that functions are executable statements that are run, and not data that can be passed around

using variables.

<html>

 <head>

 <title>Window onload event</title>

 <script>

 function myOnload() {

 /* This code causes the JavaScript to fail if

 uncommented. But it would not work anyway as the

 button code has not been loaded…

 document.getElementById("myButton").onclick = function() {

 alert("You pressed me");

 }

 */

 alert("window is not loaded");

 return "you dummy";

 }

 alert(window.onload = myOnload());

 </script>

 </head>

 <body>

 </body>

</html>

Program 55 - Program showing function being called rather than being set to a variable.

53 PROGRAMMING FOR THE WEB:

The result of this second program is that the alert is run once when the head of the HTML file is

processed, and the window.onload variable is set to the string “you dummy”, which is what is

returned from the myOnLoad function. Once again, you cannot associate the button with a

function as the button would not exist. The code to associate a function with an event must be

run in the onLoad event, not when the head of the HTML file is processed.

Before continuing, the reader should note that if a function is referenced without parenthesis (e.g.

myOnLoad) the function is treated as data. If a function is referenced with parenthesis (e.g.

myOnLoad()), the function is executed. From a syntactic point of view, this is probably the issue

that causes the most problems to novice JavaScript programmers.

This example shows an important feature of JavaScript. Functions in JavaScript are treated as

first class object and can be used like any other data type. Functions that can be used as data are

called a Lambda functions. Lambda functions are the basis for a programming paradigm called

Functional Programming, which is a very different paradigm from Procedural or Object-Oriented

Programming. Even in languages that purport to have included lambda functions, like Java, are

actually providing syntactic sugar for other language constructs, and languages like Java do not

provide a real basis for Functional Programming.

Note that since functions can be data, they can be passed as data values. This, in this program,

the programmer has realized that the myOnload() function is likely never used in the program

except in response to an onLoad event. There is really no need to clutter the JavaScript

namespace with the name of the function, and the function is defined anonymously. This is the

normal way the event callback is defined using an anonymous lambda function.

<html>

 <head>

 <title>Using onLoad event </title>

 <script>

 window.onload = function() {

 document.getElementById("myButton").onclick = function() {

 alert("You pressed me");

 };

 }

 </script>

 </head>

 <body>

 <input type="button" id="myButton" value="Press me" />

 </body>

</html>

Program 56 - Setting an event callback function using an anonymous function.

Here the variable is set in the same statement as the function defined.

Note that the parentheses here do not mean the function is being executed but are part of the

function definition. Once again this is confusing to novices learning JavaScript. To execute this

function, the statement windows.onload=function(){…}() would have to be used. This will form

the basis for another JavaScript paradigm to be introduced later, the Immediate-Invoked-

Function-Expression (IIFE).

PROGRAMMING FOR THE WEB: 54

Chapter 3.3. 4 JQuery ready function

JQuery is a library that provides many functions which are useful when doing JavaScript

programming. This text will use JQuery extensively. This is because JQuery provides so many

useful features. Also, many of the examples of JavaScript programming found on the internet

use it, and it is hard to read JavaScript examples on the web without knowing the basic concepts

of JQuery.

To use JQuery, the following line should be included in the head of your HTML document

before any JQuery function is used. This line includes the JQuery library and gives the HTML

document access to all JQuery utility. It must be included before any other libraries that might

use JQuery.

<script src=""https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js""></sc
ript>

Once installed, JQuery statements are formatted as $(identifier). In this statement, the $ is

short for the jQuery function, and so is just shorthand for saying jQuery(identifier).

The identifier can be one of many different types of HTML elements, such as a CSS selector,

JavaScript elements, element arrays, objects, selections, or other types of elements. JQuery will

look at the element that is being requested and call a function that will perform the correct

operation for that type20.

In this section, only the JQuery options needed to assign the button onClick event will be

covered. This will be done in two steps. The first will be how to handle the form loading in

JQuery. The second will be how to set the onClick event for a button.

The JQuery function that is run after the HTML file has completed processing and all form

elements are defined is the $(document).ready() function. The $(document).ready()

function is similar to setting a function in the window.onload event, and for the purpose here

will be used interchangeably.

The following code can be used to print a message to an alert box after the form elements have

been processed. Note here that an event is not set to a function to execute, but the

$(document).ready() function is executed when the HTML file has loaded. This is just a

different way to handle the semantics of events. JavaScript will set a function to an event

variable, and JQuery will call a method when the event is raised. Do not let this confuse you, as

the effect is the same as setting the event variable. The function is run when the event is raised.

<html>

 <head>

 <title>Window onload event</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js">

 </script>

 <script>

20 For more information on how JQuery works and the types that are accepted to the jQuery function, see

http://api.jquery.com/jquery/.

55 PROGRAMMING FOR THE WEB:

 $(document).ready(function() {

 alert("window is loaded");

 });

 </script>

 </head>

 <body>

 </body>

</html>

Program 57 - Using the JQuery $(document).ready() function

As of JQuery 3.0, the $(document).ready() syntax has been deprecated, and the current

recommended syntax for calling the ready function is to put the function to be run when the page

is loaded as a parameter to the jQuery function. Remember that $ is the jQuery function, so

$(function(){…})

is the same as saying

jQuery(function(){…})

The jQuery function will recognize the parameter is a function and set it to respond to the ready

event. This is only a syntax change to make the code shorter and maybe easier to understand.

Just remember if a function is passed to the jQuery function, it is set to the JQuery ready event.

<html>

 <head>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js

">

 </script>

 <title>Window onload event</title>

 <script>

 $(function() {

 alert("window is loaded");

 })

 </script>

 </head>

 <body>

 </body>

</html>

Program 58 - JQuery 3.0 ready function

Chapter 3.3. 5 Using JQuery to access an DOM variable

One of the big advantages to JQuery is that it has a library to provide shortcuts to accessing

JavaScript variables. JQuery shortcuts allow the retrieving any DOM elements such as buttons,

textboxes, etc., using a simplified format. The JavaScript function to retrieve a from element by

its id, document.getElementById(“id”), can be written more simply as $(“#id”) in JQuery,

as is shown in the program below. From now on, JQuery syntax will be used to retrieve DOM

elements.

PROGRAMMING FOR THE WEB: 56

<html>

 <head>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js">

 </script>

 <title>Window onload event</title>

 <script>

 $(function() {

 $("#myButton").click(function(){

 alert("you pressed me")

 })

 })

 </script>

 </head>

 <body>

 <input type="button" id="myButton" value="Press me" />

 </body>

</html>

Program 59 - Using JQuery to access a DOM variable

In this example, the id of the button is prefaced by the “#” (hash) sign. JQuery can be used to

access various types of identifiers (called selectors in CSS), and it uses the CSS conventions to

specify the type of selector it is using. For example, to use a class selector, the “.” (dot) will be

prepended to the id. The “#” (hash) means the name is to be used to access the variable. The

types of variables that can be accessed correspond to their CSS definitions, and will be seen in

more detail in the chapter on CSS.

Also note that the name of the JQuery function to handle an onClick event is the click function

and setting the event variable has been changed to a function call. Both renaming the event and

changing the event to a function call are conventions followed in JQuery.

Chapter 3.3. 6 Quick Check

1. What is an event?

2. What does it mean to say an “event is asynchronous”?

3. How is EBP different from procedural programming, where all programs being in the main

and proceed one statement after another.

4. What is a Lambda Function?

5. What is an onLoad event. How does assigning a function to an onLoad event differ from

using the $(document).ready() JQuery function?

6. What is the shorthand method to write the $(document).ready() JQuery function?

7. How would you access an DOM variable named “myVariable” using JQuery?

Chapter 3. 4 Processing Form elements using JQuery and
Unobtrusive JavaScript

This section will introduce the reader to how to implement and call functions for process an

HTML form in JavaScript. It will use EBP and callbacks, and two JavaScript paradigms,

57 PROGRAMMING FOR THE WEB:

unobtrusive JavaScript and Immediate Invoked Function Expressions (IIFE), currently

considered best practice, will be introduced in this chapter.

This section will use EBP to process the data on the HTML form implemented in the shown

below. Each topic in this sub chapter will modify the head for the HTML file to show how to

process the form element that is introduced in that section. The reader can copy the HTML form

and simply replace the head as each new topic is covered to see how they work.

One of the main uses of JavaScript is to provide the interactivity to a web page. This

interactivity will be used to show how to process the data on a form and print it back to the user

in an alert box. This will be presented in the following manner:

1. A callback function will be added to the button so that when it is clicked the function will

be called. The handling of the button will then be processed in the callback function.

This section will introduce Unobtrusive JavaScript, and how to use the principals of

Unobtrusive JavaScript to set a callback function.

2. An illustration of how to handle each of the different form element types will be shown.

These form elements are:

2.1. A textbox

2.2. A checkbox

2.3. A radio button group

The form presented here will be processed, and each of its elements printed out. In the

subsequent sections, the entire head of the document will be shown in full as it is developed. To

see how each option works, take the head from the subsection and insert it into this program.

The final result will be a JavaScript program to process the data on the form and print it to the

console.

<html>

 <head>

 <title>Map Example Input Screen</title>

 <script>

 // New code will go here

 </script>

 </head>

 <body>

 <h1>Map Example Input Screen</h1>

 <p>

 <label id="l1" for="title">Title</label>

 <input type="text" id="title" size="20">

 </p>

 <p>

 Map Options

 <label id="l2" for="resize">Allow map to be resized:

 </label>

 <input type="checkbox" id="resize"/>

 <label id="l3" for="recenter">

 Allow map to be re-centered:

PROGRAMMING FOR THE WEB: 58

 </label>

 <input type="checkbox" id="recenter" checked />

 </p>

 <p>

 Type of Map

 <input type="radio" name="maptype" id="XYZMap"

 value="XYZ Map"/>

 <label id="label1" for="XYZMap">XYZ map </label>

 <input type="radio" name="maptype" id="StamenMap"

 value="StamemMap" checked />

 <label id="label2" for="StamenMap">Stamen Map </label>

 </p>

 <p>

 Screen Size

 <input type="radio" name="screenSize" checked

 id="600x480" value="600x480"/>

 <label id="label3" for="XYZMap">600x480 </label>

 <input type="radio" name="screenSize" id="1024x768"

 value="1024x768"/>

 <label id="label4" for="XYZMap">1024x768 </label>

 <input type="radio" name="screenSize" id="1280x800"

 value="1280x800"/>

 <label id="label5" for="XYZMap">1280x800 </label>

 </p>

 <p>

 Center of Map

 <label id="label1" for="lat">Latitude </label>

 <input type="number" id="lat"/>

 <label id="label2" for="long">Latitude </label>

 <input type="number" id="long"/>

 </p>

 <input type="button" value="Process Form" id="processButton" />

 </body>

</html>

Program 60 - HTML form to be processed in Chapter 3.4

Chapter 3.4. 1 Including JQuery

To use the JQuery library, it must be included. This is the first modification to the head of the

program made. The head of the program is now:

<head>
 <title>Map Example Input Screen</title>

59 PROGRAMMING FOR THE WEB:

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.Java

Script">

 </script>
 <script>

 // New code will go here…

 </script>

</head>

Program 61 – Inserting JQuery into the form

Chapter 3.4. 2 Adding an Event Callback to a Button

To begin processing the form, the Process Form button at the bottom of the form will be given

functionality by setting the callback on the onClick event.

In a button, the onClick event is raised when the button is pressed. This event behavior can be

specified when the button is created, as in the following example that calls an alert when the

button is pressed.

<input type="button" value="Process Form"

 onClick="alert('Button is clicked')" />

In this code, the JavaScript code to execute (e.g. creating an alert box) is assigned in a string to

the onClick event. In the web page we are developing, putting all of the JavaScript code directly

in the html button would be difficult and probably unreadable. The onClick can execute any

JavaScript expression, so it is easy to call a function and put the extended behavior in the

function and call that function when the button is pressed.

<input type="button" value="Process Form"

 onClick="processForm()" />

This method of providing a callback for a function is valid and works but represents an idiom

that is out of favor. A style known as Unobtrusive JavaScript21 is currently considered best

practice for developing web pages. One of the principals of Unobtrusive JavaScript is that

HTML markup and JavaScript should not be mixed. This was done in the previous example,

where a JavaScript statement was placed in the HTML input tag for the onClick event.

To separate HTML markup from JavaScript, the JQuery $(document).ready function is used to

associate the form element (the button) with a JavaScript function. To do this, first the button is

given an id so that it can be retrieved from the DOM. This was already done in the HTML form

above.

 <input type="button" value="Process Form" id="processButton" />

In the ready function, the DOM element for the button is retrieved, and an anonymous function is

attached to its onClick event. This is illustrated in the following example.

<head>

 <title>Map Example Input Screen</title>

21 Unobtrusive JavaScript is a set of best practices, one of which not mixing HTML markup and JavaScript. For

more information about Unobtrusive JavaScript, see: https://en.wikipedia.org/wiki/Unobtrusive_JavaScript.

https://en.wikipedia.org/wiki/Unobtrusive_JavaScript

PROGRAMMING FOR THE WEB: 60

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.Java

Script">

 </script>

 <script>

 // JQuery $(document.ready()) function

 $(function() {

 document.getElementById("processButton").onclick =

 (function(){

 alert("button is pressed");

 });

 });

 </script>

</head>

Program 62 - Head of HTML file to associate a button with a function

Chapter 3.4. 3 Processing a textbox

In the previous example, an alert box was used to test if the program was wired correctly, e.g.

that the processButton function was called when the button was pressed. It is important in any

language to make sure parts of the program work before trying to build the entire program.

Novice programmers will often attempt to write entire programs and end up with a 20-line

program with 100 compiler errors, several logic errors, and no chance to make a working

program. The first thing to do when writing a program is to break the program down into simple

pieces and make each piece work while building those pieces into the larger program.

This is true in languages like Java, C#, C/C++, etc., but is even more true in a language like

JavaScript. In JavaScript, a single bad line of code can cause a program of 100’s of lines of

working JavaScript to simply produce no output. These programs will often produce confusing

errors, or no errors at all. In JavaScript, it is always best to build a program in stages, making

sure each change has the desired effect.

Now that the wiring for the button is working, the processing of the form can be implemented.

For this program, processing means the element will write a message to the console.log. First,

all of the text boxes will be processed. Note that the term textbox as used here includes input

types other than text. Input types like number and calendar are also treated like text boxes.

To process a textbox, its value attribute is retrieved. The value attribute contains the message in

the textbox as a string. Note that JQuery is a little strange in that when it retrieves a form

element, it retrieves it as an array, and so the first element in the array needs to be dereferenced

to get the value. This is shown in the code below to get the value from the title textbox.

<script>

 $(function() {

 $("#processButton").click(function(){

 console.log("The title is " + $("#title")[0].value);

 });

 });

</script>

Program 63 - Retrieving the text from a textbox using the JQuery array format.

61 PROGRAMMING FOR THE WEB:

An alternative to using the array notation is to use the JQuery prop() (property) function, which

was introduced in JQuery 1.6. Both of these work, but the prop() function is the emerging

standard, and so will be used in this textbook. Processing all of the textboxes using prop

function is shown below.

<head>

 <title>Map Example Input Screen</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.Java

Script">

 </script>

 <script>

 $(function() {

 $("#processButton").click(function(){

 alert("Be sure to check the console");

 // Text Boxes

 console.log("The title is " + $("#title").prop('value'));

 console.log("The center of the map is latitude " +

 $("#lat").prop('value') + " and longitude " +

 $("#long").prop('value'));

 });

 });

 </script>

</head>

Program 64 - Processing textboxes with JQuery

Chapter 3.4. 4 Processing a checkbox

The next step to process the form is to process the checkboxes. Just like the textbox had a value

property that contained the text that was entered, the checkbox has a checked property of that

indicates whether or not it is checked. If the checkbox is checked, the property is true, else it is

false. The checkbox also has a value property, but that is not used in this example.

The processing of a checkbox is analogous to the processing of a textbox above. The checkbox

object is retrieved from the DOM, and then the checked property, rather than the value property,

is retrieved. This is shown in the code below:

console.log("Allow the map to be resized? " +

 $("#resize").prop('checked'));

console.log("Allow the map to be recentered? " +

 $("#recenter").prop('checked'));

The processing of the checkboxes is added to the head section of the file above, and the new

HTML head is shown below.

<head>

 <title>Map Example Input Screen</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.Java

Script">

 </script>

 <script>

 $(function() {

PROGRAMMING FOR THE WEB: 62

 $("#processButton").click(function(){

 alert("Be sure to check the console");

 // Text Boxes

 console.log("The title is " + $("#title").prop('value'));

 console.log("The center of the map is latitude " +

 $("#lat").prop('value') + " and longitude " +

 $("#long").prop('value'));

 // Check Boxes

 console.log("Allow the map to be resized? " +

 $("#resize").prop('checked'));

 console.log("Allow the map to be recentered? " +

 $("#recenter").prop('checked'));

 });

 });

 </script>

</head>

Program 65 - Processing checkboxes with JQuery

Chapter 3.4. 5 Processing radio buttons

Processing radio buttons is more complicated that textboxes and checkboxes. For check boxes,

each box was processed separately, and these checkboxes only required retrieving a property

(value or checked) from the object. Radio buttons are contained in a group, and so to get the

value that is checked requires that the radio button group be processed to see which one radio

button has been checked.

To process radio buttons, the first step is retrieved all the buttons in the group by the name

attribute, not id attribute. Unlike the id, which is unique, the name is not. And the name was

used to group the radio buttons in the User Interface (UI). To process the radio button, all of the

buttons having the same name are retrieved using the getElementsByName22 method as an array

of individual radio buttons.

The most straight forward way to process the radio buttons is to walk the array to see which

array element is checked, and then retrieve the properties (id, value, etcetera) associated with that

array element. This is shown below in the function below, where the

document.getElementsByName function is used to get an array of radio buttons, and that array is

then processed to find the checked item. If the item is checked (the checked attribute is true), the

value attribute is printed.

Note that for the radio button, the value attribute is used in this example. The value is set when

the specific radio button was defined in the HTML in order to get a string associated with the

radio button actually selected.

<head>

 <title>Map Example Input Screen</title>

22 Note that names of the methods. To retrieve a single object such as a checkbox or textbox, the method

getElementById is called. Note that the string Element in this name is singular. To retrieve the radio button group,

the getElementsByName is called. Not the string Elements is plural.

63 PROGRAMMING FOR THE WEB:

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.Java

Script">

 </script>

 <script>

 $(function() {

 $("#processButton").click(function(){

 alert("Be sure to check the console");

 // Text Boxes

 console.log("The title is " + $("#title").prop('value'));

 console.log("The center of the map is latitude " +

 $("#lat").prop('value') + " and longitude " +

 $("#long").prop('value'));

 // Check Boxes

 console.log("Allow the map to be resized? " +

 $("#resize").prop('checked'));

 console.log("Allow the map to be recentered? " +

 $("#recenter").prop('checked'));

 // Radio Buttons

 maptype = document.getElementsByName("maptype")

 for (let i = 0; i < maptype.length; i++){

 if (maptype[i].checked) {

 console.log("The maptype is " + maptype[i].value);

 }

 }

 });

 });

 </script>

</head>

Program 66 - For Loop to process radio buttons

JQuery has abstracted this loop into a single line that can be used to process the radio button.

$('input:radio[name=maptype]:checked').prop('value'));

This statement says that the elements that have the name maptype are an input radio button

group, which JQuery is to loop through return the checked radio button. The value property of

the selected radio button is then retrieved. The JQuery equivalent to the previous head code

would be the following.

<head>

 <title>Map Example Input Screen</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.Java

Script">

 </script>

 <script>

 $(function() {

 $("#processButton").click(function(){

 alert("Be sure to check the console");

 // Text Boxes

PROGRAMMING FOR THE WEB: 64

 console.log("The title is " + $("#title").prop('value'));

 console.log("The center of the map is latitude " +

 $("#lat").prop('value') + " and longitude " +

 $("#long").prop('value'));

 // Check Boxes

 console.log("Allow the map to be resized? " +

 $("#resize").prop('checked'));

 console.log("Allow the map to be recentered? " +

 $("#recenter").prop('checked'));

 // Radio Buttons

 console.log(

 $('input:radio[name=maptype]:checked').prop('value'));

 console.log(

 $('input:radio[name=screenSize]:checked').prop('value'));

 });

 });

 </script>

</head>

Chapter 3.4. 6 The final web page to process a form

The following is the final result of the web page to create and process the form. If the reader has

correctly implemented all the changes above, they should have this solution, but it is included

here in case readers have issues.

<html>

<head>

 <title>Map Example Input Screen</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.Java

Script">

 </script>

 <script>

 $(function() {

 $("#processButton").click(function(){

 alert("Be sure to check the console");

 // Text Boxes

 console.log("The title is " + $("#title").prop('value'));

 console.log("The center of the map is latitude " +

 $("#lat").prop('value') + " and longitude " +

 $("#long").prop('value'));

 // Check Boxes

 console.log("Allow the map to be resized? " +

 $("#resize").prop('checked'));

 console.log("Allow the map to be recentered? " +

 $("#recenter").prop('checked'));

 // Radio Buttons

 console.log(

 $('input:radio[name=maptype]:checked').prop('value'));

 console.log(

 $('input:radio[name=screenSize]:checked').prop('value'));

65 PROGRAMMING FOR THE WEB:

 });

 });

 </script>

</head>

 <body>

 <h1>Map Example Input Screen</h1>

 <p>

 <label id="l1" for="title">Title</label>

 <input type="text" id="title" size="20">

 </p>

 <p>

 Map Options

 <label id="l2" for="resize">Allow map to be resized:

 </label>

 <input type="checkbox" id="resize"/>

 <label id="l3" for="recenter">

 Allow map to be recentered:

 </label>

 <input type="checkbox" id="recenter" checked />

 </p>

 <p>

 Type of Map

 <input type="radio" name="maptype" id="XYZMap"

 value="XYZ Map"/>

 <label id="label1" for="XYZMap">XYZ map </label>

 <input type="radio" name="maptype" id="StamemMap"

 value="StamemMap" checked />

 <label id="label2" for="StamenMap">Stamen Map </label>

 </p>

 <p>

 Screen Size

 <input type="radio" name="screenSize" checked

 id="600x480" value="600x480"/>

 <label id="label3" for="XYZMap">600x480 </label>

 <input type="radio" name="screenSize" id="1024x768"

 value="1024x768"/>

 <label id="label4" for="XYZMap">1024x768 </label>

 <input type="radio" name="screenSize" id="1280x800"

 value="1280x800"/>

 <label id="label5" for="XYZMap">1280x800 </label>

 </p>

 <p>

 Center of Map

PROGRAMMING FOR THE WEB: 66

 <label id="label1" for="lat">Latitude </label>

 <input type="number" id="lat"/>

 <label id="label2" for="long">Latitude </label>

 <input type="number" id="long"/>

 </p>

 <input type="button" value="Process Form" id="processButton" />

 </body>

</html>

Program 67 - Final program to process a form

Chapter 3.4. 1 Quick Check

1. What is a callback function? How is it used to process an event?

2. Give two ways to associate a callback with a button? Which is preferred? Why?

3. Are ids unique on a web page? Are names unique on a web page? How would you process

each of these?

4. Does callback code have to run a function?

5. What is the difference between a Lambda and Anonymous function? Which (if either or

both) are implemented in JavaScript?

6. What is the Web Console? How do you access it? Why would you use it?

7. What determines the radio buttons that make up a group?

8. Retrieve and display using alert boxes, with and without JQuery, the input from a textbox,

checkbox, and radiobutton,

Chapter 3. 5 Functional Programming in JavaScript

JavaScript is really a multi-paradigm language. Having the ability to handle more than one

paradigm can be a blessing and a curse, as having access to multiple ways to program gives a

programmer a lot of power in JavaScript, but it also makes the language hard to use and easy to

misuse. As we have seen in this chapter, JavaScript supports Imperative or Procedural

Programming. JavaScript supports Object Oriented Programming (OOP) through the use of

prototypes, though it is a very different type of OOP than most readers are familiar with in

Java/C#/C++ etc. JavaScript supports Event Driven Programming23.

JavaScript also supports some elements of Functional Programming, in particular lambda

functions. The forEach iterator is introduced here to introduce lambda functions, anonymous

functions, and the basic concepts of Functional Programming. Note that entire books are written

on Functional Programming, and so this meant to give a flavor of what Functional Programming

is, and how it is used in JavaScript. The Functional Programming introduction given here is

enough to be able to read and understand JavaScript examples, but is not enough to explain how

to use Functional Programming.

To understand Functional Programming, the following program a forEach function to iterate

over the weekDays array is presented.

23 For more information, see https://softwareengineering.stackexchange.com/questions/127672/is-javascript-a-

functional-programming-language.

https://softwareengineering.stackexchange.com/questions/127672/is-javascript-a-functional-programming-language
https://softwareengineering.stackexchange.com/questions/127672/is-javascript-a-functional-programming-language

67 PROGRAMMING FOR THE WEB:

<script>

 function printDay(day, index) {

 alert("Weekday " + (index+1) + " is " + day)

 }

 let weekDays = ["Monday", "Tuesday", "Wednesday", "Thursday",

 "Friday"]

 weekDays.forEach(printDay)

</script>

Program 68 - Final program to process a form

This program illustrates one aspect of functional programming: that a functional program is built

by allowing functions to call other functions that are parameters to the first function. The

forEach() function takes another function, the printDay() function. The printDay() function is

evaluated in the forEach function for each member of the array24, and the object and its index are

passed as parameters to the function.

The use of functions as data in a language is called a lambda function. A lambda function is a

function that is treated as data and can be passed as a parameter to other functions, assigned to

variables, or used as any other data type. Another example of using functional programming is

given in the Exercises at the end of this chapter.

In the example of Functional Programming in Program 68, the function printDay is only defined

to pass to the forEach method. Thus, there is really no reason to give it a name, and the function

would be better written as an anonymous function, as in the following example.

<script>

 let weekDays = ["Monday", "Tuesday", "Wednesday", "Thursday",

 "Friday"]

 weekDays.forEach(function(day, index) {

 alert("Weekday " + (index+1) + " is " + day)

 })

</script>

Program 69 - Final program to process a form

One Functional Programming pattern, the map reduce pattern, has gained a large following for

implementing Parallel Processing and Big Data processing, and so it is useful to be at least

somewhat familiar with Functional Programming.

Chapter 3. 6 Exercises

1. The following is Lincoln’s Gettysburg Address. Format this using HTML in JavaScript write

statements so that each paragraph is separate, and the text is centered. The lines in your

program should not be longer than 80 characters.

24 Note here the printDay function is named, but it is a lambda value since it is passed as data to another function.

Do not fall into the trap of believing all anonymous functions are lambda functions, of all lambdas functions are

anonymous. For more information about lambda verses anonymous functions, see

https://gist.github.com/ericelliott/414be9be82128443f6df.

PROGRAMMING FOR THE WEB: 68

2. Implement a file dialog in JavaScript, and alert the file name the user has chosen, or a

message if no name is chosen.

3. Research modal and non-modal dialog boxes. Discuss the difference between a modal and

non-modal dialog? When would you use each?

4. Write a program to read two numbers from textboxes, add them together, and display the

answer. Your answer should represent addition (5+6 = 11, not 56).

5. Write a program to read two strings from textboxes, append them together, and display the

answer. What does this say operator overloading of the + operator? Can you overload the +

operator in JavaScript to produce new semantics? What about other operators in JavaScript?

6. Create an array of 7 elements. Delete the 3rd element (element number 2). What happens to

the array?

7. Create an array of 10 elements (e.g. var array = new Array(10)). Try adding 11 elements to

the array. What happens?

8. Create an array of 25 numbers. Using the JavaScript array sort with a Lambda function, sort

the numbers highest to lowest. You may not use the reverse method, you must use a Lambda

function.

9. Process the form you developed at the end of Chapter 2.

10. Agree or disagree with the following statement, and give your reasons. Lambda expressions

as defined in Java are not true lambda functions, but syntactic sugar to hide anonymous inner

classes.

69 PROGRAMMING FOR THE WEB:

What you will learn

In this chapter, you will learn:

1. The purpose of CSS

2. How to include CSS into an HTML file

3. What the page header and footer are used for

4. CSS syntax

5. The 4 types of CSS selectors

6. The difference between formatting and semantic tags

7. How to define a header section of a web page

8. How to combine CSS tags to reference specific sections of a document

9. How to include a separate CSS file

10. How to style a simple form

Chapter 4 CSS and styling a web page

When creating a style for a web page, having a consistent look and feel to the application is

important. The pages should look similar in format, and the behavior of buttons and menu

options should work the same way across an application and suite of applications. Cascading

Style Sheets (CSS) is the language used to style web pages, to make the pages look consistent

and professional.

The form as it has been presented so far just contains the form elements, with no styling to make

it look more presentable. This is in keeping with an age-old programmer prejudice that if

something works, who cares what it looks like. But application development is about more than

making the page look nice. It is about how to design a User Interface/User eXperience (UI/UX)

that makes it easier and more pleasant for the user. A good thing for programmers to remember

is a system that is works but does not have users is as useless as a system that does not work.

Because of their implicit bias to simply make a system work, it usually does not fall to the

programmer to do the UI/UX. But they must interface with UI/UX designers and need to respect

what they do. That is why a basic understanding of CSS is important.

Like JavaScript, CSS is a language that is implemented inside of a web page. CSS uses the

HTML <style>…<style> tags to contain the CSS attributes. The CSS attributes are mapped to

HTML tags, ids, class names, or attributes to define how to style those elements.

This section will cover how to style the form developed in Chapter 2, and thus will present

information about CSS as it is needed. At the end of the chapter some extra examples will be

given to cover some useful ways to apply CSS for specific formatting.

Chapter 4. 1 Web Page Header and Footer

When designing a user interface, an important part of creating a consistent experience is to

design a consistent look and feel for the page. To create a look and feel, the first task is to

PROGRAMMING FOR THE WEB: 70

develop and implement consistent page layout. Here that involves creating a header and footer

section for the page.

To start the format for the header should be defined. A typical header presents information such

as a title associated with the program or entity, other heading elements (such as the

organization), a logo, and author information. Also, in the header is a menu of options for the

system, which for now will contain the entries Home, File, and About. The header we will create

for this page is as follows.

Figure 5 - Example HTML header

HTML provides two element selectors to make it easy to format the header and the footer of a

web page, the <header> and <footer> tags. This section will format the header element.

Chapter 4.1. 1 CSS Syntax

CSS code is defined in a section of the HTML web page between <style> and </style> tags25.

Between these tags, CSS code is embedded into the HTML, just as JavaScript was embedded in

the HTML. This CSS code contains display elements, or properties, that inform CSS how to

render the page. The format for CSS is the following:

<style>

 selector {

 attribute1 : value1;

 attribute2 : value2;

 }

</style>

Program 70 - CSS syntax

In CSS, a selector is entered, and then associated with a block of properties to apply to that

selector. There are 4 types of selectors that will be covered in this text26. They are:

1. Element selectors, which are tags such as the <header> and <p> tags.

2. Class selectors, which apply to a group of items. Class selectors start with a “.”, such as

header-icon or .header-desc, and are them referenced using the “class=.header-

desc” syntax in the element ag.

25 CSS styling can also be done directly in an HTML tag using the style attribute, but this violates the idea of

separating concerns in a web page, and like Unobtrusive JavaScript, best practice says to not mix CSS and HTML.
26 For a complete list of all selectors and how to use them, see https://www.w3schools.com/cssref/css_selectors.asp.

https://www.w3schools.com/cssref/css_selectors.asp

71 PROGRAMMING FOR THE WEB:

3. Id selectors, which apply to a single element referred to by its unique id. Id selectors start

with a “#”, such as “#inputForm”. The id attribute in the tag is used to reference the

selector.

4. Attribute selectors, which apply to attributes of a tag. For example, to make all textboxes

which are readonly have a gray background, the following display attribute tag would be

use:

<style>

 input:read-only {

 background-color: lightgray;

 }

</style>

Program 71 – Attribute Selectors

This attribute informs CSS to take any input tag which has a read-only attribute and make the

background color gray.

Each of these selectors will be explained in context in the following sections that style the input

form.

Display attributes, or properties, allow the programmer to describe how to display the

information that will later be associated with the tag. Properties like font, background-color,

border box, indentation, and literally scores of other attributes can be set. A complete list of all

attributes that can be set is at https://developer.mozilla.org/en-US/docs/Web/CSS/Reference.

Chapter 4.1. 2 Semantic Tags

The <header> is an element selector. It is also called a semantic tag.

Semantic tags are tags that are intended to simply provide formatting information, but have

meaning about the information, or structure of the information, on the page web page. To better

understand semantic tags, consider some of the tags in HTML that have been deprecated. For

example, the (bold) tag says what to bold the text (what to do with it). The tag

describes the text as important, and to render the text as important, normally by bolding it.

Similarly, the <i> (italicize) tag has been deprecated in favor of the (emphasis) tag. In

both of these examples, the new tags say something about the text, not something to do to the

text.

The <header> tag describes semantic information, that what is contained between the <header>

and </header> is a specific part of the page (the header), and not some random division on the

page. The header is the block at the top of a page, and the information associated with it is

specifically how to format the header of the document.

Chapter 4.1. 3 Setting up the header block

The header of a document is the part of the document that is displayed at the top of the web page.

The properties to define how the header should appear are set as display attributes when the

header tag is defined. The header tag is defaulted as follows in CSS.

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference

PROGRAMMING FOR THE WEB: 72

<style>

 header {

 display: block;

 }

</style>

Program 72 – Header definition

The default <header> tag includes just one attribute, display:block, which specifies that the

header sites in a block by itself at the top of the document. In CSS, a block27 attribute means

create a space that spans from the left to right margin of the element or page, allowing no other

elements to be displayed to the left or the right. This is the normal behavior of a header, which

generally spans the entire length of the top of the page. Like any display attribute can be

overridden if needed.

The header for the example page developed in this chapter will be built in stages in the

subsections below.

Chapter 4.1. 4 Changing the background and text colors

The first attributes to be change will make the box a dark color (we will use slategray) and

make the text white. This is done by setting the attributes background-color to

slategray, and color to white.

To make the header stand out more, a box will be placed around the header, using a 2-pixel large

blue line. The header is also indented 50- pixels from the sides and top and bottom. This results

in a first pass for the header in the following code.

<html>

 <head>

 <title>Please change this to the title of your page </title>

 <style>

 header {

 margin : 50px;

 border : 2px solid blue;

 background-color : slategray;

 color : white;

 }

 </style>

 </head>

 <body>

 <header>

 <h1>This shows the header style.</h1>

 </header>

 </body>

</html>

Program 73 – Header attribute settings

The page resulting from this program looks as follows:

27 For a complete listing of all display types, see https://www.w3schools.com/cssref/pr_class_display.asp.

https://www.w3schools.com/cssref/pr_class_display.asp

73 PROGRAMMING FOR THE WEB:

Figure 6 - First pass at the web page header

Chapter 4.1. 5 Changing the font size using the <p> tag

The text inside of the header should be larger than the normal text in the document, to make it

stand out. Normally text is placed inside of <p> (paragraph) tags in a document, and the styling

attributes applied to the <p> tag. The following example shows how the font-size can be

changed for the <p> tag to be 150% of its normal size.

<html>

 <head>

 <title>Map Example Input Screen </title>

 <style>

 header {

 margin : 50px;

 border : 2px solid blue;

 background-color : slategray;

 color : white;

 }

 p {

 font-size : 150%;

 }

 </style>

 </head>

 <body>

 <header>

 <h1>Map Example Input Screen</h1>

 <p> Gettysburg Research Institute<p>

 </p>

 </header>

 <p>

 Text to show effect of different <p> tag combinations

 </p>

 </body>

</html>

Program 74 – Making the text 150% of the normal size

When running this page, it is obvious that all the text in the document is 150% of the normal

size, not just the text in the header. Changing the <p> tag caused the text in all of the <p> tags in

the entire file to have the increased size of text

PROGRAMMING FOR THE WEB: 74

Figure 7 - Second pass at the web page header

To correct this so that the <p> tag will only affect the header, CSS allows tags to be combined so

that changes to only have effect when use inside of a specific division or section of the page.

The syntax for this is:

header p {

 font-size : 150%;

}

Program 75 - Combining the header and p tags

The code for the previous page has been changed so that only in the header does the <p> tag

change the size of the text to 150% of the normal size.

<html>

 <head>

 <title>Map Example Input Screen </title>

 <style>

 header {

 margin : 50px;

 border : 2px solid blue;

 background-color : slategray;

 color : white;

 }

 header p {

 font-size : 150%;

 }

 </style>

 </head>

 <body>

 <header>

 <h1>Map Example Input Screen</h1>

 <p> Gettysburg Research Institute<p>

 </p>

 </header>

 <p>

 Text to show effect of different <p> tag combinations

 </p>

 </body>

</html>

75 PROGRAMMING FOR THE WEB:

Program 76 – Paragraph text only affecting the header of the document

The result is the <p> tag only effecting the text in the header of the document.

Figure 8 - Third pass at the web page header

Chapter 4.1. 6 Dividing up the header block

In Figure 6, the header had 3 separate areas, one for the logo, one for the title and page

information, and one area for the options to be implemented. To divide a web page into parts, a

<div>28 (or division) tag is used. The <div> tag is the most useful of all CSS tags, as it can be

used to break up a web page into different areas, and to assign different styling or information

types to those areas. For now, it will be used to break the header into 3 pieces.

To break the header up into 3 pieces, 3 divisions are created. These are all placed inside of the

header section and can be thought of as parts of or children of the header section. This allows

these 3 divisions are to appear inside of the web page header. These 3 division are shown below.

<header>

 <div id="header-icon">

 <image src="GRI_logo.png" />

 </div>

 <div id="header-desc">

 <h1>Map Example</h1>

 <p>

 Example map input screen

 © Gettysburg Research Institute

 </p>

 </div>

 <div id="header-menu">

 <p>

 Home File About

 </p>

 </div>

28 The current thinking about CSS is that an HTML document should be divided into divisions (using the <div> tag)

when the page is being divided for styling purposes, and into sections (using the semantic <section> tag) when it is

being divided into parts that would be equivalent to areas in an outline. There is no difference other than the

semantic meaning of the section as part of a larger document organization. As this document is concerned with

formatting program web pages, it will use only divisions to keep the confusion to a minimum.

PROGRAMMING FOR THE WEB: 76

Program 77 - Dividing the header into 3 divisions.

This code only divides up the header so that the DOM knows they are 3 separate areas inside of

the header. The DOM does not know how to display them, so it just places them in separate

blocks, as shown below.

Figure 9 – Un-styled div sections

To make the divisions work as intended, they must be styled.

To style each division, the divisions must be given a way to reference them. If there are a

number of divisions to be styled the same, normally a class variable is defined in CSS, and

referenced using the class attribute in the tags. If the division is to be uniquely styled, it will be

given an id attribute, and CSS will style it using an id variable. Since the divisions in the

header will be unique for the header, they will use id variables to reference and style them. Note

in the program above, the individual divisions have been assigned the names header-icon,

header-desc, and header-menu. This follows CSS conventions which favor hyphenated

names.

When referencing id names in CSS, the name is prepended with a hash tag (#). For example, to

set the header-desc to be a display of inline-block the following would be used.

 #header-desc {

 display : inline-block;

 margin : 25px;

 }

Careful readers will remember that this is how id variables were referenced in JQuery. JQuery

uses CSS naming conventions to access DOM elements. This was alluded to earlier, but now is

made explicit. Thus, to use JQuery at least a passing knowledge of CSS is necessary to know

how to access DOM elements

The main purposed of the CSS for these header divisions is to set the display parameters for

them. The choice of inline-block tells the DOM to lay these divisions out as blocks, one after

another on the same line. The margin tells the DOM how far to space the elements apart.

77 PROGRAMMING FOR THE WEB:

The last attribute set in the header divisions is the float attribute. The float attribute defines

which side of the line to place the attribute on. Normally inline and inline-block elements start at

the far left and are placed after each other from left to right. By saying float: right, the

program is saying place this element starting at the far right, and then place subsequent elements

moving from right to left. Menus items generally are place at the right of the header to balance

the header.

The final CSS code for this example is shown below.

<html>

 <head>

 <title>Map Example Input Screen </title>

 <style>

 header {

 margin : 50px;

 border : 2px solid blue;

 background-color : slategray;

 color : white;

 }

 header p {

 font-size : 150%;

 }

 #header-icon {

 display : inline-block;

 margin: 50px 10px 50px

 }

 #header-desc {

 display : inline-block;

 margin : 25px;

 }

 #header-menu {

 display : inline-block;

 float: right;

 margin : 75px 50px 50px 50px;

 }

 </style>

 </head>

 <body>

 <header>

 <div id="header-icon">

 <image src="GRI_logo.png" />

 </div>

 <div id="header-desc">

 <h1>Map Example</h1>

 <p>

 Example map input screen

 © Gettysburg Research Institute

 </p>

 </div>

PROGRAMMING FOR THE WEB: 78

 <div id="header-menu">

 <p>

 Home File About

 </p>

 </div>

 </header>

 </body>

</html>

Program 78 - Completed header

This program gives the final, completed header for the page.

Figure 10 – Completed web page header

Chapter 4.1. 7 Managing CSS

To make managing a project and writing and reading source code easier, the CSS source code for

a web page is generally kept in a separate file from the html source. This file separation achieves

a number of positive benefits: 1) it keeps the styling information separate from the application

information, which makes it easier to read and understand the HTML program; 2) By separating

the styling and program, UI designers can work on the styling the application without interfering

with the programmers developing the application.

For the header developed above, the file containing the CSS could be kept in the file

WebMapExample.css, and the HTML could be kept in the file MapExample.html. The CSS file

is included in the web page using a <link> tag.

<link rel="stylesheet" type="text/css" href="WebMapExample.css">

The contents of the WebMapExample.css file is:

header {

 margin : 50px;

 border : 2px solid blue;

 background-color : slategray;

 color : white;

}

header p {

79 PROGRAMMING FOR THE WEB:

 font-size : 150%;

}

#header-icon {

 display : inline-block;

 margin: 50px 10px 50px

}

#header-desc {

 display : inline-block;

 margin : 25px;

}

#header-menu {

 display : inline-block;

 float: right;

 margin : 75px 50px 50px 50px;

}

Program 79 - WebMapExample.css file

The application file, MapExample.html, is now much simpler, and easier understand.

<html>

 <head>

 <title>Map Example Input Screen </title>

 <link rel="stylesheet" type="text/css" href="WebMapExample.css">

 </head>

 <body>

 <header>

 <div id="header-icon">

 <image src="GRI_logo.png" />

 </div>

 <div id="header-desc">

 <h1>Map Example</h1>

 <p>

 Example map input screen

 © Gettysburg Research Institute

 </p>

 </div>

 <div id="header-menu">

 <p>

 Home File About

 </p>

 </div>

 </header>

 </body>

</html>

Program 80 - MapExample.html

In the real world, most programmers will deal with the HTML and JavaScript, and UI/UX

designers will handle the CSS for a web page. However, both sides, programmers and UI/UX

PROGRAMMING FOR THE WEB: 80

designers, should know enough about the other technologies to be able to interface effectively

with their counter parts.

Chapter 4.1. 8 Quick Review

1. What are the four types of CSS tags? Give an example of each and describe how you might

use them.

2. In your own words, describe semantics? What is an HTML semantic tag, and how does it

differ from a formatting tag?

3. What is the difference between a display:block and a display:inline-block attribute? How

were they used to set up the header division of the web page?

4. How would you hide a division of an HTML document?

5. Looking at the following web page, https://www.w3schools.com/cssref/pr_class_display.asp,

discuss how you might use the display attribute to format a web page?

6. How might you specify a paragraph (<p>) tag so that it only impacts the text in the #header-

desc?

7. How would you format the <p> tag so that all of the output in the document associated with

an error message would be in red?

8. Create a CSS file and include it in another HTML file. Does the name have to be “.css”?

Chapter 4. 2 Adding the form to the page

After the header has been developed, the form is added to the page. For now, only the display of

the form will be presented to make the concepts clearer. Later, this chapter will show how CSS

can be used with JavaScript to control display of the form.

If the form is simply added to the page, as shown below, it looks very unprofessional. While it is

functional, it is ugly and would not inspire confidence from the users that the web page actually

works.

81 PROGRAMMING FOR THE WEB:

Figure 11 – Completed web page header

A much nicer layout of the form follows. The following is the form display that will be styled

using CSS. Following the form, the CSS and HTML are presented here and an explanation of all

the elements is given.

PROGRAMMING FOR THE WEB: 82

Figure 12 – Completed web page header

CSS

header {

 margin : 5px 50px 5px 50px;

 border : 2px solid blue;

 background-color : slategray;

 color : white;

}

header p {

 font-size : 150%;

 }

.header-icon {

 display : inline-block;

 margin: 50px 10px 50px

}

.header-desc {

 display : inline-block;

 margin : 25px;

}

.header-menu {

 display : inline-block;

 float: right;

 margin : 75px 50px 50px 50px;

}

83 PROGRAMMING FOR THE WEB:

#inputForm {

 margin : 10px 5px 5px 50px;

 background-color : beige;

 border : 2px solid black;

 display: inline-block;

 float : left;

 padding : 20px;

 width : 20%;

 height : 70%;

}

#map {

 margin : 0px 50px 5px 5px;

 background-color : beige;

 border : 2px solid black;

 display: inline-block;

 float : right;

 padding : 20px;

 width : 67%;

 height : 70%;

}

input:-moz-read-only { /* For Firefox */

 background-color: lightgray;

}

input:read-only {

 background-color: lightgray;

}

Program 81 – Form CSS example

The CSS for the head has been defined, and that leaves just 4 CSS tags to cover here. The first

are the #form and #map id tags. These two tags create boxes displayed on the web page to

contain other form elements. The #form is 20% of the size of the page, and the #map is 67% the

size of the page and is anchored to the right of the page using the float:right attribute. The

inline:block attribute tells CSS to put both on the same line. Since they only take up 87% of

the line, 13% of the line will not be included in either division and left blank between the two

pages. Both or the div sections have black boarder 2 pixels in size, and both will take up 70%

of the height of the page, with the rest used by the header. Finally, the padding says leave some

room on the right and left of the divisions before rendering the text.

The final two tags, the input:-moz-read-only and input:read-only tags, are to gray out any input

tags which are read only, e.g. the value for these input fields cannot be typed in by the user and

must be set programmatically. These are the read only fields on the map for latitude and

longitude.

HTML

<html>

 <head>

 <title>Map Example Input Screen </title>

PROGRAMMING FOR THE WEB: 84

 <link rel="stylesheet" type="text/css" href="WebMapExample.css">

 </head>

 <body>

 <header>

 <div class="header-icon">

 <image src="GRI_logo.png" />

 </div>

 <div class="header-desc">

 <h1>Map Example</h1>

 <p class="header-p">

 Example map input screen

 </p>

 </div>

 <div class="header-menu">

 <p class="header-p">

 Home File About

 </p>

 </div>

 </header>

 <section id="inputForm" />

 <p>

 <label id="l1" for="title">Title</label>

 <input type="text" id="title" size="20">

 </p>

 <p>

 Map Options

 <label id="l2" for="resize">Allow map to be resized:

 </label>

 <input type="checkbox" id="resize"/>

 <label id="l3" for="recenter">

 Allow map to be recentered:

 </label>

 <input type="checkbox" id="recenter" checked />

 </p>

 <p>

 Type of Map

 <input type="radio" name="maptype" id="XYZMap"

 value="XYZ Map"/>

 <label id="label1" for="XYZMap">XYZ map </label>

 <input type="radio" name="maptype" id="StamemMap"

 checked />

 <label id="label2" for="StamenMap">Stamen Map

 </label>

 </p>

 <p>

 Screen Size

 <input type="radio" name="screenSize" checked

 id="600x480" value="600x480" />

 <label id="label3" for="XYZMap">600x480 </label>

 <input type="radio" name="screenSize" id="1024x768"

 value="1024x768"/>

 <label id="label4" for="XYZMap">1024x768 </label>

85 PROGRAMMING FOR THE WEB:

 <input type="radio" name="screenSize" id="1280x800"

 value="1280x800"/>

 <label id="label5" for="XYZMap">1280x800 </label>

 </p>

 <p>

 Center of Map

 <label id="label1" for="lat">Latitude

 </label>

 <input type="number" id="lat" value="-77" readonly />

 <label id="label2" for="long" >Longitude </label>

 <input type="number" id="long" value="39" readonly />

 </p>

 <p>

 <label id="label1" for="creationDate">Creation Date

 </label>

 <input type="date" id="creationDate"/>

 </p>

 <input type="button" value="Process Form" />

 </section>

 <section id="map">

 <h1> This is where the map will go </h1>

 </section>

 </body>

</html>

Program 82 – CSS with form completed example.

PROGRAMMING FOR THE WEB: 86

Figure 13 – Completed web page header

For the HTML for the page, the only change was to add two section tags to create sections for

the form and the map. The section tag is a div tag that has a semantic meaning. A section to a

for is a completely separate part of the form. A division has no semantic meaning.

Chapter 4. 3 Exercises

Take the form you developed in Chapter 3 and style it using CSS.

87 PROGRAMMING FOR THE WEB:

Part II: JavaScript Objects and CRUD
Interfaces

Part II of this book gives an overview of how to create object in JavaScript. This object will then

be used as the basis for to create a Create-Read-Update-Delete (CRUD) interface. The interface

will initially persist objects LocalStorage for the web site. A server will then be created to

persist the objects to a Mongo database, and Asynchronous JavaScript And XML (ajax)

protocols will be used to connect the user interface to the server. This will create a complete

web application, from soup to nuts.

This application is unreasonably simplistic. However, it opens up and shows how to use all parts

of working web application. Once this application is complete, the reader will have a basic idea

of all parts of what is called the full application stack.

PROGRAMMING FOR THE WEB: 88

What you will learn

In this chapter, you will learn:

1. What version of JavaScript is used in this text, and why

2. Global (simple) object creation in Java

3. The nature of objects as property maps

4. JSON and how to serialize an object with JSON

5. How to implement and use Constructor Functions

6. What are protocols, and how do protocol chains work

7. How to use the DOM to find program elements such as Constructor Functions

8. How to use Constructor Functions to reconstruct objects

9. JavaScript scoping and closure

10. Models for JavaScript objects

Chapter 5 Objects in JavaScript

The procedural concepts of JavaScript were covered were covered in Chapter 3. These

procedural aspects at least appeared to be consistent with other, more common Procedural (or

Imperative) and Object-Oriented Programming (OOP) languages.

In some ways, though, JavaScript may already seems strange to the reader. For example, as was

previously pointed out, JavaScript has characteristics that are not Procedural; JavaScript has true

lambda functions (as opposed to languages like C# and Java that use lambda functions as

syntactic sugar to hide other language constructs), and can be used as a Functional language.

Functional programming is often a source of confusion to novices just getting used to JavaScript.

In addition, arrays are not primitive data structures, where elements are accessed using a base

address and index. In JavaScript, arrays are hash maps, and the index numbers are actually keys.

This makes accessing of elements in an array seem strange or almost wrong to some

programmers. Finally, JavaScript dynamic typing goes against everything most programmers

learned in their first programming class, where all types are statically typed.

But perhaps the strangest concept in JavaScript is its Object paradigm, and that is what will be

covered in this chapter. It is not at all like the Object paradigm built into more common OOP

languages such as Java/C#/C++.

To start, the reader should be aware of the basic definition of an object, which is that objects are

defined as collections of data elements and behaviors. This definition is true of more common

OOP languages such as Java/C#/C++, and JavaScript.

Languages such as Java/C#/C++ then refine the definition so that a type used for an object

definition is statically defined at compile time. The new operation in these languages then means

to instantiate (or create a completed final instance) of that object in memory. The definition of

that object in memory then never changes.

Language constructs such as the Java interface go a long way towards alleviating some of the

worst effects of this static model and made a true abstract definition in the language without the

89 PROGRAMMING FOR THE WEB:

C++ multiple inheritance confusion. This is why interfaces are so successful in making a better

object model in Java than C++. But the fact remains that abstract types (interfaces) and classes

are always statically defined in Java/C#/C++, and the new operator instantiates a static, final

copy of the object.

JavaScript takes the definition of an object as collection of data elements and behaviors, and then

uses a completely different view of how data elements and behaviors are defined. This view is

not wrong (as some Java/C#/C++ programmers would believe), but it is at odds with the more

traditional view of OOP languages. And until this view is understood and accepted for its own

merits, it will appear wrong to programmers using an invalid cognitive view of JavaScript

objects.

The purpose of this chapter is to explain the JavaScript view of objects. It will present this view

with no reference to the view of objects from other languages, as to try to bring in an

understanding of how objects are treated in a language like Java is much more a hindrance than a

help. A reader with no Object-Oriented-Programming background is likely at an advantage to

someone who feels they really grok Java.

The chapter will be divided as follows.

Chapter 5.1 will cover the specifications for the JavaScript, as defined by the European

Computer Manufacturers Association (ECMA) and discuss why this book is based on JavaScript

5 (or ECMA 5) instead of JavaScript 6 (ECMA 6+29) or higher,

Chapter 5.2 will describe in more detail why JavaScript is hard for programmers coming from

other languages to understand.

Chapter 5.3 will look at basic objects in JavaScript. The section will cover associative arrays and

give a more correct model of what an array is in JavaScript. It will then show how objects in

JavaScript are property maps, and not instances of classes as in a class-based OOP. Finally, it

will cover JavaScript Object Notation (JSON) format, which is a way to represent JavaScript

objects externally.

Section 5.4 covers the prototype-based object model used by JavaScript. Functions and their

prototypes will be explained, and how properties are resolved in JavaScript will be explained.

JSON will be revisited to show how a fully functioning object can be serialized to a string and

brought back into a program as the object type is was.

Section 5.5 covers JavaScript scope, and introduces JavaScript closures.

Section 5.6 will explain instance-based OOP languages, and how objects are implemented and

used in these languages, so that the reader can then compare the properties and behaviors.

At the end of this chapter, the reader should understand the object model that will be used in this

text, and that will be used in the next chapter.

29 I will use the term ECMA6+ to mean versions of JavaScript that are ECMA6 or higher.

PROGRAMMING FOR THE WEB: 90

Chapter 5. 1 Why Use ECMA 5 as a basis?

There are a number of reasons to choose ECMA5 over ECMA6+ as a basis for this book. The

first is that any future implementation of JavaScript30 will have to have the ability to be

transpiled into ECMA 5. All of the nifty features built into ECMA6+ are built on a feature in

ECMA5. My personal belief is that to understand a concept, the basis on which the concept is

built should be known. If you want to program in C, you should know Assembly. If you want to

program in Assembly, you should understand Computer Architecture and Computer

Organization. While understanding the foundations on which ideas are built might not be

necessary, there is almost always cases where not understanding them leads to difficult problems

that would easily be fixed if a programmer understood the next lower layer of abstraction.

The second reason for not choosing ECMA6+ is that the language is about making JavaScript

more concise, e.g. add new features to the language that make it easier to write, probably harder

to understand, and which definitely hide details that experienced programs do not need, but

which hinder the understanding of novice programmers trying to piece together how things are

connected. Once a programmer has an understanding of the parts, conciseness and ease are nice-

to-haves. But trying to learn how to implement a function when there are a dozen different

syntactic ways to define it (using the function statement, arrow functions with parameters, arrow

functions with one parameter, block-scoped functions, and I am sure I missed some) is not my

idea of fun.

The third reason for not using ECMA6+ is that it seems to be built with the idea that programs

will be written with a framework (React, Angular, Vue, Ember, yada, yada, yada). This is not a

book about any of those frameworks or frameworks in general. The intent is to teach CS

students CS principals and philosophies. Students can learn a framework, anyone one of which

will be relegated to legacy status is 5 years, after they graduate.

However, the biggest reason for choosing ECMA5 is that this is a book about understanding CS

principals, paradigms, and philosophies, and how to put them together to build a program. This

means limiting the complexity of the surrounding environment and concentrating on the

underlaying infrastructure that illustrates interesting CS principals. The concept of unstructured

data, as is laid out in JavaScript object representation. Object serialization and its realization in

JSON data. Storing and retrieving this serialized data. Variable scoping, and specifics like

function scoping that result in closures. Property maps and prototypes. These are issues that are

of interest in a CS education. Syntactic sugar to make it easier to write programs, or to make a

system more accessible to novice CS programmers, is the job of industry. I feel has no place in a

CS education.

Chapter 5. 2 Is JavaScript just plain weird?

At some point, nearly every programmer coming to JavaScript from another language will ask

themselves the question, “Is JavaScript just plain weird?”. Nothing in the language makes sense

based on how they have learned to program, and so JavaScript just seems inconsistent and plain

wrong. But let me assure you that there is nothing wrong with JavaScript. It is perfectly

30 At least until Web Assembly (WASM) becomes the accepted standard, which is still years away. But even

WASM will have its roots in JavaScript 5.

91 PROGRAMMING FOR THE WEB:

consistent and makes very good sense. JavaScript is just different, and at odds with unstated

(and probably unrecognized or unknown) cognitive models and metaphors that the programmer

accepts as their reality. When I hear someone say how strange JavaScript is, the problem almost

always comes from the programmer trying to apply a wrong understanding to the language.

The problem is based in human nature. When approaching a new concept that appears similar to

another concept they already know, people seem to be hardwired try to understand the new

concept by creating a metaphor of the old concept works and trying to apply it to the new

concept. If the metaphor fails, many people will simply give up on understanding a new and

perfectly valid concept, saying simply it doesn’t make sense. The new concept isn’t wrong, the

metaphor used to understand it is wrong31.

I personally am convinced that this is why most people find STEM disciplines so hard. The

concepts and ideas in the Liberal Arts and Social Sciences are pretty malleable, and even an

incorrect metaphor can be twisted and combined with a twisted version of the concept to create a

metaphor that sort-of works as explanation of the concept. But in truth the metaphor and the

understand are actually invalid.

In STEM, concepts and ideas are much less forgiving, and mean exactly what they mean.

Concepts cannot be twisted to fit an incorrect metaphor. STEM forces people to give up

incorrect metaphors and adopt new metaphors; a very difficult task.

To better understand what a metaphor is, and why they have to be understood carefully, consider

a very common metaphor in CS, that of a stack data structure and a cafeteria tray dispenser, such

as the one shown in the figure below.

Figure 14 - Tray Dispenser

When learning the stack data structure, the metaphor that is traditionally used is that a tray is

placed on the top of the stack of trays, and so the last tray placed is the first one accessed, and a

stack is just a Last-In-First-Out (LIFO) queue.

31 Godel’s theorem proves that no metaphor can ever be sufficient, as complete systems have undecidability, and

decidable systems are incomplete. A large part of education should be helping people understand this and teaching

them how to give up invalid metaphors when they no longer work.

PROGRAMMING FOR THE WEB: 92

But this metaphor fails quickly. Consider, what is the Big-O of placing a new tray at the top of

the dispenser? Since all of the trays must be moved, it is O(n). But as anyone programming a

stack data structure knows, placing a new element in a stack is O(1). Something is wrong, and

what is wrong is the metaphor32.

It is only when the student comes to understand a stack as it is implemented in an array that a

more correct, and much more useful metaphor, is understood.

The problem with Objects in JavaScript can often be traced to a metaphor problem. Object

Oriented Programing (OOP) is a way of abstracting a problem around data which makes up the

object, and behaviors that can be applied to the object. There is nothing in the definition that

talks about implementation, and there are many ways to implement the basic concept of an

object.

In more traditional OOP, a class creates a type that is instantiated to create an Object. This

Object is defined by the data (instance variables) and behaviors (methods) that are defined in the

class. The class represents a type, or model, of what instance of the class will look like when the

program is run, and a variable of the class type is created. The type (class) cannot be changed

after compilation, and new behaviors and data cannot be added. In Java, and other traditional

OOP languages, the definition of the type is statically defined when the program is compiled.

The type of variable can be changed at run time, but only by creating a new variable in memory,

and that variable must also correspond to a statically defined class.

JavaScript was specifically implemented using a different way to type and create variables. In

JavaScript, the type of the variable is same as the last value it was assigned to. This has been

seen previously in the text and was called dynamic typing. But of even greater significance to

the discussion hear is that the type itself is dynamically typed and can be modified at runtime.

This means that variables of a specific type can be changed to add new properties (what are

fields in a class in static OOP), and even the functions associated with the object can change.

In JavaScript the data and type of a variable are dynamic and can be changed while the program

is running. A metaphor based on the idea of creating classes to instantiate instances of a type

makes no sense to JavaScript.

This view of an object is in keeping with the definition of OOP. Remember that OOP is a way

of abstracting a problem around data which makes up the object, and behaviors that can be

applied to the object. It is just the abstraction in JavaScript for the object occurs at runtime, not

compile time. The unstated assumption of most new JavaScript programmers that the metaphor

of a static definition and instantiation is simply not relavent.

To implement this runtime definition of object types, JavaScript implements an Object as a set of

properties and functions in a property set, or hash map, and not in static classes. When an object

property or function is needed, the hash map is queried to find the property or function, and then

that property accessed, or function executed. To implement adding new properties or functions

to the object, they properties and functions are added to the hash map.

32 One of my favorite improper use of metaphors is to ask, “What color is faith?”. The obvious answer is yellow, as

the Christian Bible describes faith as being “as a mustard seed’, and mustard seeds are yellow. This is obvious non-

sense, but I personally encounter this type of reasoning many times every day.

93 PROGRAMMING FOR THE WEB:

The astute reader will suddenly now have an AHA moment when they will understand the

importance of Lambda functions. Lambda functions are functions that are treated like data. As

such, functions do not exist in statically compiled languages like Java. Functions in JavaScript

are simply data and can be stored and changed in an object just like any other data.

Thus, the JavaScript OOP model is built around Lambda functions, and they are what allow this

object model to work. Properties in the property map for an object are not simply data items, but

also the functions, It is at this point that a Java programmer will have to throw up their hands

and admit that a metaphor of a class-based OOP completely fails when understanding JavaScript.

The lack of a types and structured objects in JavaScript flies in the face of everything many

programmers have learned about objects, and even seems to defy logic. There are two things a

programmer can do. The first is what many programmers do, accept their metaphor of how

things work and believe that the JavaScript model of objects must be wrong.

This view is an unreasoned bias, or prejudice, that cannot be logically defended. The JavaScript

model works, and that in itself is sufficient reason to accept that what JavaScript is doing makes

sense. The only valid response is for the person learning JavaScript to change how they

understand OOP33.

This does not stop programmers from trying to apply Java metaphors to the concepts in

JavaScript. But creating these metaphors is much harder, and in the long run much less fruitful,

then simply learning how JavaScript works. And learning JavaScript has an added advantage

that using unstructured of the data is often a very nice way to easily solve problems that would

be very difficult in a structured, type-based approach.

Chapter 5. 3 Basic Objects in JavaScript

When thinking about OOP, remember that at its core OOP is an abstraction mechanism that

defines objects by a set of data and behaviors that act on that data. Everything else, like

interfaces and classes, are implementation details and not part of the definition.

JavaScript’s has a view of an object that stores properties (data) and functions (behaviors) in a

hash data structure (which we will call a property map).

Property maps consist of object properties are stored as pairs of property names and property

values. Since new properties can be added or deleted from the map, the map is does not have a

static definition (e.g. it has no class definition). A JavaScript object is just a set of properties and

values.

This section will cover how to create, manipulate, and access objects. It will first cover how

objects are property maps. It will then show how JavaScript Object Notation (JSON) is a natural

way to serialize and store objects externally to the current program.

33 Not to make too fine a point here, but this is true in all things in life. We all have prejudices and biases, all of

them based on some facts and lots of unexamined metaphors of life we have created. Part of education, and of

creating an educated populace, is to teach people to examine their assumptions about their metaphors.

PROGRAMMING FOR THE WEB: 94

Chapter 5.2. 1 Simple Objects

Objects in JavaScript are prototype-based property maps. This is the central point of JavaScript

objects, and everything else is just syntax. The syntax for a simple object just lists the

property/value pairs separated by a “:” within a block defined by curly braces ({}).

{

 property1 : “string”; // String value

 property2 : 7; // number

 behavior1 : function() { ... }; // function

}

The following example shows the creation and printing of a map object in JavaScript.

<html>

 <head>

 <title>Object Example </title>

 </head>

 <body>

 <script>

 Let map = {

 title : "MyMap",

 resize: false,

 recenter: true,

 print: function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 }

 }

 map.print();

 </script>

 </body>

</html>

Program 83 - Implementation of a simple Map object.

In this example, a map object is created that has properties: a title which is a string; resize and

recenter Boolean variables; and a print variable that is set to a lambda function.

While this might look similar to a class definition, it would be wrong to think of this map object

as an instance of a class. The map object that is defined is not a template, but an instance

variable (a value in the program). Remember that an object in JavaScript has no structure or

template definition (class). Another variable based on this map definition as a template cannot

be created.

Note also the map object can be changed by adding and deleting properties (including functions).

Functions and data are associated with the values of the variable. This is shown in the following

example, where the variable center is added to the map object after it has been created. When

the new property is added, functions needed to be added or changed for the new property are also

set.

95 PROGRAMMING FOR THE WEB:

<html>

 <head>

 <title>Object Example </title>

 </head>

 <body>

 <script>

 let map = {

 title : "MyMap",

 resize: false,

 recenter: true,

 print: function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 }

 }

 // Add a center point to a map

 map.center = [-77, 39];

 // Change the print function to print the center point.

 map.print = function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 console.log("center = " + this.center);

 }

 // Add a new method to get the center of the map

 map.getCenter = function() {

 return center;

 }

 map.print();

 console.log(map.center);

 </script>

 </body>

</html>

Program 84 - Adding a center point to the simple map object

Chapter 5.2. 2 Objects are Property Maps

The following example is given to emphasize the point that objects are property maps, an

example is provided to show that in JavaScript dereferencing an object and looking up a property

in a property map are the same thing. The following program shows this equivalence. Here the

dereference operator object.propertyname is used interchangeably with array processing using

the object[propertyname], which accesses the variable from the property map using a key.

Note that it is code like this that is impossible to understand if the reader insists on using their

understanding of statically typed OOP to understand JavaScript.

PROGRAMMING FOR THE WEB: 96

<html>

 <head>

 <title>Object Example </title>

 </head>

 <body>

 <script>

 let map = {

 title : "MyMap",

 resize: false,

 recenter: true,

 print: function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 }

 }

 // Add a center point to a map

 map.center = [-77, 39];

 // Print the variable via a dereference operator

 console.log(map.title);

 console.log(map.resize);

 console.log(map.recenter);

 console.log(map.center);

 for (let i in map) {

 console.log("property " + i + " is " + map[i]);

 }

 </script>

 </body>

</html>

Program 85 - Printing an object out as a hash

Chapter 5.2. 3 JavaScript Object Notation (JSON)

Serialization of an object is just transforming an object into a format that allows it to be

represented in a format external to the program. In JavaScript this external format is a collection

of named primitives (or variable: value pairs), stored in such a way as it looks like a JavaScript

Object definition. This serialized format can then be used to reconstruct a semantically

equivalent object spatially (to be used in another program, for example by sending the object

over the network) or temporally (at a different time, for example by saving the object to a file).

JSON is the most common notation for serializing JavaScript objects to be used externally from

the JavaScript program. Over time JSON has gain in popularity and is now also a popular format

for serializing objects in languages other than JavaScript.

JSON syntax is very similar to how an object is defined in JavaScript. In fact, Douglas

Crockford, who discovered JSON in 2001, wrote:

97 PROGRAMMING FOR THE WEB:

I discovered JSON. I do not claim to have invented JSON, because it already existed in nature.

What I did was I found it, I named it, I described how it was useful.

To serialize a JavaScript object in JSON, objects that contain only variables that are primitives

will have syntax with named variables and their primitive values. These objects will look very

similar to the objects that have been presented in this text so far. There will be two differences:

1- The property names will be in quotes, and 2 – All functions will be removed from the objects.

As an example, the map object that was seen earlier:

var map = {

 title : "MyMap",

 resize: false,

 recenter: true,

 print: function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 }

)

Program 86 - Map object to be written to JSON format

Will be represented in JSON format as:

{

 "title":"MyMap",

 "resize":false,

 "recenter":true

}

Program 87 - JSON output of Map object

JSON formatted objects are easily created using the JSON.stringfy function. The JSON

formatted strings can then be used to reconstruct a semantically equivalent object using the

JSON.parse function. The JSON object above was created and written to the console log using

the following program, and then reconstructed as an example of using JSON.

<html>

 <head>

 <title>Object Example </title>

 </head>

 <body>

 <script>

 let map = {

 title : "MyMap",

 resize: false,

 recenter: true,

 print: function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 }

PROGRAMMING FOR THE WEB: 98

 }

 console.log(JSON.stringify(map));

 </script>

 </body>

</html>

Program 88 - Program to stringify and parse a JSON object

Chapter 5.2. 4 JSON Serialization and Object Composition

The example given above illustrates a fundamental problem with serialization of objects, and that

is that most objects are not collections of primitives but can contain other objects. In fact, it is

more common for objects to contain other objects or arrays than to contain only primitive values.

Object containing other objects is called object composition34, implies that each object contained

in the object graph must be serialized recursively until only primitives exist. The need to

serialize all objects until only primitive values are referenced are not unique to JSON and exist in

all object serialization mechanisms.

The simplest case of serializing object composition is a tree graph structure35. To do

serialization of an object graph represented by a tree, each node is walked recursively. If the

node has primitives, output them to the JSON file. If the node references another object or array,

create a new object or array, and continue to recursively process the nodes.

To illustrate serialization of complex composed objects, consider the following example object

tree.

Figure 15 - Composite object to be written to JSON

34 UML aficionados will argue as to whether to call this aggregation or composition. The distinction is moot here,

but in fact this object is a UML composite object, and the term composition will be used in this text.
35 Object composition means that serialization of objects can result in complex graphs with cycles, multiple

references to common objects, and other complex graph structures. There are serialization mechanisms to deal with

these problems in JSON, but they are complex and not needed for the material covered in this book.

99 PROGRAMMING FOR THE WEB:

This program contains an array, named Arr, that consists of two objects, a and b. The first

object, a, is composed of a variable title, which is the primate string “Object A”, and a variable

func that is a function. Object a also contains two objects, c and d. Object c consists of a

primate variable, count, set to the number 7, and object d contains a primitive variable, name, set

to the string “Someone”. Object b is composed of a variable “myType”, which contains the

string “B”. This would be written in JavaScript as the following:

<html>

 <head>

 <title>Serialize </title>

 </head>

 <body>

 <script>

 let c = {

 count : 7,

 }

 let d = {

 name : "Someone"

 }

 let a = {

 title : "Object A",

 ptr1 : c,

 ptr2 : d,

 func : function() {

 letcnt = 7;

 }

 }

 let b = {

 myType: "B"

 }

 let Arr = [a,b];

 console.log(JSON.stringify(Arr));

 </script>

 </body>

</html>

Program 89 - Complex object to be serialized to JSON

To serialize an object composed of other objects, each internal object node must be serialized,

and that process is repeated until only primitive elements exist. The following is the serialized

version of this object, showing how the individual objects are decomposed until the entire object

can be represented only as primitives. The tree graph of the object can clearly be seen in this

representation of the object.

[

 {

 "title":"Object A",

 "ptr1":

 {

 "count":7

PROGRAMMING FOR THE WEB: 100

 },

 "ptr2":

 {

 "name":"Someone"

 }

 },

 {

 "myType":"B"

 }

]

Program 90 - JSON serialization of a complex object.

This JSON definition is sufficient to reconstruct the original array. There are a few points that

should be noted here:

1. The variable names (a, b, c, and d) are dropped. Variables are program entities, and not

part of the data that make up the object definition. These variables are not needed to

rebuild the original object.

2. Arrays and objects must both be serialized, as both are not primitive values. Objects are

serialized by enumerating their properties. Arrays are serialized using the JavaScript

array syntax, with the array bounded by [], and each member of the array being comma

separated.

3. Serialization can result in cycles within the object definitions. These can be quite

complex, and will be avoided in this book.

4. As was pointed out earlier, functions are never serialized in JSON format. Unlike

method definitions in Java/C#, there is no technical reason that a lambda function (which

is data) could not be stored externally. The reason functions are not serialized is that it is

inherently unsafe to store program code in an external format since the code could easily

be changed, and the program could be made unsafe.

Chapter 5. 4 Constructor Functions and Prototype Objects

The purpose of this section is to continue to build the JavaScript Object Model. It will explain

what a Constructor Function is, and how it can be used to create objects. It will show to define

Constructor Functions to define how to build generic templates for creating objects, and how to

use prototypes and prototype chains to add behavior easily to these object definitions.

Chapter 5.4. 1 Constructor Function and Object Creation

Property maps are a nice way to represent object properties and have many advantages over

static class-based definitions of objects. But the way we have defined objects up to this point

does not allow for default values, or for behaviors (functions) to be associated with the object

without redefining the function for each object. JavaScript addresses these problems by allowing

functions (called Constructor Functions) to build the object property maps. The JavaScript new

operator is then used to set a variable to the property map created in the function.

To understand how this works, consider the following program fragment that creates two Map

objects, mapA and mapB. This is accomplished by setting both variables to different object

definitions. The entire definition for this object, including the functions, must be copied.

101 PROGRAMMING FOR THE WEB:

<script>

 let mapA = {

 title : "MyMap",

 resize : false,

 recenter : true,

 center : [-77, 39],

 print: function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 console.log("center = " + this.center);

 }

 }

 let mapB = {

 title : "MyMap1",

 resize : false,

 recenter : true,

 center : [-100, 45],

 print: function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 console.log("center = " + this.center);

 }

 }

 mapA.print();

 mapB.print();

</script>

Program 91 - Creating two objects by setting them to different object literal values

In the code in Program 91 above, the function print has access to a variable this, which is just a

property map (or object) associate with the object. The use of the this variable will be used to

define objects from a common function.

The need to create two object definitions for the same object is inefficient and error prone. In

JavaScript the ability to create a template for an object and use it to create objects is

accomplished using a Constructor Function. A Constructor function is a function that constructs

objects. It uses the this property map when the function is invoked, and builds the object that is

to be used on the this object. The JavaScript new operator then makes the this property map

accessible to assign to a variable.

The following program shows the use of a Constructor Function Map and the new operator to

create the equivalent mapA and mapB variables from Program 86 above. The objects mapA and

mapB are exactly equivalent to the ones from Program 82, including the fact that they each

contain their own copy of the print function.

PROGRAMMING FOR THE WEB: 102

<script>

 function Map() {

 this.title = "MyMap",

 this.resize = false,

 this.recenter = true,

 this.center = [-77, 39],

 this.print = function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 console.log("center = " + this.center);

 }

 }

 mapA = new Map();

 mapB = new Map();

 mapB.title = "MyMap1";

 mapB.center=[-100, 45];

 mapA.print();

 mapB.print();

</script>

Program 92 - Using a Map Constructor Function

Note that all of the properties for both maps, including the functions, are stored separately.

There are two property maps created, one for each variable reference. These property maps

include two separate print functions, as each property map will have a variable referencing a

different print function. How to make a single print function will be covered later in this chapter.

At this point, there are probably readers who want to equate a JavaScript Constructor Function

with a Java class, and to equate the Java and JavaScript new operators. This is a completely

wrong understanding of the new operator in the two languages. In Java a class is a template

which includes functions and data, and the new operator creates an instance of that template. The

Java new operator then calls a Java Constructor to initializes the variables in the constructed

instance.

To re-emphasize, a JavaScript Constructor Function is not a template for a class that is

instantiated. A Constructor Function is a function that is invoked, and when executed assigns

properties, including functions, to a property map. The property map is then made available to a

variable using the new operator. The new operator plays no part in constructing the object or how

the function properties are called. It is as wrong to equate how a Java and JavaScript object are

created as it is to equate how Java and JavaScript define and use objects. Going down that path

will in the end only lead to confusion.

Chapter 5.4. 2 Passing parameters to a Constructor Function

The Constructor Function provided in the previous example is not really useful because only the

default values for properties can be set when the function is called. To be useful the function

needs to have parameters which can be used to set the properties. The simple answer to this

problem would be to have a parameter to each value to be set, as in the following example.

103 PROGRAMMING FOR THE WEB:

<script>

 function Map(title, resize, recenter, center) {

 if (title == null)

 this.title = "MyMap";

 else

 this.title = title;

 if (resize == null)

 this.resize = false;

 else

 this.resize = resize;

 if (recenter == null)

 this.recenter = true;

 else

 this.recenter = recenter;

 if (center == null)

 this.center = [-77, 39];

 else

 this.center = center;

 this.print = function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 console.log("center = " + this.center);

 }

 }

 mapA = new Map("Map1", null, null, [55, 20]);

 mapB = new Map(null, true, null, null);

 mapA.print();

 mapB.print();

</script>

Program 93 - Passing parameters to a Constructor Function

This solution of adding a parameter for each default value is not a good solution. What happens

when a value for a parameter is not defined, implying that the default value should be used? The

value is passed as null in the program above, but what if null is a valid value to set to the

variable? JavaScript also allows objects to contain values that would not have a default. How

are these set?

The solution used here is to pass an object (property map) to the JavaScript Constructor

Function, with only the non-default properties in that parameter object. The following illustrates

how to implement this solution with the Map Constructor. Note that not only is this code much

shorter, to properly handles default values, and allows the object to have values that are not

predefined with default values.

<script>

 function Map(options) {

 // Set default values

PROGRAMMING FOR THE WEB: 104

 this.title = "MyMap";

 this.resize = false;

 this.recenter = true;

 this.center = [-77, 39];

 // Load values from options

 for (let prop in options) {

 // The property has no default value

 if (!this.hasOwnProperty(prop)) {

 console.log("Property " + prop +

 " not recognized in Map");

 }

 this[prop] = options[prop];

 }

 this.print = function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 console.log("center = " + this.center);

 }

 }

 mapA = new Map({title:"Map1", center: [55,20]});

 mapB = new Map({resize:true});

 mapA.print();

 mapB.print();

</script>

Program 94 - Using a Constructor Function to reconstruct an object

This example is the first where the true value and power of JavaScript objects and its object

model as shown. But it is just the start of the amazing power of objects in JavaScript.

Chapter 5.4. 3 Constructor Functions and JSON

One nice feature of constructor functions is how nicely they work with JSON. Remember that

when creating a JSON object, the functions are not serialized. Only the primitive data items are

set in the JSON object. A map object serialized to JSON and then read back into the program

will be missing the print function. The issue is how the print function can be added back to the

object.

To add the print function back to the object, the JSON object can be passed to the Constructor

Function. The object that will be returned from the constructor function add back the methods

which were originally part of the object. This is shown below in the Program 95. In this

example, a Map object, mapA, is created and serialized into a JSON object. This JSON object is

then set to objA, which has all the fields of the mapA object, but is not a Map object and it does

not have a print function defined. The objA object is then passed to the Map Constructor

function, where the properties of objA are copied into a new mapB object. The print method can

then be called on the mapB object.

<script>

105 PROGRAMMING FOR THE WEB:

 function Map(options) {

 // Set default values

 this.title = "MyMap";

 this.resize = false;

 this.recenter = true;

 this.center = [-77, 39];

 // Load values from options

 for (let prop in options) {

 // The property has no default value

 if (!this.hasOwnProperty(prop)) {

 console.log("Property " + prop +

 " not recognized in Map");

 }

 this[prop] = options[prop];

 }

 this.print = function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 console.log("center = " + this.center);

 }

 }

 mapA = new Map({title:"Map1", center: [55,20]});

 mapA.print(); // works

 objA = JSON.parse(JSON.stringify(mapA));

 // objA.print(); // This line fails,here is no print method for ObjA

 objB = new Map(objA)

 objB.print(); // print works, as objB is a Map

</script>

Program 95 - Using a Constructor Function to reconstruct a JSON object

This ability to use JSON to store data, and to later pass those JSON objects to the Constructor

Functions and reconstruct the original object, will be extensively used later.

Chapter 5.4. 4 Abstracting behavior and prototypes

This chapter so far has emphasized the fact that the functions that are part of an object are copied

into the property map of every object. While storing these functions as data with each object

allows for exceptions in which specific objects can have behavior that is different for special

instances of the object, it is obviously inefficient. What is needed is a way to store the functions

once and have them be accessed by all the objects constructed by a single Constructor Function.

This functionality should be implemented in a way consistent with the way the JavaScript

language works, and this means using property maps (not class-based templates). A simple

solution is to have Constructor Functions have a special property map associated with the

function, and then have a link to the Constructor Function’s property map stored with each object

PROGRAMMING FOR THE WEB: 106

to share properties across multiple objects. Then when a property, such as a function, is

requested for an object, the object’s property map is searched for this property. If the property or

function is not found in the object’s property map, the shared property map for the Constructor

Function can then searched. Multiple shared property Maps can exist, and they can each be

recursively searched in turn until either the property is found, or the end of the shared property

maps is reached. This is shown in the Figure 16.

Figure 16 - Recursive search for property in linked property maps

This recursive shared property map concept is implemented in JavaScript and is called

prototypes.

107 PROGRAMMING FOR THE WEB:

Every function, not just Constructor functions, has associated with it a prototype object (property

map).36 To see how this prototype object is used, the construction of the JavaScript object with

the new operator needs to be understood.

When the JavaScript new operator is invoked, it does two things.

1. First it sets the variable on the left-hand-side (lhs) of the equal sign to the this variable

that was used in the Constructor Function.

2. Second a prototype variable (a link) in the object’s property map is set to point to the

prototype object property map corresponding to the Constructor Function. The value of

this link cannot be directly changed by the object but is accessed when a property is

requested for the object that cannot be found in the objects property map.

The behavior of recursively searching property maps, described earlier, can now be

implemented. When a function is requested, the property map for the individual object is

searched. If the function is not found, the search continues in the prototype map of the

Constructor Function. If it is still not found, the search continues until either the function is

found, or the root of the tree, the Object prototype, is reached.

In the following example, the print method is moved from the individual objects, and stored in

the Map protocol object. Now the two objects, MapA and MapB, both share the same print

function.

<script>

 function Map(options) {

 // Set default values

 this.title = "MyMap";

 this.resize = false;

 this.recenter = true;

 this.center = [-77, 39];

 // Load values from options

 for (let prop in options) {

 // The property has no default value

 if (!this.hasOwnProperty(prop)) {

 console.log("Property " + prop +

 " not recognized in Map");

 }

 this[prop] = options[prop];

 }

 }

 Map.prototype.print = function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 console.log("center = " + this.center);

 }

36 Unless a function is a Constructor Function, this prototype object is not used, but the function will still have

prototype objects associated with them.

PROGRAMMING FOR THE WEB: 108

 mapA = new Map({title:"Map1", center: [55,20]});

 mapB = new Map({title:"Map2"})

 // These two objects share the print method from the

 // Map prototype object.

 mapA.print();

 mapB.print();

</script>

Program 96 - Accessing the print function in the Map prototype object

Chapter 5.4. 5 Inheritance and Polymorphism

As I wrote the title to this section, I could just see the eyes rolling of a number of readers.

Inheritance and polymorphism are always a problem in a class in Java/C#/C++/etc. Let me put

everyone’s mind at ease. In JavaScript, if you understood prototypes from the last section, you

already know these concepts in JavaScript.

To see how polymorphism can be used in JavaScript, consider the following problem. You want

the object mapB from Program 96 to have a different print method than the standard one that is

defined for the Map Constructor Function. This is a trivial change, as all that is needed is to add

a different print function to the mapB property map, and that function will be encountered first

when looking for the print function for the mapB object. This is shown in the example Program

97.

<script>

 function Map(options) {

 // Set default values

 this.title = "MyMap";

 this.resize = false;

 this.recenter = true;

 this.center = [-77, 39];

 // Load values from options

 for (let prop in options) {

 // The property has no default value

 if (!this.hasOwnProperty(prop)) {

 console.log("Property " + prop +

 " not recognized in Map");

 }

 this[prop] = options[prop];

 }

 }

 Map.prototype.print = function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 console.log("center = " + this.center);

 }

 mapA = new Map({title:"Map1", center: [55,20]});

 mapB = new Map({title:"Map2"});

 mapB.print = function() {

109 PROGRAMMING FOR THE WEB:

 console.log("Same print function, but polymorphic")

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 console.log("center = " + this.center);

 }

 // These two objects share the print method from the

 // Map prototype object.

 mapA.print();

 mapB.print();

</script>

Program 97 – Polymorphism in JavaScript

This changes the meaning of inherit from as used in Java and other class-based OOP languages.

When discussing prototypes and JavaScript, the term inherit from means that the property map

for the current object links to (inherits from) the prototype object’s property map, and the

property maps are searched recursively for a property. This is, in a sense, how polymorphism is

implemented in class-based languages, but it is so abstracted away that any sense of what is

going on is lost to most programmers.

To summarize, polymorphism, or calling different methods which have the same name, in

JavaScript means that the property maps are searched until the first occurrence of that property is

found.

What is missing in this section is how to implement inheritance and composition delegation in

JavaScript. There is a good reason for that. First, while the concept of inheritance is simple in

JavaScript, changing the property map links is non-trivial; and until someone shows me a valid

design using inheritance that cannot be implemented more easily and correctly using some other

design mechanism, my advice is to not use inheritance. Thus, I never cover inheritance (other

than interface inheritance, which is not the same as class inheritance) in any language.

As for compositional delegation, this is normally solved in JavaScript using Functional

Programming. While I might be more inclined to describe how to implement delegation, as it is

not that difficult, until a see a real-life case where it is an advantage over Functional

Programming in JavaScript, I see no need to cover something that is at best useful in one-off

situations.

Chapter 5.2. 1 JSON and prototype properties

What happens to the protocol chain when an object is serialized to JSON? When serializing an

object, only the properties that can be externally represented are written to the JSON object. For

the prototype variable (link to a Constructor Function prototype object) there is no way to know

if the corresponding Constructor Function will exist when this JSON object is loaded into the

new environment, so it must be dropped from the JSON definition.

But dropping the prototype link variable from the JSON object does not represent a problem. If

the Constructor Function for the object is known, the appropriate Constructor Function can be

PROGRAMMING FOR THE WEB: 110

called passing in the JSON object to reconstruct the original object, just as was done in Program

98. This is shown in the following program to reconstruct the prototype chain for Map objects37.

<script>

 function Map(options) {

 // Set default values

 this.title = "MyMap";

 this.resize = false;

 this.recenter = true;

 this.center = [-77, 39];

 // Load values from options

 for (let prop in options) {

 // The property has no default value

 if (!this.hasOwnProperty(prop)) {

 console.log("Property " + prop + " not recognized in Map");

 }

 this[prop] = options[prop];

 }

 }

 Map.prototype.print = function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 console.log("center = " + this.center);

 }

 mapA = new Map({title:"Map1", center: [55,20]});

 jmapA = JSON.stringify(mapA);

 mapA1 = new Map(JSON.parse(jmapA));

 mapA1.print();

</script>

Program 98 - Reconstructing the protocol chain for a JavaScript object

Chapter 5.2. 2 Finding the JavaScript Constructor Function in the DOM

Calling the correct Constructor Function to reconstruct the object works fine so long as the

correct Constructor Function is known for the JSON object. But what if a number of different

functions, created with different Constructor Functions, are stored externally, and the program

does not know what Constructor Function corresponds to each JSON object?

37 The protocol chain for a JSON object can be updated more simply by using the JavaScript setPrototypeOf

function. Use of this function is, however, strongly discouraged. The setPrototypeOf function must change many

structures in the program to optimize how prototype chains are optimized, and is a very expensive function to call.

Also, any default code that is normally executed when constructing an object is not run. For these reasons, it is

recommended that a new variable with the proper prototype constructor be created. This text will recommend that

to create a new object, a correct Constructor Function be written that sets all default property values and saves all

property values of the original object be created, and that Constructor Function be called using the JSON object.

111 PROGRAMMING FOR THE WEB:

Fortunately, there is an answer for this in JavaScript. All Constructor Functions are stored as

lambda values in the DOM using the window property map. To retrieve and execute the Map

Constructor Function using the object JSONObject can be done in the following line of code:

var myMap = new window[“Map”](JSONObject);

All that is needed to recreate the JSON object is the name of the Constructor Function, and that

can be stored as a property in the JSON object itself. A strange looking name should be used so

that it will not overlap with names the programmers might choose, so we will use the name

“__cfName”. The new definition of the Map Constructor Function will now be the following:

<script>

 function Map(options) {

 // Set default values

 this.__cfName = "Map";

 this.title = "MyMap";

 this.resize = false;

 this.recenter = true;

 this.center = [-77, 39];

 // Load values from options

 for (let prop in options) {

 // The property has no default value

 if (!this.hasOwnProperty(prop)) {

 console.log("Property " + prop +

 " not recognized in Map");

 }

 this[prop] = options[prop];

 }

 }

 Map.prototype.print = function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 console.log("center = " + this.center);

 }

</script>

Program 99 - Map Constructor Function setting the __cfName variable

Now that the name of the Constructor Function to call is known, the following function,

getObjectFromJ can reconstruct any JSON object using the correct Constructor Function.

// The input parameter is the JSON object

function getObjectFromJSON(string) {

 let parsedObject = JSON.parse(string);

 let cf = parsedObject["__cfName"];

 return new window[cf](parsedObject);

}

Program 100 - getObjectFromJSON function

PROGRAMMING FOR THE WEB: 112

The following example shows how to use the getObject function on a JSON object that

represents a Map.

<script>

 function Map(options) {

 // Set default values

 this.__cfName = "Map";

 this.title = "MyMap";

 this.resize = false;

 this.recenter = true;

 this.center = [-77, 39];

 // Load values from options

 for (let prop in options) {

 // The property has no default value

 if (!this.hasOwnProperty(prop)) {

 console.log("Property " + prop +

 " not recognized in Map");

 }

 this[prop] = options[prop];

 }

 }

 Map.prototype.print = function() {

 console.log("title = " + this.title);

 console.log("resize = " + this.resize);

 console.log("recenter = " + this.recenter);

 console.log("center = " + this.center);

 }

 // The input parameter is the JSON object

 function getObjectFromJSON(string) {

 let parsedObject = JSON.parse(string);

 let cf = parsedObject["__cfName"];

 return new window[cf](parsedObject);

 }

 mapA = new Map({title:"Map1", center: [55,20]});

 // Create the JSON object, and then pass it to getObjectFromJSON

 // to show that the function does indeed reconstruct the object.

 jmapA = JSON.stringify(mapA);

 mapA1 = getObjectFromJSON(jmapA);

 mapA1.print();

</script>

Program 101 - Using the getObjectFromJSON function to reconstruct the object

Chapter 5. 5 Scoping in JavaScript

Variables in JavaScript can have 3 types of scoping; block, function (or local), and global. These

3 types of scoping will be explained briefly here, mainly in preparation for the next section on

closure. While it seems like having only 3 types of scope would make the concept of scope easy

113 PROGRAMMING FOR THE WEB:

to understand, it always seems to be one of the most difficult concepts to get across to

programmers.

There are some parts of ECMA6+ that are very useful, and one of them is the inclusion of the let

keyword. The let keyword has allowed block scoping in JavaScript but has muddied the waters

and caused additional difficulties in programs that combine the use of the let and the older var

keyword. This text will avoid those problems by always using the let keyword.

While a JavaScript programmer should probably understand the var keyword, the only reason is

to understand how it impacts older programs that use it. When it is used, it can cause some

variables that would be block scoped using the let keyword to be function scoped. If a reader

gets into a situation where they are supporting code that uses the var keyword, there are any

number of good sites that explain what it means. This will not be a problem for readers who

have understood the 3 types of scoping described here.

Chapter 5.4. 1 Undeclared variables

First, JavaScript does not require that variables be declared. Variables that are not declared are

created and put in the global scope. This allows for all sorts of problems, such as misspelling of

variables, or variables meant to be in other scopes being put in global scope.

To avoid accidently spelling variables wrong or to prevent programmers from using undeclared

variables, the JavaScript program can use the “use strict” directive in their programs. This

will cause the program to fail with error if an undeclared variable is encountered. For this book,

the use strict directive will be used, and all variables must be declared. Undeclared variables

simply should not exist. The issue of undeclared variables is therefore dispensed with, and not

covered further.

Chapter 5.4. 2 The let keyword

The let keyword declares a variable, and scopes that variable to the next larger program block,

where the next larger program block is a unit of a program that is contained between two curly

braces ({}). A variable declared inside a block will be scoped to the block represented by those

curly braces. If the variable is outside of any curly braces, it will have global scope.

The first type of scoping that will be covered is block scoping. Block scoping allows a variable

to exist only in the block in which it is declared. This is often useful for variables that should

only exist in a block, for example a for loop. The following for loop shows a good use of the let

variable for block scoping:

function myFunc() {

 for (let count = 0; count < 10; count++) {

 Do something

 }

}

Here the next larger program block is the for loop, so the variable count will only exist in the for

loop and cannot be used outside of that loop. The variable will come into existence when the

loop block is entered and will be destroyed when the loop is exited. This use of scoping is what

most programmers are used to seeing.

PROGRAMMING FOR THE WEB: 114

The next type of scoping is function scope, which is also called local scope in JavaScript.

Function scope occurs when a variable is declared inside of a program block that is a function.

The following program shows the loop above, but now the variable count has function scope.

function func() {

 let count = 0;

 for (count = 0; count < 10; count++) {

 Do something

 }

}

The difference between the block scope and function scope code would be basically meaningless

in most programming languages such as C#/Java/C++ because function variables only exist

while the function exists (e.g. the function is on the program stack). In Java/C#/C++, the

function is pushed on the stack when the function is entered and popped when it is exited.

 Function scope in JavaScript is very different, and function variables are not released when a

function exits. This will be covered in more detail in the section on Closure.

The final type of scoping in JavaScript is global scoping. A variable declared outside of any

block of code defined by curly braces ({}) is globally scoped. There is one copy of a global

variable in the entire program, and for the purposes of this discussion, that copy comes into

existence when the program starts running and exists the entire time the program runs. This is

similar to a Java/C# static variable. The following shows how the loop above would look if a

global variable was used. Note that in this case, the variable must be reset each time the function

is entered, as the previous value from the loop is still stored in the variable.

let count = 0;

function func() {

 count = 0;

 for (count = 0; count < 10; count++) {

 Do something

 }

}

The take away from this section is that scoping controls where a variable is accessible and the

time the variable definition is maintained. Block variables and function variables are only

visible in the block/function they are declared in. Block variables only exist so long as the

program is executing in the block they are declared in. Function variables exist for a much longer

period, but that will be covered in the section on closures. Global variables are always

accessible, and always exist.

The only strange idea coming from this section is how long function variables live, as unlike

other languages, they do not go away when the function exits. This is the subject of the next

section on closures.

115 PROGRAMMING FOR THE WEB:

Chapter 5.3. 1 Closures

One interesting aspect of JavaScript that is not found in most languages the reader will be

familiar with (e.g. Java, C++, C#, etcetera) is that a function (an outer function) can contain other

functions (inner functions). This program structure gives rise to an interesting problem with

variables known as closure. The problem starts with the fact that variables scoped in the outer

function are also scoped in the inner functions, as shown in Program 96 below.

<script>

 function f1() {

 let var1 = "function scope"

 function f2() {

 console.log(var1);

 }

 f2();

 }

 f1();

</script>

Program 102 - Calling an inner function from an outer function.

This example by itself seems very natural and does not seem to be a problem. The issue arises

when the inner function is used as a lambda value. The lambda function can now be called after

the outer function has completed, causing the variable scoped in the outer function to be

referenced after the outer function has completed running. This is shown in the following

program.

<script>

 let obj1 = new function f1() {

 console.log("Entering f1");

 let var1 = "function scope"

 this.f2 = function() {

 console.log(var1);

 }

 console.log("Leaving f1");

 }

 obj1.f2();

</script>

Program 103 - Running an inner function after an outer function has completed.

This program illustrates the closure problem. The inner function, f2, is associated as a lambda

value property in the obj1 object. This lambda function exists even after the function f1 has

completed and exited. In Java/C#/C++/etcetera, the variables of the outer function are allocated

on the program stack and cease to exist after the outer function has completed running and so in

Java the variable var1 would not be available when f2 is called using the reference in obj1. The

nature of JavaScript requires, however, that the function local variables outlive the execution of

PROGRAMMING FOR THE WEB: 116

the function, just for this type of situation where inner functions can exist (as lambda values)

after the function has executed. This is a JavaScript closure. Closure is not hard because it is a

difficult concept, instead it is hard because programmers generally have not seen it before, and it

is often explained in terms of its impacts, and how they are different from Procedural and class-

based OOP languages.

The concept of a closure is simple, but the implications are huge, and the concepts are not easily

understood in terms of class-based OOP or procedural languages38. The need to make function

variables outlive the function execution is the crux of the reason why closures are included in

JavaScript. JavaScript Closures are really not that complicated, especially when used for their

purpose. Once again, problems arise when trying to use an invalid metaphor to understand a

concept, resulting in the myriad of helpful web pages that attempt to ferret out how to understand

a closure using the wrong metaphor.

This concept of closure will be looked at in more detail later in the chapter when an encapsulated

object model in JavaScript is describe.

Chapter 5. 6 A simple JavaScript OOP Model

This section will combine all the material covered in this chapter up to this point to create an

OOP model to be used throughout the rest of this text. Two object models will be given. The

first is the one normally used in JavaScript, so it will be the one used through the rest of the

book. It does not enforce encapsulation or information hiding, but languages like TypeScript

have been introduced since ECMA6 to provide encapsulation and information hiding, and they

generally compile to JavaScript that follows the basic pattern of an object presented in this first

object model.

A second model of OOP will be presented to show how JavaScript closure can be used to

enforce encapsulation and information hiding in basic JavaScript. This would be a good

implementation of OOP in JavaScript if encapsulation and information hiding are needed, but it

has been overtaken by events, and most programmers using these features will be using

languages such as TypeScript. It is presented because it highlights and explains a lot of features

of JavaScript programming.

Chapter 5.6.1 A first JavaScript Object Model

In Chapter 5.3.4 a method to combine prototypes and constructor functions into an object was

shown, though it was not given as an object model at the time. The idea is that objects are

constructed in a Constructor Function, and the functions that operate on that object are stored in

the Constructor Function prototype object. The strategy for creating this type of object is as

follows:

38 There are analogs to this behavior of requiring a method local variable to outlive the method it is declared C# and

Java. Closure analogs provide much of the justification for anonymous inner classes in Java, final local variables

when using Java Events, and the new inclusion of lambda functions. The basic problem is the same in all of these

languages, however Java used anonymous inner classes, and the syntactic sugar of Java lambda functions, to handle

these problems. Understanding why the problems occur in JavaScript helps understand why they occur in Java, but

the solutions are completely different.

117 PROGRAMMING FOR THE WEB:

1. The Constructor Function is defined, and it will take one argument, which is an

options object of properties to be included and set in this object.

2. The __cfName variable is assigned to the name of the Constructor Function in the

this object. This is so that object can later be reconstructed if it loses its constructor

(e.g. it is written and then read from a JSON data source).

3. The property default values are defined in the Constructor Function for the this

object.

4. All properties passed into the Constructor Function will be moved to properties in the

newly constructed this object. The properties will include all properties in the

options object, including those that do not have default values. The reason for this

will be explained in the section on Unstructured Data later in this chapter.

5. All methods that will act on this object will be included in the prototype object for

this Constructor Function. These prototype functions will be defined after the

Constructor Function has finished executing. The prototype function will be called

with an object, so the this variable can be used to access the appropriate object.

An example of implementing and using this definition for a Map object is presented below.

<script>

function Map(options) {

 // Set Defaults

 __cfName = “Map”;

 this.title = "Please change the title";

 this.recenter = true;

 this.center = [-77, 32];

 // Get properties from parameter

 outerloop:

 for (i in options) {

 for (j in this) {

 if (i == j) {

 this[i]= options[j];

 continue outerloop;

 }

 }

 console.log("Property " + i + " is not a default Map property");

 this[i] = options[i];

 }

// Set accessor function

Map.prototype.setTitle = function (title) {

 this.title = title;

}

Map.prototype.getTitle = function () {

 return this.title;

}

Map.prototype.setRecenter = function (recenter) {

 this.recenter = recenter;

}

Map.prototype.getRecenter = function () {

 return this.recenter;

}

PROGRAMMING FOR THE WEB: 118

Map.prototype.setCenter = function (center) {

 this.center = center;

}

Map.prototype.getCenter = function () {

 return this.center;

}

// Set toString function

Map.prototype.toString = function() {

 return ("title: " + this.title

 + " recenter: " + this.recenter

 + " center: " + this.center);

}

var m1 = new Map({title: "newMap"})

console.log(m1.getTitle());

m1.title = "This breaks encapsulation";

console.log(m1.getTitle());

</script>

Program 104 - Map object definition

The only issue with this definition of an object is that encapsulation and information hiding is

broken. As is shown in the example above, where the programmer directly sets the value of m1

by saying m1.title = "This breaks encapsulation";, the programmer can directly access

the title property without using the setTitle and getTitle methods.

The following object model adds encapsulation using function variables and closures. It is

included to show how closures could be used in JavaScript, but is not a standard object model,

and should not be used for production programs.

Chapter 5. 7 A JavaScript object model that includes encapsulation
and data hiding

The problem with the object model in the previous section is that the constructed object was

returned to the main program where all of its properties were visible. This is why the principal

of encapsulation is broken. The easiest way to prevent the leaking of the object is to make the

object be defined not by this, but by a function variable. Functions variables are only scoped as

visible in the function itself, and this in effect makes the object itself private.

To implement this new object model, the strategy from the last section needs to be tweaked a

little. First, the Constructor Function will not construct a this object, but will create a function

local variable and construct the object inside of this local variable. Now that the object is a local

variable that cannot be accessed outside of the Constructor Function (which is the outer

function), inner functions need to be defined that can access the properties of the object.

Note that the object will still want to use prototype functions so that only one instance of the

function needs to be defined, but these prototype functions must now be moved so they are inner

119 PROGRAMMING FOR THE WEB:

functions of the Constructor function. This gives the prototype functions access to the variables

defined in the outer function.

The strategy for creating this type of object is as follows:

1. The Constructor Function is defined, and it will take one argument, which is an

options object of properties to be included and set in this object.

2. A function local variable, named __properties, is defined of type object.

3. The __cfName variable is assigned to the name of the Constructor Function in the

__properties object. This is so that object can later be reconstructed if it loses its

constructor (e.g. it is written and then read from a JSON data source).

4. The property default values will be defined in the __properties object.

5. All properties passed into the Constructor Function will be moved to properties in the

newly constructed __properties object. The properties will include all properties in

the options object, including those that do not have default values. The reason for

this will be explained in the section on Unstructured Data later in this chapter.

6. All methods that will act on this object will be included in the prototype object for

this Constructor Function. These prototype functions will be defined inside of the

Constructor Function, so they have access to the function local variable.

7. A stringify method needs to be defined to allow the internal object (the __properties)

object can be accessed and converted into a string.

An example of implementing and using this definition for a Map object is presented below.

<script>

function Map(options) {

 // Set Defaults

 let __properties = new Object;

 __properties.title = "Please change the title"

 __properties.recenter = true;

 __properties.center = [-77, 32];

 __properties.__cfName = "Map"

 // Get properties from parameter

 outerloop:

 for (i in options) {

 for (j in __properties) {

 if (i == j) {

 __properties[i]= options[j];

 continue outerloop;

 }

 }

 console.log("Property " + i + " is not a default Map property");

 __properties[i] = options[i];

 }

 // Set accessor function

 Map.prototype.setTitle = function (title) {

 __properties.title = title;

 }

 Map.prototype.getTitle = function () {

 return __properties.title;

 }

PROGRAMMING FOR THE WEB: 120

 Map.prototype.setRecenter = function (recenter) {

 __properties.recenter = recenter;

 }

 Map.prototype.getRecenter = function () {

 return __properties.recenter;

 }

 Map.prototype.setCenter = function (center) {

 __properties.center = center;

 }

 Map.prototype.getCenter = function () {

 return __properties.center;

 }

 Map.prototype.stringify = function() {

 return JSON.stringify(__properties);

 }

 Map.prototype.toString = function() {

 return ("title: " + __properties.title

 + " recenter: " + __properties.recenter

 + " center: " + __properties.center);

 }

} //End of Constructor Function

function getObjectFromJSON(string) {

 let parsedObject = JSON.parse(string);

 let cf = parsedObject["__cfName"];

 return new window[cf](parsedObject);

}

let m1 = new Map({title: "newMap"})

let m2 = getObjectFromJSON(m1.stringify());

console.log(m2.toString());

</script>

Program 105 - Object example with encapsulation and data hiding

Chapter 5. 8 Unstructured Data

Before leaving the topic of objects, there is a concept that just doesn’t seem to make sense to

most programmers, and that is unstructured data. This is probably because most of the CS

industry is built around structure data39. Data in a relational database is structured into tuples

and relations. Data in OOP is built into classes and instances. When unstructured data is

encountered, programmers go to great lengths to build work arounds, none of which seem to

work well40. The author has seen many of these problems and has yet to see a good solution in a

relational database.

39 For more information about unstructured data, see information about NoSQL database, such as

https://www.youtube.com/watch?v=qI_g07C_Q5I
40 http://blogs.tedneward.com/post/the-vietnam-of-computer-science/

https://www.youtube.com/watch?v=qI_g07C_Q5I
http://blogs.tedneward.com/post/the-vietnam-of-computer-science/

121 PROGRAMMING FOR THE WEB:

To understand unstructured data, an example will be given that occurs when working with maps.

On a map there can be placed various features, which can be thought of as markers on a google

map. These features have standard properties, such as position, title, marker style, and

description, and these properties can be stored in a structured format as a tuple (record) in a

relational database.

Now consider a real application, for example a map of the monuments on the Gettysburg

Battlefield (http://chuckkann.com/MonumentsMap/Monuments.html). In this map various

features are placed on the map. These features represent many different types of monuments.

Some features are regimental monuments and may/may not be associated with states. Some

features are monuments to people who fought at Gettysburg, and could are associated with a

person, but could also be associated with a state or regiment. Some monuments are buildings,

and could be associated with person, or a regiment, or a part of the battlefield.

To make the situation even harder, the application should not define what are valid associations

when the application is written. If a new association type, such as casualty percentage, is to be

added to some of the features in the future, this data should be stored and easily searched.

While this type of design might not be a common business problem, it is not uncommon.

Probably the reason it is not more common is because programmers are always inventing work

arounds to handle the problems, and most work arounds using relational databases are poor

hacks.

However, using unstructured data (e.g. a JSON type format), this problem of unstructured

information and relationships does not exist. Because all objects are just property maps, it is

possible to add attributes of any type to any object.

One important aspect of learning JavaScript and its object definition is that it often requires the

program to look at object-oriented design in a completely new and different manner, increasing

the tools they have to solve problems.

Chapter 5. 9 Conclusion

I hope that after having read this chapter, the reader is convinced that JavaScript is not Java/C#

or any other class-based OOP language they have used. I hope that they have either decided it is

too weird to ever make sense using the metaphors and models they have used in the past with

these languages, and started to understand JavaScript for what it is, not what it is not.

Chapter 5. 10 Exercises

1. Explain why it is a very bad idea to serialize functions in JSON and store them to an external

file or send them to another computer.

2. What is the eval() function in JavaScript? What do you think is the original of the JavaScript

saying “eval is evil”.

3. Explain why an object built with encapsulation but the ability to change the methods

accessing the closure variable is safe.

4. What is the difference between using the new operator and operator.create?

http://chuckkann.com/MonumentsMap/Monuments.html

PROGRAMMING FOR THE WEB: 122

What you will learn

In this chapter, you will learn:

1. What a CRUD interface is

2. How to create a user interface for an application

3. How to create the object(s) needed for an application from a UI

4. Mapping the UI into program behavior

Chapter 6 CRUD, Objects, and Events

This chapter will bring together all of the components needed to design and develop a web based

Create-Read-Update-Delete (CRUD) application for the web. This application will use local

storage to store the data from the application, but the application will be developed in a way that

will allow it to later be easily adapted to take advantage of storing the data on a server using web

services.

Chapter 6.1 CRUD Interface

CRUD is an acronym for the most basic type of user interface. Most interfaces use this pattern,

though it might be hard to see sometimes. Consider an online store that has an interface for

purchasing an item. The interface allows users to:

1. create a record, for example to purchase an item from an online store,

2. read the record, or get the details of the purchase

3. update, or change the details of the purchase

4. delete the purchase completely.

The store then continues the pattern, allowing a user to create a record for a purchase order,

consisting of many items to be purchased. This purchase order interface again has a CRUD

interface, though purchase order CRUD interface manipulates purchases of individual items.

The example in this chapter is much simpler than the example application for the store. It will

simply create a set of map records that are stored in an array. The CRUD application will

add/update/delete the records from the array. The application will use a version of the map

application that the books has been developing.

This map application will use OOP to collect and stored is as an object. The object will be

implemented as shown in Chapter 5.6.1.

Each of the CRUD operations will be implemented using events, which in this book will be

called Event Based Programming (EBP). EBP will seem very different and strange to readers

familiar with only Procedural Programming, where all program actions emanate from a main

method. In EBP, all functions are independent and are run as a result of an event occurring.

To help in understanding the system design and implementation, this chapter will be structured

as follows:

123 PROGRAMMING FOR THE WEB:

1. An initial design of the system (a mockup of how the system should generally look

and act) will be created.

2. The HTML and CSS programs for this mockup will be implemented, separately from

the functionality that will be included in the system. The design look-and-feel of the

system will be kept separate from the functionality throughout the implementation,

and in the real world represent two completely different skill sets.

3. The forms in the application will be mined for the data needed for the application.

The arrays and objects needed to implement this design will be created.

4. The events needed to run the application will be defined, and a brief description of

how to implement each event will be given.

5. The code to handle each event will be written.

At the end of these steps, a fully functioning CRUD interface will have been developed.

Chapter 6.1. 1 Overall Application Design

The first step in designing a system is to create some sort of mockup of the system to see how it

will work. This type of mock up is called a wire frame. The purpose of a wire frame is to set up

what the system will look like to define the options that will be available in the system, as well as

the data and any data dependencies. The following is a wire frame design of the application

which was generated in Pencil.

PROGRAMMING FOR THE WEB: 124

Figure 17 – Wire Frame design for CRUD interface in Pencil

The application will consist of two panels. Panel 1 will always be displayed while the

application is running. Panel 1 contains a list box which shows the map features in an array of

map records managed in this application. The map records in this application will be a global

variable named records and should be the only global variable in the program.

Also in Panel 1 are several buttons to define user operations. These operations will generate

events which will need to be handled. Details on how to handle the events will be given in a

later section, but the following is a general overview of the functionality on Panel 1.

Associated with the list box of map records are the buttons Create, Read, Update, and Delete.

These buttons will read the current record highlighted in the list box and run the appropriate

operation on that map object.

There are a second set of buttons which are program options, they are Save to File, and Read

from File. The save to file button will write the array to some persistent store using a JSON

format. The read from file will read a persistent store previously written and parse the JSON to

restore a semantically identical copy of the data previously stored in the program.

125 PROGRAMMING FOR THE WEB:

Panel 2 is a form to manipulate data about the features. Panel 2 should be hidden unless the user

has selected the create, read, or update options. If the user is not actively interacting with a

specific feature, Panel 2 should not be displayed. When Panel 2 is shown, fields that cannot be

written to should be read only. Proper editing of the fields for correct values should be done.

The values of the edits and read only setting will be specified in the data section of this chapter.

On Panel 2 there are two buttons. The first is a cancel button, which throws away any edits that

have been performed on the data on this panel. The second is the save button, which saves

changes made to this form. Note that the save button will be displayed for both the create and

update options, though the behavior will be different between those two options.

Chapter 6.1. 2 Creating the CSS and HTML definition

The CSS and HTML files for this application are largely defined in previous chapters of this text,

and so are presented here without comment.

/*

 * File: CRUD.css

 * Author: Charles W. Kann

 * Date: July 8, 2017

 *

 * Purpose: To define the styling for

 * the CRUD application

 */

/*

 CSS for the header of the page

 */

header {

 margin : 5px 50px 5px 50px;

 border : 2px solid blue;

 background-color : slategray;

 color : white;

}

header p {

 font-size : 150%;

}

.header-icon {

 display : inline-block;

 margin: 50px 10px 50px

}

.header-desc {

 display : inline-block;

 margin : 25px;

}

.header-menu {

 display : inline-block;

 float: right;

 margin : 50px 50px 50px 50px;

 }

PROGRAMMING FOR THE WEB: 126

/*

 CSS for the input form (Panel 2)

 */

#inputForm {

 margin : 0px 50px 5px 5px;

 background-color : beige;

 border : 2px solid black;

 display: none;

 float : right;

 padding : 20px;

 width : 42%;

 height : 70%;

}

/*

 CSS for the records (Panel 1)

 */

#recordDivision {

 margin : 0px 5px 5px 50px;

 background-color : beige;

 border : 2px solid black;

 display: inline-block;

 float : left;

 padding : 20px;

 width : 35%;

 height : 70%;

}

/*

 Select list for records

 */

#dataRecords {

 width : 300px;

}

/*

 Gray out read-only input

 */

input:-moz-read-only { /* For Firefox */

 background-color: lightgray;

}

input:read-only {

 background-color: lightgray;

}

Program 106 – CSS for CRUD interface

<!--

 File Name: CRUD.html

 Author: Charles Kann

 Date: 7/8/2017

127 PROGRAMMING FOR THE WEB:

 Purpose: To define the Map Example CRUD application.

 Modification History:

 7/8/2017 - Initial Release

-->

<html>

 <head>

 <meta charset="UTF-8">

 <title>Map Example </title>

 <link rel="stylesheet" type="text/css" href="CRUD.css">

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.Java

Script">

 </script>

 <script src="Map.JavaScript"> </script>

 <script src="CRUDLibrary.JavaScript"> </script>

 <script src="CRUDOnload.JavaScript"> </script>

 <script>

 // Global records array declaration

 var records = new Array();

 </script>

 </head>

 <body>

 <header>

 <div class="header-icon">

 <image src="GRI_logo.png" />

 </div>

 <div class="header-desc">

 <h1>Map Example</h1>

 <p class="header-p">

 Example map input screen

 </p>

 </div>

 <div class="header-menu">

 <p class="header-p">

 Home File About

 </p>

 </div>

 </header>

 <section id="recordDivision" >

 <h1> Data records </h1>

 <select id="dataRecords" size="7" >

 </select>

 <p>

 <input type="button" value="Create" id="create" />

 <input type="button" value="Read " id="read" />

 <input type="button" value="Update" id="update" />

 <input type="button" value="Delete" id="delete" />

 </p>

 <p>

 <input type="button" value="Save To File" id="saveFile" />

 <input type="button" value="Read From File" id="readFile"/>

PROGRAMMING FOR THE WEB: 128

 </p>

 <p id="userMessageParams">

 <input type="text" size="50" id="userMessage" />

 </p>

 </section>

 <section id="inputForm" />

 <p>

 <label id="l1" for="title">Title</label>

 <input type="text" id="title" size="20">

 </p>

 <p>

 Map Options

 <label id="l2" for="resize">Allow map to be resized:

 </label>

 <input type="checkbox" id="resize"/>

 <label id="l3" for="recenter">

 Allow map to be recentered:

 </label>

 <input type="checkbox" id="recenter" checked />

 </p>

 <p>

 Type of Map

 <input type="radio" name="maptype" id="XYZMap"

 value="XYZMap"/>

 <label id="label1" for="XYZMap">XYZ map </label>

 <input type="radio" name="maptype" id="StamenMap"

 value="StamenMap"

 checked />

 <label id="label2" for="StamenMap">Stamen Map

 </label>

 </p>

 <p>

 Screen Size

 <input type="radio" name="screenSize" checked

 id="600x480" value="600x480" />

 <label id="label3" for="XYZMap">600x480 </label>

 <input type="radio" name="screenSize" id="1024x768"

 value="1024x768"/>

 <label id="label4" for="1024x768">1024x768 </label>

 <input type="radio" name="screenSize" id="1280x800"

 value="1280x800"/>

 <label id="label5" for="XYZMap">1280x800 </label>

 </p>

 <p>

 Center of Map

 <label id="label1" for="lat">Latitude

 </label>

 <input type="number" id="lat" value="-77" />

 <label id="label2" for="long" >Longitude </label>

 <input type="number" id="long" value="39" />

 </p>

129 PROGRAMMING FOR THE WEB:

 <input type="button" value="Save" id="saveNew" />

 <input type="button" value="Save" id="saveUpdate" />

 <input type="button" value="Cancel" id="cancelEdit" />

 </section>

 </body>

</html>

Program 107 – HTML CRUD interface

This html results in the following screen.

Figure 18 – HTML implementation of the wire frame design

Chapter 6.1. 3 Application Data

The following diagram shows the data, from the forms, which will be needed for the application.

PROGRAMMING FOR THE WEB: 130

Figure 19 – Data items found in the design

The data in this application consists of the items that make up a map object (all the fields circled

in red in Panel 2) and an array of all the map objects (the list box circled in red in Panel 1). The

JavaScript definition of the map data fields can be represented as a Map constructor function as

shown below.

This JavaScript data represents a single entity, and so is stored in a separate file.

 /*

 File name: MyMap.js

 Type: Object definitoin

 Purpose: To create and manipulate Map objects

 Author: Charles Kann

 Date: July 7, 2017

 Modification History:

 7/7/2017 - Initial Release

 */

function MyMap(options) {

 // Set the Constructor Function Type

 this.__cfName = "MyMap";

131 PROGRAMMING FOR THE WEB:

 // All object must be created with a title...

 if (options.title == null || options.title == undefined)

 throw "Title must be specified";

 // Set default properties for a map

 // Note that title is set in case a user

 // creates this object using Object.create;

 this.id = null;

 this.title = "Please change the title"

 this.recenter = true;

 this.resize = false;

 this.mapType = "Stamen";

 this.screenSize = "640x480";

 this.lat = -77;

 this.long = 39;

 // Get properties from parameter

 // Note that this acts like operator overloading. If

 // a property is not set in the parameter, the default

 // will be used. Also this allows for other data fields

 // that might have been added.

 outerloop:

 for (i in options) {

 for (j in this) {

 if (i == j) {

 this[i]= options[j];

 continue outerloop;

 }

 }

 console.log("Property " + i + " is not a default Map property");

 this[i] = options[i];

 }

 // Return the current object. This is not needed, but

 // but doesn't hurt and makes the intent clear.

 return this;

}

 // Function: update

 // Purpose: to update all of the properties in the object.

 // Note that this function allows unstructured

 // properties

 // Input: objectbject with property values to update

 // Output: none

 // Side Effects: object properties are updated.

MyMap.prototype.update = function(options) {

 // Title property cannot change on update. It can be

 // thought of as the immutable key for the object.

 var t1 = options.title;

 var t2 = this.title;

 if (t1 != t2)

 throw "Title changed not allowed in update";

 // Get properties from parameter

 // Note that this acts like operator overloading. If

PROGRAMMING FOR THE WEB: 132

 // a property is not set in the parameter, the default

 // will be used. Also this allows for other data fields

 // that might have been added.

 outerloop_1:

 for (i in options) {

 for (j in this) {

 if (i == j) {

 this[j]= options[i];

 continue outerloop_1;

 }

 }

 console.log("Property " + i + " is not a default MyMap property");

 this[i] = options[i];

 }

}

// Function: toString

// Purpose: to create a string representation of the object

// Input: none

// Output: string representation of the object

// Side Effects: none

MyMap.prototype.toString = function() {

 return (JSON.stringify(this));

}

Program 108 – Map object definition

The map objects are stored in a global array variable in the head of the CRUD.html file. This is

the only global variable in this program. Global variables should be used sparingly, and only if

the intent is known and can be explained. In this case, the records will be used in both the

constructor function and the library functions, and thus needs to be global.

Chapter 6.1. 4 Mapping the object to data fields

Now that the properties for the object has been defined, the next step is to map it to the form

which was generated earlier. This is done in the table below. This table contains 3 columns.

The first column is the name of the item in the object. The second column is the corresponding

field name on the form.

The last column requires some explanation. Panel 2 can be brought up in 3 modes that are

create, read, or update. For each of these fields the field has 2 possible attributed, if it is read-

only, and if it is visible. This column defines the value of these attributes for each. Note that the

two buttons on Panel 2 (circled in green) will also have values for each mode of the form, and so

these two buttons are included in the table.

Object

Name

Field

Name

Notes Default value Attributes

title title “Enter Title” Create: Shown, read_only = false

Read: Shown, read_only = true

Update: Shown, read_only = true

recenter resize false Create: Shown, read_only = false

Read: Shown, read_only = true

133 PROGRAMMING FOR THE WEB:

Update: Shown, read_only = false

resize recenter true Create: Shown, read_only = false

Read: Shown, read_only = true

Update: Shown, read_only = false

mapType mapType Values are

from

radio buttons

are: Stamen,

XYZMap

Stamen Create: Shown, read_only = false

Read: Shown, read_only = true

Update: Shown, read_only = false

screenSize Values are

from

radio buttons

are: 600x480,

1024x768,

1280x800

600x480 Create: Shown, read_only = false

Read: Shown, read_only = true

Update: Shown, read_only = false

lat lat -77 Create: Shown, read_only = false

Read: Shown, read_only = true

Update: Shown, read_only = false

long long 39 Create: Shown, read_only = false

Read: Shown, read_only = true

Update: Shown, read_only = false

Cancel

Button

 Create: Shown, behavior: hide form

Read: Shown, behavior: hide form

Update: Shown, behavior: hide form

Save

Button

 Create: Shown, function: SaveNew

Read: Hidden

Update: Shown, function: SaveUpdate

This table allows functions to be written that reset the form (sets the values to defaults), reads the

values from the form into an object, set the values on the form to values from an object, and to

set the attributes for the fields on the form to read-only or read-write. It shows that 2 Save

buttons are needed (one for update, and one for create), and how to set the visibility of those two

Save buttons.

The functions defined in this table are shown below and are stored in a file

CRUDLibrary.JavaScript. The attributes for the buttons will be set later when the behavior for

the events are defined.

/*

 File: CRUDLibrary.js

 Author: Charles Kann

 Date: July 8, 2017

 Purpose: To define library functions needed

 for the Map Example CRUD application

 Methods: resetForm

 writeDataToForm

 readDataFromForm

 setFormReadWrite

PROGRAMMING FOR THE WEB: 134

 setFormReadOnly

 Modification History:

 7/8/2017 - Initial Release

 */

/*

 Function: resetForm

 Author: Charles Kann

 Date; 7/8/2017

 Purpose: Set form to default values

 Input: None

 Output: None

 Side Effects: Fields on form have default values

 */

function resetForm() {

 $("#title").val("");

 $("#resize").prop("checked", false);

 $("#recenter").prop("checked", true);

 $("#StamenMap").prop("checked", true);

 $("#600x480").prop("checked", true);

 $("#lat").val("-77");

 $("#long").val("39");

}

/*

 Function: writeDataToForm

 Author: Charles Kann

 Date; 7/8/2017

 Purpose: Set form to values form obj

 Input: obj - an array containing data values.

 obj must have values for all fields.

 Output: None

 Side Effects: Fields on form have values from obj

 */

function writeDataToForm(obj1) {

 $("#title").val(obj1.title);

 $("#resize").prop("checked", obj1.resize);

 $("#recenter").prop("checked", obj1.recenter);

 $("#"+obj1.mapType).prop("checked", true);

 $("#"+obj1.screenSize).prop("checked", true);

 $("#lat").val(obj1.lat);

 $("#long").val(obj1.long);

}

/*

 Function: readDataFromForm

 Author: Charles Kann

 Date; 7/8/2017

 Purpose: create an object with data values for

 all fields on form

 Input: None

 Output: obj - an object with the data values

 Side Effects: None

 */

function readDataFromForm() {

135 PROGRAMMING FOR THE WEB:

 obj = new Object();

 obj.title = $("#title").val();

 obj.resize = $("#resize").is(":checked");

 obj.recenter = $("#recenter").is(":checked");

 obj.mapType = $("input[name='maptype']:checked").val();

 obj.screenSize = $("input[name='screenSize']:checked").val();

 obj.lat = $("#lat").val();

 obj.long = $("#long").val();

 return obj;

}

/*

 Function: setFormReadWrite

 Author: Charles Kann

 Date; 7/8/2017

 Purpose: Set all form fields to allow

 reading and writing.

 Input: None

 Output: None

 Side Effects: Fields on form are read/write

 */

function setFormReadWrite() {

 $("#title").attr('readonly', false);

 $("#resize").attr('disabled', false);

 $("#recenter").attr('disabled', false);

 $("#StamenMap").attr('disabled', false);

 $("#XYZMap").attr('disabled', false);

 $("#600x480").attr('disabled', false);

 $("#1024x768").attr('disabled', false);

 $("#1280x800").attr('disabled', false);

 $("#lat").attr('readonly', false);

 $("#long").attr('readonly', false);

}

/*

 Function: setFormReadOnly

 Author: Charles Kann

 Date; 7/8/2017

 Purpose: Set all form fields to read-only

 Input: None

 Output: None

 Side Effects: Fields on form are readonly

 */

function setFormReadOnly() {

 $("#title").attr('readonly', true);

 $("#resize").attr('disabled', true);

 $("#recenter").attr('disabled', true);

 $("#StamenMap").attr('disabled', true);

 $("#XYZMap").attr('disabled', true);

 $("#600x480").attr('disabled', true);

 $("#1024x768").attr('disabled', true);

 $("#1280x800").attr('disabled', true);

 $("#lat").attr('readonly', true);

 $("#long").attr('readonly', true);

}

PROGRAMMING FOR THE WEB: 136

Program 109 – Library functions for the CRUD application

Chapter 6.1. 5 Application behavior – events

Many readers will have come to this book having had a minimum of programming experience,

and often that experience is with a program that begins with a main method from which all

actions in the program emanate. The program works in a top-down manner, where all actions are

part of tree rooted in the main method.

The programming model presented here uses a very different model of programming that we will

call Event Based Programming (EBP). EBO is very different from procedural. First, there is no

main in the program that is the parent of all the actions in the program. Functions are triggered

(or execution called) via asynchronous events, in our case as actions from the user. The system

then runs code to respond to that event, returning the program to some known, safe state from

which it can respond to other events.

In the application in this chapter, events are generated by the user when a button is pressed. The

pressing of the button creates an event that calls a function associated with that button.

Unlike the design of a procedural program, which proceeds in a top down manner, EBP sets up

the framework for the program, and then defines functions for each of the behaviors (or buttons

presses) in this application.

To design the program a table is created to explain the behavior to respond to each button press.

The following figure shows the buttons that need to be created for this application. This is

translated into a table where each button is assigned an id, and a column is created to outline the

behavior for each button.

Note that one of the buttons in the diagram, the save button in Panel 2, is special in that it will be

implemented as two separate buttons. The reason is that the save button is context sensitive; it

will call one function when the user is doing a create, and another function when the user is

doing an update. This will be implemented as two separate buttons having different ids but the

same values. It will appear to the user that the button is a Save button but depending on the

context the button will be different.

There is one other issue. A message box is provided to give feedback to the user. Each button

will have zero, one, or more messages that they can provide.

137 PROGRAMMING FOR THE WEB:

Figure 20 – buttons with functionality to be defined

Button ID Notes Behavior

Create create 1. Set form to default values (resetForm())

2. Clear and hide message box

3. Set form so all fields can be edited (setFormReadWrite())

4. Set buttons:

a. saveNew show

b. saveUpdate hide

c. cancel show

5. Display input form

Read read 1. Get the title (key) from list

2. Read record from records array

a. Print error and throw exception if not defined.

3. Clear and hid message box

4. Write data to forrm (writeDataToForm(obj))

5. Set form so all fields are read-only (setFromReadOnly())

6. Set buttons

a. saveNew hide

b. saveUpdate hide

PROGRAMMING FOR THE WEB: 138

c. cancel show

7. Display input form

Update update 1. Get the title (key) from list

2. Read record from records array

a. Print error and throw exception if not defined.

3. Clear and hid message box

4. Write data to forrm (writeDataToForm(obj))

5. Set form so all fields are readWrite(setFromReadWrite())

6. Set the title to read-only

7. Set buttons

a. saveNew hide

b. saveUpdate show

c. cancel show

d.

8. Display input form

Delete delete 1. Get the title (key) from list

2. Read record from records array

a. Print error and throw exception if not defined.

3. Prompt to confirm delete

a. If no – message that record not deleted

b. If yes

i. Remove record from array

ii. Remove item from list

iii. Message that item was deleted

Save to

File

saveFile 1. Use JSON.strinigfy to make a JSON formated file for the

records array, and LocalStorage.setItem to put it in local

storage.

Read

from File

readFile 1. Empty the list

2. Empty the records array

3. Read and parse the array from local storage

4. For each member of the arrray

a. Parse data

b. Store to list

c. Store to records array

Cancel cancel 1. Hide input form

Save saveUpdate 1. Read data from form (readDataFromForm())

2. Get object from records array

3. If record not found, throw exception

4. Update record (obj.update())

5. Hide input form.

Save saveNew 1. Read data from form (readDataFromForm())

2. Create new map object

3. Push object on records

4. Update the list

5. Hide input form.

These behaviors are attached to the buttons when the form is loaded, which is done in the JQuery

onload function in the file CRUDOnload.JavaScript. This file is shown below.

139 PROGRAMMING FOR THE WEB:

/*

 File Name: CRUDOnload.js

 Author: Charles Kann

 Date: July 9, 2019

 Purpose: To initialize the application, and set update

 the event function call backs.

 Events in this file:

 create - create a new Map record

 read - read a Map record (display only)

 update - update a Map record

 delete - delete a Map record

 save to file - save the record array to local storage

 read from file - read the record array from local storage

 cancel - cancel editing a Map record

 save(1) - save a map record on create

 save(2) - save a map record on update

 Modification History:

 7/9/2017 - Initial release

*/

$(function() {

 // Set form to default values

 resetForm();

 $("#userMessage").hide();

 $("#userMessage").val("");

 /*

 Function: Create a new record

 Purpose: To respond to the create

 button

 */

 $("#create").click(() => {

 // Initialize form

 $("#userMessage").hide();

 $("#userMessage").val("");

 resetForm();

 setFormReadWrite();

 // Set buttons

 $("#saveNew").show();

 $("#saveUpdate").hide();

 $("#cancelEdit").show();

 $("#inputForm").show();

 });

 /*

 Function: Read a Map record

 Purpose: To respond to the read

 button

 */

 $("#read").click(() => {

 // get record to read from list

PROGRAMMING FOR THE WEB: 140

 var myTitle = $("#dataRecords").val();

 //Find the record to read

 var recordToUpdate = records.find((currentObject) => {

 return (currentObject.title == myTitle)

 });

 // Record is not found, throw exception

 if (recordToUpdate == undefined) {

 $("#userMessage").show();

 $("#userMessage").val("Record does not exist - Make sure a

record is selected");

 throw "The title does not exists";

 }

 // Initialize form

 $("#userMessage").hide();

 $("#userMessage").val("");

 writeDataToForm(recordToUpdate);

 setFormReadOnly();

 // Set buttons

 $("#saveNew").hide();

 $("#saveUpdate").hide();

 $("#cancelEdit").show();

 $("#inputForm").show();

 });

 /*

 Function: Update a Map record

 Purpose: To respond to the update

 button

 */

 $("#update").click(() => {

 // get record to read from list

 var myTitle = $("#dataRecords").val();

 //Find the record to read

 var recordToUpdate = records.find((currentObject) => {

 return (currentObject.title == myTitle)

 });

 // Record is not found, throw exception

 if (recordToUpdate == undefined) {

 $("#userMessage").show();

 $("#userMessage").val("Record does not exist - Make sure a

record is selected");

 throw "The title does not exist";

 }

 // Initialize form

 $("#userMessage").hide();

 $("#userMessage").val("");

 writeDataToForm(recordToUpdate);

 setFormReadWrite();

 $("#title").attr('readonly', true);

141 PROGRAMMING FOR THE WEB:

 // Set buttons

 $("#saveNew").hide();

 $("#saveUpdate").show();

 $("#cancelEdit").show();

 $("#inputForm").show();

 });

 /*

 Function: Delete a Map record

 Purpose: To respond to the delete

 button

 */

 $("#delete").click(() => {

 // get record to read from list

 let myTitle = $("#dataRecords").val();

 // Record is not found, throw exception

 if (myTitle == null)

 {

 $("#userMessage").show();

 $("#userMessage").val("Record does not exist - Make sure a

record is selected");

 throw "The title does not exist";

 }

 // Confirm Delete

 let retVal = confirm("Do you want to delete " + myTitle + " ?");

 if(retVal == true){

 //Find the record to read

 let index = records.findIndex ((currentObject) => {

 return (currentObject.title == myTitle)

 });

 // Record is not found

 if (index == -1) {

 $("#userMessage").show();

 $("#userMessage").val("Record " + myTitle + " not found");

 }

 // Record is found, remove it from records and list

 else {

 records.splice(index, 1);

 $("#dataRecords option[value='" + myTitle + "']").remove();

 $("#userMessage").show();

 $("#userMessage").val("Record " + myTitle + " deleted");

 }

 }

 // Inform the user the record is not deleted, as

 // was indicated by return from dialog

 else{

 $("#userMessage").show();

 $("#userMessage").val("Record " + myTitle + " not deleted");

 }

 });

PROGRAMMING FOR THE WEB: 142

 /*

 Function: Save records to local storage

 Purpose: To respond to the Save To File

 button

 */

 $("#saveFile").click(() => {

 localStorage.setItem("MapData", JSON.stringify(records));

 });

 /*

 Function: Read records from local storage

 Purpose: To respond to the Read From File

 button

 */

 $("#readFile").click(() => {

 // clear out the list and array

 $("#dataRecords").empty();

 records = new Array();

 // get the records array from local storage

 let arr = JSON.parse(localStorage.getItem("MapData"));

 // Each record was set to JSON independently. Get

 // each record, parse it, and put it in the records

 // array and list.

 for (var i = 0; i < arr.length; i++) {

 records[i] = new MyMap(arr[i]);

 $('#dataRecords').append($("<option></option>")

 .attr("value", records[i].title)

 .text(records[i].title));

 }

 });

 /*

 Function: Save record data from create

 Purpose: To respond to the Save Button

 */

 $("#saveNew").click(()=> {

 // See if record exists. Do not allow duplicates.

 var saveObj = readDataFromForm();

 var recordExists = records.find((currentObject, idx) => {

 return (currentObject.title == saveObj.title)

 });

 if (recordExists != undefined)

 throw "The title already exists";

 // Put new record in records array, and update list.

 records.push(new MyMap(saveObj));

 $('#dataRecords').append($("<option></option>")

 .attr("value",saveObj.title)

 .text(saveObj.title));

 // hide the input form

 $("#inputForm").hide();

 });

143 PROGRAMMING FOR THE WEB:

 /*

 Function: Save record data from update

 Purpose: To respond to the Save Button

 */

 $("#saveUpdate").click(() => {

 // Check if record exists. It must exist to

 // update it.

 var saveObj = readDataFromForm();

 var recordToUpdate = records.find(function(currentObject) {

 return (currentObject.title == saveObj.title)

 });

 if (recordToUpdate == undefined)

 throw "The title does not exists";

 // Update record.

 recordToUpdate.update(saveObj);

 // hide the input form.

 $("#inputForm").hide();

 });

 /*

 Function: Cancel Edit

 Purpose: To respond Cancel Button

 */

 $("#cancelEdit").click(() => {

 $("#inputForm").hide();

 });

});

Program 110 – Applications events set in the onLoad function

PROGRAMMING FOR THE WEB: 144

What you will learn

In this chapter, you will learn:

1. The basic function of the Node.js server environment, the npm package manager, and the

Sails framework.

2. Installing and accessing Node.js and Sails

3. Creating an application with a REST Interface for the CRUD program developed in the

last chapter.

4. What a REST interface is, and how to access it.

5. Accessing the REST interface from Postman

6. Accessing the REST interface form the CRUD program using AJAX to persist the data

on server

Chapter 7 Creating a server for the persistent storage of our CRUD
application

In Chapter 6 a fully working, simple CRUD application was built on the information presented in

the first 5 chapters. The biggest problem with the application from Chapter 6 is that the data was

persisted on the local computer using the LocalStorage. This means that the application can be

used by only one user on one computer.

In this chapter the CRUD application from Chapter 6 is changed so that it can be accessed from

remote client browser environments. This will allow multiple users to have shared access to the

data.

Chapter 7.1 Creating and Accessing a Server Using Node.js, Sails

In this section, an HTTP web CRUD server will be created using Node.js with Sails Blueprints.

The HTTP server will be used with the Postman application to explain REST interfaces, and the

server will be accessed and tested using the Postman application.

Chapter 7.1.1 Node.js

For the purposes of this text, Node.js can be thought of as a server runtime that is used to run

JavaScript. In this way, the node command can be thought of like the java command. Just as the

java command runs an interpreter to run Java Byte Code (JBC), so the node command runs an

interpreter to run JavaScript. Any JavaScript program can be run with Node.js, not just servers,

including interfacing to single board computers like the Raspberry Pi or Arduino41.

This book will be using Node.js from within Sails, so there will not be a need to ever directly run

the node command for the server that will be created.

41 See https://www.w3schools.com/nodejs/nodejs_intro.asp for more information about running programs using

Node.js including creating servers, accessing databases, and programming a Raspberry Pi. For information about

using Node.js and Arduino, a google search of “node Arduino” will bring up multiple examples.

https://www.w3schools.com/nodejs/nodejs_intro.asp

145 PROGRAMMING FOR THE WEB:

To install Node.js, go to the site https://nodejs.org/en/, and select the option for the latest Long-

Term-Release (LTR) version. Then follow the instructions for your operating system. When

writing this text, Node.js was installed on a Windows computer, and the LTR downloaded a

“.msi” file, and the whole installation completed without any problems.

To verify the installation of node, open a DOS command window and type “node -v”. You

should get back a string describing the version of node you have installed.

Chapter 7.1.2 npm

Most modern languages can access tools, frameworks, and other useful libraries of functionality

that are built on top of the language. For example, frameworks have been built for most modern

languages that standardize and abstract how interface with databases. For each language, there

are multiple number of these frameworks, and no single project would use all of them. Because

there are so many, and some conflict with each other, these tools are not built into the base

language.

Not having the tools built into the languages leads to the issue of how to make them available to

developers. The old method (and the one still used today in Java) is to require the programmer

to manage their own environments. But this is difficult, and except for large environments that

can afford to have personal dedicated to this effort, unworkable.

The modern answer to the tools build problem is to create packages that contain all the files and

information needed to install the tool or framework. These packages are then managed by a

package manager. Most modern languages have a package manger. For example, in C# there is

NuGet, in Ruby these is Ruby-Version-Manager (rvm) and bundler, and in Python there is pip

and PyPM.

Node Package Manager (npm) is the Node.js tool used to manage packages. It is installed by

default when you install Node.js. It will be used in the next section to install the Sails package.

To verify the installation of npm, open a DOS command and type “npm -v”. You should get

back a string describing the version of npm you have installed.

Chapter 7.1.3 Installing Sails

When implementing a web server application, most programmers choose a framework to start

from. These frameworks provide a standard view of the system, as well as many of the tools that

make developing a basic implementation of the application. Later we will see just how simple

the basic application development can be.

Web Sever frameworks generally fall into three large categories: Model-View-Controller

(MVC), REpresentational State Transfer (REST), and full-stack. Within MVC, there are two

types of frameworks, both of which came from Ruby. They are Sinatra-like and Rails-like.

Each of these frameworks has many implementations of the basic scheme, and to see the

implementations of these frameworks just in Node.js, see http://nodeframework.com/.

To attempt to explain in detail even one of these frameworks, let alone all of them, is a task for

an entire book, so the details of the frameworks, advantages and disadvantages, etcetera will not

https://nodejs.org/en/
http://nodeframework.com/

PROGRAMMING FOR THE WEB: 146

be covered. This text will choose one framework, Sails, and will simply use it to create

persistent storage for out CRUD application.

Sails is a MVC Rails-like framework designed to allow a standard implementation of a server

application. Sails was chosen simply because the author has used Rails in the past, and at the

time this book was written, Sails was one of the most downloaded Rails like frameworks.

To install Sails, npm will be used. At the DOS command prompt, type

npm install sails -g

This command tells npm to install the package sails, and to make it globally available for all

users. When it completes, you can test that sails has been installed by typing “sails -v”. You

should get back a string describing the version of Sails you have installed.

Chapter 7.1.4 Implementing your Sails application

Now that Sails has been installed, an application can be written to store the data from the CRUD

application on the server. To start, I suggest that a directory named Sails be created in an

appropriate place on your computer, and that you create all of your Sails applications in this

directory42.

Change Directory (cd) to your Sails application directory and type the following command:

sails new MapData

Choose option 2, an empty sails application. Option 1 provides a complete basic framework,

with authentication, user management, and even credit card processing, and will be the normal

option you will choose in the future. For this project though, all of this infrastructure just gets in

the way of implementing a simple application, and so do not select it.

Now generate the specific application we need to store our map data. cd to the MapData

directory and type the following command:

Sails generate api MapData

Doing this has actually generated a Sails Blueprint application that can actually be run, but the

application does not know what data it needs to deal with. To fix this, edit the file in your

MapData directory named api/models/MapData.js, and change the Primitives section so the file

is as follows43:

/**

 * MapData.js

 *

42 The site https://devdactic.com/rapid-development-with-sailsjs/ provides a good resource for implementing a

server in Sails.

43 For more information about models, see https://sailsjs.com/documentation/concepts/models-and-orm/attributes

https://devdactic.com/rapid-development-with-sailsjs/
https://sailsjs.com/documentation/concepts/models-and-orm/attributes

147 PROGRAMMING FOR THE WEB:

 * @description :: A model definition. Represents a database

table/collection/etc.

 * @docs :: https://sailsjs.com/docs/concepts/models-and-

orm/models

 */

module.exports = {

 attributes: {

 // ╔═╗╦═╗╦╔╦╗╦╔╦╗╦╦ ╦╔═╗╔═╗

 // ╠═╝╠╦╝║║║║║ ║ ║╚╗╔╝║╣ ╚═╗

 // ╩ ╩╚═╩╩ ╩╩ ╩ ╩ ╚╝ ╚═╝╚═╝

 title : 'string',

 resize : 'boolean',

 recenter : 'boolean',

 mapType : 'string',

 screenSize : 'string',

 latitude : 'number',

 longitude : 'number',

 // ╔═╗╔╦╗╔╗ ╔═╗╔╦╗╔═╗

 // ║╣ ║║║╠╩╗║╣ ║║╚═╗

 // ╚═╝╩ ╩╚═╝╚═╝═╩╝╚═╝

 // ╔═╗╔═╗╔═╗╔═╗╔═╗╦╔═╗╔╦╗╦╔═╗╔╗╔╔═╗

 // ╠═╣╚═╗╚═╗║ ║║ ║╠═╣ ║ ║║ ║║║║╚═╗

 // ╩ ╩╚═╝╚═╝╚═╝╚═╝╩╩ ╩ ╩ ╩╚═╝╝╚╝╚═╝

 },

};

sails.config.models.migrate='alter';

Program 111 – api/models/MapData.js file

You also need to add the line sails.config.models.migrate='alter' at the end of the file.

This allows the data to be kept between starting instances of the server. The other options for the

migrate option are drop (drop the data in the server each time sails is started), and safe, which

should be used once the program is in production.

Now you will start the server by typing the following command:

sails lift

The server should now start running, and you should get a screen similar to the following.

info: Starting app...

 info: ·• Auto-migrating... (alter)

 info: Hold tight, this could take a moment.

 info: ✓ Auto-migration complete.

PROGRAMMING FOR THE WEB: 148

 info:

 info: .-..-.

 info:

 info: Sails <| .-..-.

 info: v1.0.2 |\

 info: /|.\

 info: / || \

 info: ,' |' \

 info: .-'.-==|/_--'

 info: `--'-------'

 info: __---___--___---___--___---___--___

 info: ____---___--___---___--___---___--___-__

 info:

 info: Server lifted in `C:\Users\Charl\sails\MapCrud`

 info: To shut down Sails, press <CTRL> + C at any time.

 info: Read more at https://sailsjs.com/support.

debug: ---

debug: :: Sun Aug 19 2018 11:45:10 GMT-0400 (Eastern Daylight Time)

debug: Environment : development

debug: Port : 1337

debug: ---

Program 112 – display after sails have started correctly

If you have any errors, check to make sure you are in the MapData directory, and that you

spelled all the text in your models file correctly.

Once you have no errors, a CRUD server with create, read, update, and delete capabilities, is up

and running on your local computer (named localhost) and on port 1337. This server is ready to

be used by the CRUD application. The rest of this chapter will cover accessing the server.

Chapter 7.2 Accessing a Server Using Node.js, Sails

Now that the application server is running, it can be accessed through any browser. To see this

type the following Uniform Resource Locator into any web browser:

http://localhost:1337/MapData

The statement tells the browser to look on the local host for a program attached to port 1337. At

that port a resource, MapData, will be found, and data from that application will be shown on the

web page.

Depending on the browser, you will get different outputs. Chrome will display an open and

close square bracket, indicating that there is no MapData in the application.

149 PROGRAMMING FOR THE WEB:

Figure 21 – Response from server when URL is called from Chrome

Firefox recognizes that the data is JSON data, and it consists of an empty array. It gives you

move options to query this data, but looking at the raw data gives the same open and close square

bracket.

Figure 22 – Response from server when URL is called from Firefox

This is the concept of a REST server. All commands are accessed via HyperText Transport

Protocol (HTTP) using HTML requests. These requests can all be generated from the browser,

and later in this chapter this will be accomplished using AJAX requests from JavaScript. But to

have to write an entire program just to test that the REST services work is inefficient.

PROGRAMMING FOR THE WEB: 150

Fortunately, there are a number of apps that can be used for interacting with REST APIs. The

one used in this text is Postman.

Chapter 7.2.1 Getting started with Postman

To install Postman, go to the website https://www.getpostman.com/, and download the free app.

Follow the installation instructions, and the Postman application should come up with a window

that appears similar to the one below.

Figure 23 – Postman GET request that is the same as Figure 21

From this window, choose the GET method and type in the URL for the server. When you hit

the Send button, the window should come back with the two square brackets, as it did with the

web page. Postman is now ready to test your system.

https://www.getpostman.com/

151 PROGRAMMING FOR THE WEB:

Chapter 7.2.2 Creating data

If all Postman does is emulate a very poorly setup browser, it is not that useful. But it does much

more. As we said at the end of Chapter 7.1.4, the server has implemented a full set of CRUD

operations. However, to access them we need a way to format the requests. Formatting these

requests is really not practical (or possible) from a web browser without using JavaScript. And

for testing the application, implementing the test cases in JavaScript would be a poor choice.

The only reason the web browser was able to easily access the application earlier is because the

default request, get with no parameters, is the default request.

Postman allows us to easily develop and test the REST server application. This is probably best

seen in the context of using Postman, so the following is a life cycle of an application presented

using Postman.

The first step, making sure Postman can reach the server, is already done in the last section.

Next data should be added to the server. This is accomplished using the POST method with the

same URL. When sending a POST request, note that a body of the post request can be included

by clicking the Body button. Click the button and include the following JSON object in the body

of the request, as shown in the figure below.

{

 "title":"map1",

 "resize":"true",

 "recenter":"true",

 "mapType":"Stamen",

 "screenSize":"1024x768",

 "latitude":"-75",

 "longitude":"45"

}

Program 113 – Input object for Postman POST request

When this request is sent, the server sends back a status code of 200 indicating the request was

successful. It also sends back a copy of the object as it was stored in the database. Note that 3

fields are included that were not part of the original request but are added by Sails. These fields

are createdAt, updatedAt, and id. The important filed is the id field, which will be the primary

unique key for this record in the persistent storage. This key will be used for subsequent queries

to read/update/delete this record.

Add 2 more records, changing at least the title in the Postman body so that you know 3 different

records have been saved.

PROGRAMMING FOR THE WEB: 152

Figure 24 – Postman POST request creating a new object on the server

Chapter 7.2.3 Retrieving Data

Now retrieve all of the records placed in the Node.js server and show them in Postman. This is

done by sending a GET request, http://localhost:1337/mapData, to the server for MapData. This

was done earlier to show that the connection to Node.js was valid and returned a null array as

there were no records in the database. Now this query will return an array of the 3 map

elements that were posted to the array, as shown in the following figure.

153 PROGRAMMING FOR THE WEB:

Figure 25 – Postman GET request after several objects have been stored on server

PROGRAMMING FOR THE WEB: 154

To retrieve the information for an individual record, the id of the record to be retrieved is

appended to the URL. For example, the second MapData record inserted into the data store was

given the id of 2. To retrieve this record, append the number 2 onto the GET query,

http://localhost:1337/mapData, and just the second record will be returned as a JSON object.

Figure 26 – Postman GET request to retrieve a single object

If a request is made for an ID that does not exist, the server will return a 404 status code and

return the message “Not Found”.

155 PROGRAMMING FOR THE WEB:

Figure 27 – Postman GET request to retrieve a single object that is not found

Chapter 7.2.4 Updating and Deleting records

The last two operations for a CRUD interface are Update and Delete. To Update a record in the

server, the PUT or PATCH method is used with the URL for a specific record in the server. The

PATCH request with the URL and fields for ID 2 is shown below. The Update requires all fields

in the object to be sent, though in this case only the title is updated.

There are technical differences between PUT and PATCH requests, but either normally will

work. If one causes difficulties, try the other.

PROGRAMMING FOR THE WEB: 156

Figure 28 – Postman PATCH (or Put) request to update an object

Finally, the Delete CRUD option is accomplished by using the URL for a specific record and the

DELETE method. The following shows an example of deleting the record with an ID of 2. In

this case, the server sent back a Status code of 200, saying the transaction worked, and the JSON

of the record that was deleted.

Different servers will choose different Status codes for these transactions, and the Delete

transaction will often return a 404 saying the record was not found because it was deleted. This

can be confusing, as it could say that the record was not found, OR the record was deleted. What

status codes are returned for different operations, especially when there is a complex transaction,

can be confusing, and even the documentation as to what a server will return can be hard to

understand. The best advice might be to use trial-and-error to find out what status codes will be

returned.

157 PROGRAMMING FOR THE WEB:

Figure 29 – Postman DELETE request to delete an object

Chapter 7.2.5 Summary of CRUD REST server transactions

The REST transactions for a CRUD interface are summarized in the following table.

Method URL Meaning

GET /:model Return an array of JSON objects that are stored for this model

GET /:model/:id Return an JSON object for this model with this ID

PUT /:model Create a record for this model in the server

POST or PATCH /:model/:id Update the record for this model with this ID

DELETE /:model/:id Delete the record for this model with this ID
Figure 30 – REST transaction summary

PROGRAMMING FOR THE WEB: 158

Chapter 7.3 Communicating with the server using JavaScript

This section will describe how to send a transaction using JavaScript from a web browser to the

server.

Chapter 7.3.1 Sending a transaction to the server

There are 4 steps involved in writing a program to send a transaction to the server from

JavaScript:

1. An HTTP object is created, and the proper values set in that object.

2. A callback function (or listener) is set to receive the data back from the server

3. The request is sent asynchronously44 to the server.

4. The server will process the request, sending back (multiple) responses as it proceeds. Once

the request has completed, the server will send back a ready state of 4 and a status code

categorizing the result of the transaction.

These 4 steps are shown in the following JavaScript program that sends a request for an array of

JSON map objects. This code should be placed in a file named “ReadMaps,html” in the assets

directory of your Sails application, and can be accessed using the URL

http://localhost:1337/ReadMaps.html.

<script>

 let xmlhttp = new XMLHttpRequest();

 xmlhttp.open("GET", "/mapdata", true);
 xmlhttp.setRequestHeader("Content-Type", "application/json");

 xmlhttp.onreadystatechange = function ()

 {

 console.log("State = " + xmlhttp.readyState +

 ", and status = " + xmlhttp.status);

 if(xmlhttp.readyState === 4)

 {

 console.log("State = " + xmlhttp.readyState +

 ", and status = " + xmlhttp.status);

 }

 }

 xmlhttp.send();

</script>

Program 114 – XMLHttpRequest example

The following will explain each part of the transaction.

1. An object variable, in this case named xmlhttp, is created using the constructor function

XMLHttpRequest. This object will be used to build the request to be sent to the sever.

44 There is a synchronous version that can be used to send the transactions to the server and using the synchronous

version does not require the callbacks and raise the issues involved in processing the asynchronous version.

However, using the asynchronous version will tie up the browser so that the user cannot interact with the browser

until the request has finished. It is highly recommended that the synchronous version never be used, and it has been

deprecated in most of the major libraries.

http://localhost:1337/ReadMaps.html

159 PROGRAMMING FOR THE WEB:

2. The xmlhttp variable is opened (or initialized) to represent a GET method request on the

server, using /mapData as the URL. This is the same request made in Postman to retrieve all

of the records in the server. The third parameter is whether this request is asynchronous.

This parameter should always be true. Note that the request has only been built, it has not yet

been sent to the server.

3. A method is defined and attached to the onreadystatechange event to respond to the server

after the request is sent. Note that the request is to be sent asynchronously, which means that

the request will be running concurrently to the rest of the program. There will be a larger

discussion of the implications of this shortly, but for now know that the program will send

the request and continue running. The program will not wait for a response from the server.

The purpose of this method is to respond to messages coming back from the server.

3.1. The server will send back a number of messages to report the state of the transaction.

Generally, there will be at least 3 responses to any request, a state of 2 saying the request

was accepted, a state of 3 saying the request is being processed, and a state of 4 saying

the request is complete, though you can receive other state information. Your program

should always wait until a state 4 is received, meaning the transaction is complete,

before continuing45.

3.2. A status will be returned along with the state. A request that completes normally will

have a state of 4 and a status of 200. However, the status can be different depending on

the server, and it is a good idea to check these values.

4. Once the transaction has been initialized and the callback set, the transaction can be sent to

the server using the send method. In this example, the program completes, but the callback

function will linger until the request is complete and the xmlhttp object is freed.

The results from running this command are shown in the following figure.

45 For more information about request state and status, see

https://www.w3schools.com/xml/ajax_xmlhttprequest_response.asp

https://www.w3schools.com/xml/ajax_xmlhttprequest_response.asp

PROGRAMMING FOR THE WEB: 160

Figure 31 – JavaScript output illustrating asynchronous request and responses

Chapter 7.3.2 What it means to be asynchronous

Early it was said that this transaction was asynchronous. This has large implications for the

program that are not apparent, particularly to programmers not familiar with concurrency. The

following example will point out what is meant by concurrency, and why it is an important

concept to understand in JavaScript.

The previous program to send a transaction to the server returned the records in the server,

however there is no place in the program that displays them. This problem will now be rectified.

To fix this problem, the records will be written to the console by using the responseText method

of the xmlhttp object. This will contain the records current stored on the server.

The most obvious way to do this would be to place the code to print out the data from the server

after the request has been made, as in the following program. This program will not produce the

expected output46.

<script>

 var xmlhttp = new XMLHttpRequest();

 xmlhttp.open("GET", "mapdata", true);

 http.setRequestHeader("Content-Type", "application/json");

 xmlhttp.onreadystatechange = function ()

 {

 }

 xmlhttp.send()

46 This program represents a race condition, and it is actually possible for the program to have completed the

communication with the server before the output condition is executed. If this happens, the program will produce

the correct results. The odds of this happening are so vanishingly small that the possibility can be practically

discounted.

161 PROGRAMMING FOR THE WEB:

 console.log(" text = " + xmlhttp.responseText);

</script>

Program 115 – XMLHttpRequest example with a race condtion

Figure 32 – XMLHttapRequest server request with a race condition

The issue is that the output to the console is occurring while the program is still processing the

request, and the xmlhttp property responseText is not yet set when the console.log method is run.

To fix this, the traditional answer is to place the output inside the callback so that it is only after

the request has completed that the console is written to. This change is represented in the

following program:

<script>

 var xmlhttp = new XMLHttpRequest();

 xmlhttp.open("GET", "mapdata", true);

 xmlhttp.setRequestHeader("Content-Type", "application/json");

 xmlhttp.onreadystatechange = function () {

 if (xmlhttp.readyState == 4)

 console.log(" text = " + xmlhttp.responseText);

 }

 xmlhttp.send();

</script>

Program 116 – XMLHttpRequest server request with race condition fixed

PROGRAMMING FOR THE WEB: 162

Now the program will produce the expected output.

Figure 33 – Server request with the race condition fixed

This need to put code inside of a callback can result in callback being inside of a callback inside

of a callback. This situation is sometimes call callback hell. It is addressed in ECMA6 by the

addition of promise and await operations. This will be covered in a later section.

The last change to this program is to add a check to see if the request worked correctly. If it did,

an expected status of 200 will (hopefully) be returned. Otherwise the readyState 4 will have a

different status code and message.

Chapter 7.3.3 Create a record

Now create the file CreateMap.html in the assets directory. This file will contain the following

program.

<script>

 let xmlhttp = new XMLHttpRequest();

 let url = "/mapData"

 xmlhttp.open("POST", url, true);

163 PROGRAMMING FOR THE WEB:

 xmlhttp.setRequestHeader("Content-Type", "application/json");

 xmlhttp.onreadystatechange = function (){

 if(xmlhttp.readyState === 4)

 var allText = xmlhttp.responseText;

 console.log("status = " + xmlhttp.status + " text = " + allText)

 }

 }

 let newData = {

 "title": "map2",

 "resize": false,

 "recenter": false,

 "mapType": "Stamen",

 "screenSize": "1024x768",

 "latitude": -155,

 "longitude": 30

 }

 xmlhttp.send(JSON.stringify(newData))

</script>

Program 117 – XMLHttpRequest Post example

The major difference between this example and the ReadMaps.html is that now data is being sent

with the request. A JavaScript object is created, and that object is serialized to a JSON object

and sent along with the request to the server. This will create this new object in your server.

Chapter 7.3.4 Read, Update, and Delete

The Read, Update, and Delete operations are shown in the following three files, ReadMap,

UpdateMap, and DeleteMap. These transaction look similar to the other ReadMaps and Create

transactions, but now the URL is changed to include the ID of the item to be acted on.

<script>

 let xmlhttp = new XMLHttpRequest();

 let url = "mapData/1"

 xmlhttp.open("GET", url, true);

 xmlhttp.setRequestHeader("Content-Type", "application/json");

 xmlhttp.onreadystatechange = function (){

 if(xmlhttp.readyState === 4){

 let allText = xmlhttp.responseText;

 console.log("status = " + xmlhttp.status + " text = "

 + allText)

 }

 }

 xmlhttp.send()

</script>

Program 118 – XMLHttpRequest example to read a record

<script>

 let xmlhttp = new XMLHttpRequest();

 let url = "/mapData/1"

PROGRAMMING FOR THE WEB: 164

 xmlhttp.open("Delete", url, true);

 xmlhttp.setRequestHeader("Content-Type", "application/json");

 xmlhttp.onreadystatechange = function (){

 if(xmlhttp.readyState === 4){

 let allText = xmlhttp.responseText;

 console.log("status = " + xmlhttp.status + " text = "

 + allText)

 }

 }

 xmlhttp.send()

</script>

Program 119 – XMLHttpRequest example to delete a record

Chapter 7.4 Integrating the CRUD application with the server

The last step in developing the CRUD program to access the server is to integrate the HTTP

transactions into the program. This section will do this.

Chapter 7.4.1 Changes to the application

There some minor differences between the CRUD application from Chapter 6 and the

application as presented here. The differences all relate to the removal of the Save to File and

Read from File buttons. These buttons were removed to better match the operations of the REST

interface to the server.

The first thing the application now does when it loads is read the data from the server. There is

no need to specify that the data is to be read, and the Read from File button was removed.

Next the read, update, and delete operations will immediately affect the data in the server, and

not the local copy in an array of the data. All operations are therefore automatically saved, and

the entire modified copy of the data in the local array does not need to be save back at the end of

the execution of the program, and the Save to File button was removed.

This requires that one other change be made. When a user changes the data on the server in any

way, all of the data from the server is requested and used to repopulate the list of items on the

server.

Chapter 7.4.2 Populating the drop-down list of map items

The drop-down list of map items is the first GUI component that will be implemented. This

component will be created and populated when the application first comes up, and each time the

data server is changed, and so is abstracted as a function. The code to implement this drop-down

list is as follows:

function readDataFromServer() {

 // clear out the list and array

 $("#dataRecords").empty();

 records = new Array();

 // get the records array from remote server

 let xmlhttp = new XMLHttpRequest();

165 PROGRAMMING FOR THE WEB:

 let url = "mapData"

 xmlhttp.open("GET", url, true);

 xmlhttp.setRequestHeader("Content-Type", "application/json");

 xmlhttp.onreadystatechange = function (){

 if(xmlhttp.readyState === 4) {

 if(xmlhttp.status === 200) {

 let arr = JSON.parse(xmlhttp.responseText);

 // Get each map, parse it, and put it in the records

 // array and list.

 for (var i = 0; i < arr.length; i++) {

 records[i] = new MyMap(arr[i]);

 $('#dataRecords').append($("<option></option>")

 .attr("value", records[i].id)

 .text(records[i].title));

 }

 }

 else {

 var allText = xmlhttp.responseText;

 $("#UserMessage").val("status = " + xmlhttp.status

 + " text = " + allText)

 }

 }

 }

 xmlhttp.send()

}

Program 120 – XMLHttpRequest example to load the drop-down

In the GUI code for accessing the server, note that the value field in the drop-down is now the id.

This is hidden from the user but is how the database will be accessed.

The rest of the code for this GUI is in the file CRUDOnLoad.js file in the WebApplication

directory that codes with this textbook. It is presented without comment.

$(function() {

 /*

 display the map

 */

 let map = new ol.Map({

 target: 'map',

 layers: [

 new ol.layer.Tile({

 source: new ol.source.OSM(),

 })

],

 view: new ol.View({

 center: ol.proj.fromLonLat([-77.2113732910156, 39.849999999999994]),

 zoom: 10

 })

 });

 /*

 Get records from server

 */

 function readDataFromServer() {

 // clear out the list

 $("#dataRecords").empty();

PROGRAMMING FOR THE WEB: 166

 // get the records from remote server

 var xmlhttp = new XMLHttpRequest();

 var url = "mapData"

 xmlhttp.open("GET", url, true);

 xmlhttp.setRequestHeader("Content-Type", "application/json");

 xmlhttp.onreadystatechange = function ()

 {

 if(xmlhttp.readyState === 4)

 {

 if(xmlhttp.status === 200)

 {

 let arr = JSON.parse(xmlhttp.responseText);

 // Each record was set to JSON independently. Get

 // each record, parse it, and put it in the list

 for (var i = 0; i < arr.length; i++) {

 $('#dataRecords').append($("<option></option>")

 .attr("value", arr[i].id)

 .text(arr[i].title));

 }

 }

 else

 {

 var allText = xmlhttp.responseText;

 $("#UserMessage").val("status = " +

 xmlhttp.status + " text = " + allText)

 }

 }

 }

 xmlhttp.send()

 }

 readDataFromServer();

 /*

 Implement the ability to change options

 */

 function changeOptions() {

 let center = new Array(2);

 center[0] = parseFloat(document.getElementById("longitude").value);

 center[1] = parseFloat(document.getElementById("latitude").value);

 let zoomLevel = parseInt(map.getView().getZoom());

 let maxZoom = zoomLevel;

 let minZoom = zoomLevel

 if ($("#resize").prop("checked")) {

 maxZoom = 28;

 minZoom = 0;

 }

 if ($("#recenter").prop("checked")) {

 let view=new ol.View({

 center: ol.proj.fromLonLat(center),

 zoom: zoomLevel,

 minZoom: minZoom,

 maxZoom: maxZoom,

 extent: ol.proj.transformExtent([-180, -90, 180, 90],

 'EPSG:4326', 'EPSG:3857'),

 });

 map.setView(view);

167 PROGRAMMING FOR THE WEB:

 }

 else {

 let view=new ol.View({

 center: ol.proj.fromLonLat(center),

 zoom: zoomLevel,

 minZoom: minZoom,

 maxZoom: maxZoom,

 extent: ol.proj.transformExtent([center[0], center[1], center[0],

 center[1]],

 'EPSG:4326', 'EPSG:3857'),

 });

 map.setView(view);

 }

 }

 $("#recenter").click(() => {

 changeOptions();

 });

 $("#resize").click(() => {

 changeOptions();

 });

 /*

 Function: Delete a Map record

 Purpose: To respond to the delete

 button

 */

 $("#delete").click(() => {

 // get record to read from list

 let myID = $("#dataRecords").val();

 let myName= $("#dataRecords option:selected").text();

 // Record is not found, throw exception

 if (myID == null)

 {

 $("#userMessage").show();

 $("#userMessage").val("Record does not exist - Make sure a record is

selected");

 throw "The title does not exist";

 }

 // Confirm Delete

 let retVal = confirm("Do you want to delete " + myName + " ?");

 if(retVal == true){

 var xmlhttp = new XMLHttpRequest();

 var url = "/mapData/" + myID;

 xmlhttp.open("delete", url, true);

 xmlhttp.setRequestHeader("Content-Type", "application/json");

 xmlhttp.onreadystatechange = function ()

 {

 if(xmlhttp.readyState === 4)

 {

 if(xmlhttp.status === 200)

 {

 var allText = xmlhttp.responseText;

 console.log("status = " + xmlhttp.status + " text = " +

 allText);

 readDataFromServer();

 }

 else

 {

PROGRAMMING FOR THE WEB: 168

 var allText = xmlhttp.responseText;

 console.log("status = " + xmlhttp.status + " text = " +

 allText);

 readDataFromServer();

 }

 }

 }

 // send request

 xmlhttp.send()

 }

 });

 /*

 Function: Save record data from new button

 Purpose: To respond to the New Button

 */

 $("#new").click(()=> {

 var saveObj = readDataFromForm();

 var xmlhttp = new XMLHttpRequest();

 var url = "/mapData"

 xmlhttp.open("POST", url, true);

 xmlhttp.setRequestHeader("Content-Type", "application/json");

 xmlhttp.onreadystatechange = function ()

 {

 if(xmlhttp.readyState === 4)

 {

 if((xmlhttp.status === 200) || (xmlhttp.status === 201))

 {

 var allText = xmlhttp.responseText;

 console.log("succeeded - status = " + xmlhttp.status +

 " text = " + allText)

 // hide the input form

 $("#inputForm").hide();

 readDataFromServer();

 }

 else

 {

 var allText = xmlhttp.responseText;

 console.log("failed - status = " + xmlhttp.status +

 " text = " + allText)

 readDataFromServer();

 }

 }

 }

 xmlhttp.send(JSON.stringify(saveObj));

 });

 /*

 respond to the list box

 */

 $("#dataRecords").click(() => {

 // get record to read from list

 let myID = $("#dataRecords").val();

 let myName= $("#dataRecords option:selected").text();

 // Retrieve record from server

 // get the records from remote server

 let xmlhttp = new XMLHttpRequest();

 let url = "mapData/"+ myID;

169 PROGRAMMING FOR THE WEB:

 xmlhttp.open("GET", url, true);

 xmlhttp.setRequestHeader("Content-Type", "application/json");

 xmlhttp.onreadystatechange = function ()

 {

 if(xmlhttp.readyState === 4)

 {

 if(xmlhttp.status === 200)

 {

 let allText = xmlhttp.responseText;

 let obj1 = JSON.parse(allText);

 let center = [obj1.longitude, obj1.latitude]

 console.log(obj1);

 writeDataToForm(obj1);

 let view=new ol.View({

 center: ol.proj.fromLonLat(center),

 zoom: 10,

 // This does not work and needs to be fixed...

 //minZoom: minZoom,

 //maxZoom: maxZoom,

 //extent: ol.proj.transformExtent([-180, 90, 180, 90],

 //'EPSG:4326', 'EPSG:3857'),

 });

 map.setView(view);

 }

 else

 {

 var allText = xmlhttp.responseText;

 console.log("status = " + xmlhttp.status + " text = "

 + allText)

 }

 }

 }

 xmlhttp.send()

 });

 /*

 Set a listener for when the map is moved.

 */

 map.on('moveend', function() {

 let center = ol.proj.toLonLat(map.getView().getCenter());

 document.getElementById("longitude").value = center[0];

 document.getElementById("latitude").value = center[1];

 return true;

 });

});

Program 121 – Complete Map CRUD application with server to persist data

	Fall 9-12-2018
	Programming for the Web: From Soup to Nuts: Implementing a complete GIS web page using HTML5, CSS, JavaScript, Node.js, MongoDB, and Open Layers.
	Charles W. Kann III
	Programming for the Web: From Soup to Nuts: Implementing a complete GIS web page using HTML5, CSS, JavaScript, Node.js, MongoDB, and Open Layers.
	Description
	Disciplines
	Creative Commons License

	Programming for the Web:

