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Abstract

In many auctions the valuation structure involves both private and common value elements. Ex-
isting experimental evidence (e.g. Goeree and Offerman (2002)) demonstrates that first-price auc-
tions with this valuation structure tend to be inefficient, and inexperienced subjects tend to bid
above the break-even bidding threshold. In this paper, we compare first-price auctions with an
alternative auction mechanism: the least-revenue auction. This auction mechanism shifts the risk
regarding the common value of the good to the auctioneer. Such a shift is desirable when ex
post negative payoffs for the winning bidder results in unfulfilled contracts, as is often the case in
infrastructure concessions contracts. We directly compare these two auction formats within two
valuation structures: 1) pure common value and 2) common value with a private cost. We find
that, relative to first-price auctions, bidding above the break-even bidding threshold is significantly
less prevalent in least-revenue auctions regardless of valuation structure. As a result, revenue in
first-price auctions is higher than in least-revenue auctions, contrary to theory. Further, when there
are private and common value components, least-revenue auctions are significantly more efficient
than first-price auctions.

JEL Classifications: D44; C72.
Keywords: Auctions, Winner’s curse, Allocative Efficiency, Bidding.



Least-Revenue Auctions

1 Introduction

Auctions for infrastructure concession contracts may be modeled as having both private and com-
mon components in the valuation structure. The winner of such an auction receives the revenue
generated by the contract (e.g. tolls from highway concessions, energy transmission fees over a
high-power grid, generation capacity payments, etc.) which has a common value (Bain and Po-
lakovic (2005); Flyvbjerg et al (2005)), while also incurring the cost of fulfilling the contract (e.g.
building the highway, constructing the infrastructure for power lines, building and maintaining
power plants, etc.). If bidders’ costs of providing the infrastructure differ, these costs may repre-
sent a private component of the valuation structure.

In auctions in which there is a common value component, it is well known that bidders are prone
to the winner’s curse.1 That is, bidders bid such that they guarantee themselves negative payoffs
in expectation. This is of particular concern in auctions for infrastructure concession contracts, as
bidders who go bankrupt may cause costly delays in infrastructure development.

In this paper we experimentally compare the standard first-price sealed-bid auction with an al-
ternative auction format which may reduce the prevalence of the winners curse, the Least-Revenue
Auction (LRA).2 We compare these two auction formats in two valuation structures with an uncer-
tain common value. In the first, bidders face a private cost. In the second, bidders face a common
cost which is common knowledge.

In an LRA, bidders simultaneously make sealed-bid offers which consist of the minimum
amount (from the common value of the good) the bidder is willing to accept upon winning the
auction.3 The bidder who submits the lowest amount wins the auction, and obtains that amount,
provided the amount is less than the common value of the good. In the event that the winning
amount is greater than the value of the good, the winning bidder only obtains this value. Thus,
the winner implicitly pays the difference between the realized common-value of the good and the
amount they submitted. This mechanism renders private information bidders may hold regarding
the common value of the good strategically irrelevant, provided this information is not correlated
with the private information of other bidders. The LRA is then strategically equivalent to a first-
price procurement auction. In a purely common-value LRA equilibrium bids are not a function of
the private common-value signals that the bidders observe prior to placing their bids. The game is,
in effect, a game of complete information. Similarly, in auctions with private and common values,
the equilibrium bid function of an LRA maps bidders’ private costs into bids, ignoring privately

1See, e.g. Casari, Ham and Kagel (2007) and Goeree and Offerman (2002).
2This auction format follows the spirit of the Least Present Value of Revenue Auction proposed in Engel et al.

(1997, 2001). We adopt the name least-revenue auction to reflect this similarity. However, we will, for reasons of
comparability, use the term revenue to refer to the auctioneer’s payoff.

3To put it in the context of Engel et al. (2001), the future cash flows of toll revenue are a common unknown value,
and bids consist of the present value of toll revenue required by bidding firms.
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Least-Revenue Auctions

observed estimates of the common value. The LRA mechanism, in effect, transforms an auction
with private and common values into an auction with purely private values.

It is important to note that in an LRA, uncertainty regarding the common value of the good
is borne by the auctioneer rather than by the bidders. An LRA represents a contract in which
the price the winning bidder pays is contingent on the realized value of the good; the auctioneer
guarantees the winning bidder that she will earn her bid (provided the winning bid does not exceed
the common value of the good). This transfer of risk may be desirable, and provides the original
motivation for LRAs: Engel et al. (1997, 2001) first proposed the Least Present Value of Revenue
Auction (LPVRA), in which bidders submit the smallest present value of revenue they would
require for a contract in which they build, operate and then transfer a highway to the government
at the conclusion of the contract term. In an LPVRA, the duration of a contract is contingent
on the stream of revenue which is generated by tolls collected on the highway. In particular, the
contract lasts until the winning bidder obtains the present value (at a pre-determined discount rate)
of the toll revenue that she bid. This flexible-term contract shifts most of the risk resulting from
uncertain traffic patterns to the government, relative to a standard fixed-term contract. Engel et al.
(1997) estimates that the value of switching to LPVR auctions is about 33% of the value of the
infrastructure investment.

More generally, by eliminating ex ante uncertainty regarding payoffs conditional on winning
the auction LRAs and LPVRAs reduces the possibility that the winning bidder, having failed to
account for the informational content of winning the auction when formulating her bid, will sub-
sequently go bankrupt.

An additional potential benefit of using LRAs is that if bidders anticipate that the contract is
open to renegotiation ex post, they may bid more aggressively in a first price auction, with no
intention of adhering to the contract ex post. Uncertainty regarding the common value component
of the good may provide cover for such strategic behavior, since the winning bidder can claim that
they simply fell victim to the winner’s curse when demanding that the contract be renegotiated. In-
deed, Guasch (2004) reports that over 50% of concession contracts for transportation infrastructure
are renegotiated. Athias and Nuñez (2008) find evidence that is consistent with bidders displaying
more strategically opportunistic behavior in auctions for toll-road concessions in weaker institu-
tional settings, presumably due to a higher probability of contract renegotiation. The LRA removes
this cover, and thus may reduce reported bankruptcies in practice. We leave this interesting case to
future research, and in the current paper focus on the case in which the contract is binding.

It is important to note that in both the LRA and the LPVRA, the winning bidder does not have
an incentive to maintain the value of the good because winning the auction guarantees the winning
bidder her bid, and no more. That is, the benefits of maintaining or improving the value of the good
ex post do not accrue to her. Monitoring the ex post behavior of the winning bidder, or imposing an
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Least-Revenue Auctions

enforceable contract, would be necessary to mitigate this problem. If neither of these are possible,
LRAs and LPVRAs may not be ideal.

Our work differs from that of Engel et al. (2001) in at least two important ways. First, their
focus is on optimal risk-sharing contracts and not on bidding behavior or auction performance.
Second, we allow for the possibility of private costs, and we analyze the common value of the
good as the realization of a random variable in a single period rather than as a stream of revenue
over time (with a high or low realized value in each period). However, the underlying intuition is
the same. As such, the main contribution of this paper is to formally analyze and experimentally
test bidding behavior and auction performance in an environment consistent with the motivation
underlying LPVRAs. Although Chile has implemented LPVRAs on more than one occasion (Vas-
sallo (2006)), to the best of our knowledge this is the first formal and empirical analysis of the
allocative properties of this auction format and bidding behavior within it. In this paper we test to
see if an LRA can reduce the prevalence with which bidder’s guarantee themselves negative profits
in expectation. We leave for subsequent experimental research the question of optimal risk sharing
between the auctioneer and bidders.

In addition, our paper contributes to the small but growing literature regarding auctions with
private and common values (see e.g. Goeree and Offerman (2002); Boone et al (2009)). The theo-
retical analysis of such auctions begins with Goeree and Offerman (2003). We extend this analysis
by deriving the cursed equilibrium in first price auctions. Cursed equilibrium was introduced in
Eyster and Rabin (2005), and allows for the possibility that bidders do not fully take into account
the link between the private information of other bidders and their when formulating their own
bid. This model of bounded rationality includes Nash equilibrium and a naive bidding model as
special cases. Goeree and Offerman (2002) (henceforth GO) present experimental evidence that
first-price auctions with private and common values tend to be inefficient. The intuition behind
this inefficiency is that subjects have to combine the information of two signals (the private value
and the signal regarding the common value). If subjects were to ignore the common value sig-
nal, the auction would be fully efficient. This is precisely what the LRA offers. Ignoring the
common-value signal presents a coordination problem for auction participants in a standard auc-
tion with private and common values. The LRA avoids this coordination problem by rendering
common-value signals strategically irrelevant (provided signals are independent).4

Auctions with purely common value have been studied extensively in the experimental liter-
ature. It is typically observed that inexperienced bidders are prone to fall victim to the winner’s
curse. That is, inexperienced bidders often bid above a break-even bidding threshold. This ob-

4GO also show that increasing competition (i.e. the number of bidders) exogenously or reducing the uncertainty
(i.e. the variance) of the common value increases efficiency. Our results regarding LRAs are consistent with this
finding, since LRAs eliminate the uncertainty regarding the common value of the good.
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servation is robust across numerous auction mechanisms, and these results cannot be explained by
risk aversion, limited liability of losses or a non-monetary utility of winning.5 This paper provides,
to the best of our knowledge, the first attempt to link analysis of the winner’s curse in auctions with
only common values to auctions with both private and common value structures.

Our most dramatic result is a stark decrease in the frequency with which bidders bid above a
break-even bidding threshold in LRAs relative to first-price auctions. Indeed, inexperienced bid-
ders in LRAs very rarely bid above this threshold. Since these bidders do not face any uncertainty
regarding their payoff conditional on winning the auction, this is perhaps not surprising. We also
find that, when the value of the good has both private and common value components, there is a
significant increase in efficiency in LRAs relative to first-price auctions. This is important because,
as previously mentioned, efficiency is low in first-price auctions with this valuation structure. Thus,
we demonstrate that in this environment increases in efficiency and a reduction in bidding above the
break-even bidding threshold can be obtained by changing the auction mechanism. These findings
support the use of LRAs or LPVRAs as a way to allocate concession contracts for infrastructure.

Contrary to theory, LRA generates less revenue than first-price auctions, regardless of valu-
ation structure. This is largely due to the fact that bidders in first-price auctions tend to overbid
aggressively, often to the point of guaranteeing negative profits in expectation. Correspondingly,
bidders are better off in an LRA than in a first-price auction.

The remainder of the paper is organized as follows. Section 2 provides the theoretical back-
ground. Section 3 describes our experimental design. Section 4 provides our results. Section 5
contains the conclusion. Appendix A contains derivations of theoretical predictions. Appendix B
contains a sample set of instructions.6

2 Theoretical Predictions

A set of risk neutral players N ≡ {1, ..., n} compete for a good with a common but uncertain
value, V , by simultaneously placing bids. Prior to placing her bid, bidder i ∈ N privately observes
a signal vi regarding the value of the good. Each of these signals is an independently drawn
realization of the random variable v, which is distributed according to F and has support [vL, vH ].
The value of the good is the average of the signals. That is, V =

∑
i∈N

vi
n

. Also, bidder i faces
a cost ci that must be paid if she wins the auction and obtains the good; bidders know their cost
prior to placing bids, but may not know the value of cj where j 6= i. In particular, we consider
environments in which the ci = cj for ∀i, j ∈ N, and this is common knowledge. We also

5See Kagel and Levin (2002) for an introduction to this literature.
6The instructions used are in Spanish. The sample instructions found in Appendix B have been translated into

English. The remaining instructions are available upon request.
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consider environments in which the cost of each bidder is an independent draw from a distribution
that is commonly known. Each bidder observes their own cost, but not that of the other bidders.
Bidder i ∈ N chooses a bid, bi ∈ R+in an attempt to obtain the good. Bidders are not budget
constrained; the strategy space of each player is R+. The vector of bids is b ≡ b1, ..., bn. Further,
b−i ≡ b/bi and N−i ≡ N/i. We allow for the possibility that when a bidder is formulating her bid
she does not fully take into account the information conveyed by the behavior of other bidders. In
particular, we consider cursed equilibrium, as described in Eyster and Rabin (2005).7 In a cursed
equilibrium bidders only partially take into account the correlation between the bids and signals of
their opponents. If bids are increasing in the common value signal, this can result in unrealistically
high beliefs about the value of the good conditional on winning the auction. Following Eyster and
Rabin (2005), we assume that each bidder correctly anticipates the probability distribution of other
bids, but mistakenly believes that with probability χ each of the other bidders employ a strategy
that is equal to their average bid. The crucial point is that with probability χ each bidder believes
that the behavior of the other bidders is not correlated with their private signals. For simplicity we
assume that χ is the same for all bidders. Note that when χ = 0 predictions will correspond to the
symmetric Bayesian Nash equilibrium. Further, when χ = 1 bidders are naive in the sense that
they do not account for the informational content of winning the auction. The special case where
χ = 1 is similar to the naive bidding model studied in GO.

2.1 First-Price Auctions with Private and Common Values

In a first-price auction with private and common values (FP-PC), costs are private information.
In particular, each ci, where i ∈ N, is an independent draw of the random variable c which is
distributed according to G with support [cL, cH ]. Thus, the value of the good has both private
and common value components. To ensure that all bidders will participate in the auction, it is
assumed that cH < vL. The net value of the good to bidder i is thus V − ci. Note that each bidder
privately observes two separate pieces of information regarding this net value, and that these pieces
of information are independent. This information structure is analyzed in Goeree and Offerman
(2003), and they demonstrate that the one dimensional summary statistic si = vi

n
−ci can be used to

map both pieces of information into equilibrium bids in a first-price auction. We denote the random
variable from which these summary statistics are (independently) drawn as s, with corresponding
density and distribution functions fs and Fs respectively. We denote the interval on which s is

7We do not consider a level-k model, because in three of our four treatments this model predicts Nash bidding
behavior for all but level zero bidders (the exception is the first-price auction with common values and a private cost).
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distributed as [sL, sH ] =
[
vL
n
− cH , vHn − cL

]
. The symmetric cursed equilibrium bid function is

ρ (si) =

(
n− 1

n

)
((1− χ)E (v|s ≤ si) + χE (v)) + E (y1|y1 ≤ si) ,

where y1is the highest si of the other n− 1 bidders. That is, y1 = maxj∈N−i

vj
n
− cj .8

The ex ante expected profit of bidder i in this cursed equilibrium is given by

E
(
ΠFP−PC
i (ρ (s) , s)

)
=

(
1

n

)
(E (Y1)− E (Y2))−

χ

(
n− 1

n

)(
1

n

)
(E (v)− E (v|s ≤ Y1)) ,

where Y1 is the first order statistic of the n draws of s, and Y2 is the corresponding second order
statistic. The corresponding ex ante expected profit of the winner is then

E
(
ΠFP−PC
winner

)
= E (Y1)− E (Y2)− χ

(
n− 1

n

)
(E (v)− E (v|s ≤ Y1)) .

Notice that E
(
ΠFP−PC
winner

)
is decreasing in χ.

To find the expected revenue in an FP-PC auction we first note that the winner’s net value of
the good is W = E (V ) − E (c|s = Y1). Thus, expected revenue in this cursed equilibrium is
RFP−PC = W − E

(
ΠFP−PC
winner

)
. This means that RFP−PC is increasing in χ.

2.1.1 Break-Even Bidding Threshold

It has been widely observed that inexperienced bidders in common value auctions bid such that they
guarantee themselves negative expected profits. The propensity of bidders to bid above their break-
even bidding threshold in this environment, where there are common and private components of
the net value, was observed by GO and is of interest in this study. The break-even bidding threshold
is defined as

T FP−PC (si) = si +

(
n− 1

n

)
E (v | s ≤ si) .

2.2 First-Price Auctions with Common Values

In a first-price auction with common values (FP-C), ci = E(c) ≡ c̄, and this is common knowledge.
Since the cost that the winning bidder will have to pay is common knowledge and the same for
each potential winner, these auctions effectively are purely common value. Such auctions have

8Derivations of this cursed equilibrium as well as the corresponding expected profit and auctioneer revenue can be
found in Appendix A.
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been widely studied in the literature. However, the presence of the (common) cost differentiates
our work from the bulk of the literature. The symmetric cursed equilibrium bidding function of
this auction is given by:

β (vi) =

(
n− 1

n

)
((1− χ)E (v|v ≤ vi) + χE (v)) +

(
1

n

)
E (z1|z1 ≤ vi)− c̄,

where z1is the highest signal of the other n− 1 bidders. That is, z1 = maxj∈N−i
vj .9

The ex ante expected profit of bidder i is given by

E
(
ΠFP−C
i (β (v) , v)

)
=

(
1

n2

)
(E (Z1)− E (Z2))−

χ

(
n− 1

n

)(
1

n

)
(E (v)− E (v|v ≤ Z1)) ,

where Z1 is the first order statistic of the n draws of v, and Z2 is the corresponding second order
statistic.

The ex ante expected profit of the winner in this cursed equilibrium is then

E
(
ΠFP−C
winner

)
=

(
1

n

)
(E (Z1)− E (Z2))− χ

(
n− 1

n

)
(E (v)− E (v|v ≤ Z1)) .

Total expected surplus in this auction is given by X = E (V ) − c̄. Thus, expected revenue in
this cursed equilibrium is RFP−C = X − E

(
ΠFP−C
winner

)
.

2.2.1 Break-Even Bidding Threshold

In an FP-C auction, a bidder is bidding above the break-even bidding threshold if she bids above
the expected value of the good, conditional on winning the auction. When the symmetric cursed
equilibrium bidding function is monotonically increasing, as it is here, this is equivalent to bidding
above the expected value of the good conditional on having the largest signal. The functional form
of this threshold is

T FP−C (vi) =
vi
n

+

(
n− 1

n

)
E (v|v ≤ vi)− c̄.

9The derivations of this cursed equilibrium bid function, equilibrium bidder profits, equilibrium auctioneer revenue
can be found in Appendix A.
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2.3 Least-Revenue Auctions with Private and Common Values

In a least-revenue auction with private and common values (LR-PC), bidders simultaneously sub-
mit bids, the lowest of which wins the auction. Bids consist of the minimum amount (which would
come from the common-value of the good, V ) that a bidder is willing to receive, given that she
wins the auction. The winner obtains the minimum of the realization of V and her bid. If the win-
ning bid is less than the realized common value, the winning bidder implicitly pays the difference
between the common-value and her bid. Recall that we assume cH < vL. This implies that the
common value will always be sufficient to cover a bidder’s cost.

When there are common and private values, the valuation structure is exactly the same as in FP-
PC auctions. However, the price the winning bidder pays is contingent on the realized value of V .
Provided her bid does not exceed vL, the uncertainty regarding the common-value of the good does
not affect the winning bidder’s payoff conditional on winning. Note that in equilibrium predicted
bids will fall below vL.10 Further, since we have assumed that private information is independent, a
bidder’s beliefs about the private information held by opponents will not be contingent on her own
private information in equilibrium. Thus, the draws of v that each bidder observes are strategically
irrelevant. Since bidders each face a cost (should they win the auction) which is an independent
draw from a common distribution, the problem that each bidder faces is strategically equivalent
to a first-price procurement auction with independent private costs. Additionally, we assume that
each bidder incorrectly believe that with probability χ her opponents will bid their average bid,
rather than their type contingent strategy. However, as long as the resulting cursed equilibrium
bidding strategy is monotonically decreasing in type, this will not affect expected payoffs. This
is because the bidder with the lowest cost will win in equilibrium, and the probability of winning
the auction is the same as the probability of having the lowest cost. As such, provided χ < 1, the
cursed equilibrium bid function will correspond to the Nash equilibrium bid function. Note that if
bidders are cursed (χ > 0), then using a LRA in place of a first price auction is predicted to reduce
the frequency with which the winning bidder loses money.

The cursed (and Nash) equilibrium bid function is

ζ (ci) = E (un−1|un−1 ≥ ci)

where un−1 is the smallest of n− 1 draws of c.

The ex ante expected profit of bidder i is given by E
(
ΠLR−PC
i (ζ (c) , c)

)
=
(
1
n

)
E (Un−1) −(

1
n

)
E (Un) , where Un−1 is the second lowest and Un is the lowest of theof n draws of c. Thus the

10Since a bidder of type cH will almost surely lose in any monotonically decreasing equilibrium, it must be the case
that in equilibrium she will bid cH < vL. If a bidder of type cH were to bid b < cH in equilibrium, she would earn a
positive profit if she won the auction. She would then have an incentive to decrease her bid in order to have a positive
probability of winning the auction. Thus the equilibrium bid of type cH must be equal to cH .
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ex ante expected profit of the winner is given by E
(
ΠLR−PC
winner

)
= E (Un−1) − E (Un). Since the

total expected surplus in this auction is given by D = E (V )− E (c|c = Un), expected revenue in
this equilibrium is RLR−PC = D − E

(
ΠLR−PC
winner

)
.

2.3.1 Break-Even Bidding Threshold

In this environment, the realization of V is not relevant to the payoff of the bidder and the common-
value signal does not enter into the equilibrium bid function. Any bid which is above the privately
observed cost will guarantee the bidder positive profit upon winning the auction. Similarly, any bid
that drops below the cost will guarantee negative profits. Thus, the break-even bidding threshold
for a bidder in an LR-PC auction is

TLR−PC (ci) = ci.

2.4 Least-Revenue Auctions with Common Values

In a least-revenue auction with common values and a common cost (LR-C), the game is, in effect,
one of complete information. As a result, the value of χ is irrelevant. Since bidders place bids
that do not depend on their private information (every type employs the same pure strategy), the
average bid is the same. The unique symmetric (cursed) equilibrium of this game is to bid c̄. To see
this, note that if any bidder were to bid below c̄, they would earn negative profits upon winning. For
any bid bi > c̄, bidder j ∈ N−i would have an incentive to bid bj ∈ (c̄, bi) and earn a positive profit.
Notice that the ex ante equilibrium profit of bidder i is zero. Further, the equilibrium revenue in
this game is RLR−C = E (V )− c̄.

2.4.1 Break-Even Bidding Threshold

Clearly, if a bidder were to bid less than c̄, then her expected payoff would be negative. Thus, the
break-even bidding threshold in LR-C auction is equal to the Nash equilibrium:

TLR−C = 25.

3 Experimental Design

In every experimental session, twelve participants are randomly and anonymously matched into
groups of three. In each round, every group participates in an auction. Each bidder submits a bid.
The bidder who submits the winning bid obtains the good (ties are broken randomly). The other
bidders receive payoffs of zero. After each round, all participants within a session are randomly
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and anonymously re-matched. The randomized group assignment was kept constant across all
sessions. This process is repeated for thirty rounds.11

In each auction the value of the good to each bidder is the difference between the common value
and the cost the bidder faces if she were to win the auction. The common value of the good has an
uncertain value. Each bidder i ∈ {1, 2, 3} privately observes a signal, vi, regarding this common
value. Each of these signals is an independent draw from the uniform distribution with support
[100, 200] .12 The common value, V , is the average of the private signals. That is, V = 1

3

∑3
i=1 vi.

The realized value of the good is not observed by bidders before placing their bids, although
bidders know the cost they must pay if they win the auction beforehand. The distribution from
which the signals are drawn is common knowledge.

We employ a 2x2 between-subject design which varies the auction format and the valuation
structure.

1. First-price auctions with private and common values (FP-PC): In addition to the private
signal that bidders observe regarding the common value of the good, each bidder privately
observes the cost she must pay if she were to win the auction. Each of these costs is an
independent draw from a uniform distribution with support [0, 50]. These costs represent
the private value portion of the valuation structure. The auction format in this treatment is a
standard first-price sealed-bid auction.

2. First-price auctions with common values (FP-C): In this treatment each bidder faces the
same cost if she were to win the auction. This cost is equal to the expected value of the
cost distribution in the FP-PC treatment (c̄ = 25). The auction format in this treatment is a
standard first-price sealed-bid auction.

3. Least-revenue auctions with private and common values (LR-PC): In addition to the private
signal that bidders observe regarding the common value of the good, each bidder privately
observes the cost she must pay if she were to win the auction. Each of these costs is inde-
pendently drawn from a uniform distribution with support [0, 50]. These costs represent the
private value portion of the valuation structure. The auction format in this treatment is an
LRA.

4. Least-revenue auctions with common values (LR-C): In this treatment each bidder faces the
same cost if they were to win the auction. This cost is equal to the expected value of the

11One of the first ten periods (referred here as periods -9 to 0) is randomly selected to be paid. Each of the remaining
20 periods (referred to as periods 1 to 20) are paid. In the analysis that follows, data from the initial ten periods is not
utilized.

12We used 360 (12 subjects ×30 rounds) iid draws that were kept constant across all sessions. That is, we had 12
types of subjects who saw the same sequence of signals constant across all sessions.
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cost distribution in the FP-PC treatment (c̄ = 25). The auction format in this treatment is an
LRA.

In each of these four treatments, the valuation structure of the auction is common knowledge. That
is, if a bidder observes a signal, this fact, as well as the distribution from which the signal is drawn,
is common knowledge. At the conclusion of each auction each bidder observes V , all bids, her
earnings from the auction, and the price paid by the winner.

All sessions were run at the Centro Vernon Smith de Economı́a Experimental at the Univer-
sidad Francisco Marroquı́n, and our participants were primarily matriculated undergraduates of
the institution. The sessions were computerized using z-Tree (Fischbacher (2007)). Participants
were separated by dividers such that they could not interact outside of the computerized interface.
They were provided with instructions and were also shown a video which read these instructions
aloud. Each participant then individually answered a set of questions to ensure understanding of
the experimental procedures. We elicited risk attitudes using a measure similar to that of Holt
and Laury (2002).13 We varied the order in which subjects participated in the risk attitude elic-
itation procedure and the series of auctions. Each session lasted approximately one and a half
hours. In half of the reported sessions, each participant began with a starting balance of Q62.5
(1Quetzal ≈ US$0.125) to cover any losses; in the other half participants began with a starting
balance of Q125.14 At the end of all thirty rounds, each participant was paid her balance which
included a show-up fee of 20 Quetzales. If the balance of a participant became negative, she was
permitted to continue provided she invested her show-up fee. If the show-up fee was also lost, she
was permitted to contine, and received a payment of zero.

15 Within the 16 reported sessions, there were two participants who went bankrupt (≈ 1% of
participants) before the end of the experiment. The bids, signals and values were all denominated
in Experimental Pesos (EP), which were exchanged for cash at a rate of 4E$ = Q1 ≈ US$0.125.
The average payoff was Q105, with a minimum of Q0 and a maximum of Q165.

13Our risk attitude elicitation task differs from Holt and Laury (2002) in that, instead of choosing between two
lotteries, subjects choose between a certain amount and a lottery.

14Low or high starting balance sessions are balanced across treatments. For each treatment we have 2 sessions with
a low starting balance and two sessions with a high starting balance. The starting balance was increased due to the
prevalence of bankrupt subjects with the lower starting balance. Bankruptcies only occurred in sessions with first-price
auctions.

15If more than one participant went bankrupt then the data from the session was not included in the reported analysis.
We exclude the data from six sessions. In two of these, multiple subjects went bankrupt. In the remaining four, one
subject went bankrupt in each session, and additional problems prevented us from completing the session.
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4 Results

4.1 Efficiency Levels

When the valuation structure is pure common value, any allocation of the good is efficient. As
such, efficiency is not a concern in this valuation structure. When there are private costs, however,
allocating the good to the bidder with the lowest cost is the efficient allocation.

Interestingly, when there are private and common value components in the first-price auction
(FP-PC), the equilibrium allocation may not be efficient (Goeree and Offerman (2003)). This is
because the equilibrium bid function is monotonically increasing in the summary statistic si =
vi
n
− ci. A bidder may have a high cost relative to the other bidders in the auction, but if she also

has a relatively high common-value private signal (such that si = vi
n
− ci is larger than those of the

other bidders) she is predicted to win the auction, which would result in an inefficient allocation.

However, in LR-PC auctions, equilibrium bids are monotonically decreasing in ci. This implies
that, in equilibrium, the bidder with the lowest cost will win with certainty. As such, the predicted
efficiency level is 100%. This points to an important property of the LR-PC auction. Namely,
by rendering the common value signal strategically irrelevant, inefficiency concerns that arise in
valuation structures with private and common values are, in theory, eliminated. That is, LR-PC
auctions are predicted to be more efficient than FP-PC auctions.

Following GO, we define efficiency as

normalized efficiency =
cmax − cwinner
cmax − cmin

,

where cwinner is the private cost of the winning bidder and cmax(cmin) is the maximal (minimal)
private cost of the three bidders. This can be interpreted as the realized proportion of the difference
between the most efficient and least efficient allocation.

Table 1 contains average efficiency levels in FP-PC and LR-PC auctions in ten period blocks,
as well as aggregated across all twenty periods. Note that efficiency levels are considerably higher
using the LRA format. In fact, efficiency is significantly higher in LR-PC than in FP-PC (robust
rank order test, U = −4.484, p = 0.029).16 Figure 1 illustrates this difference by comparing the
observed efficiency level to two benchmarks: the efficiency level predicted by equilibrium bidding
behavior, and the efficiency level resulting from a random allocation of the good. Notice that in
FP-PC auctions, the predicted efficiency level is much larger than that of the random allocation,
while still being less than 100% efficient. Observed efficiency falls between predicted efficiency

16Unless otherwise noted, our non-parametric tests use average results from each session as an independent observa-
tion. Thus, we have 4 independent observations per cell. Given that the asymptotic p-value is not a good approximation
when both samples have less than 12 observations, we rely on critical values of the test statistic for different levels of
statistical significance calculated by Feltovich (2003).
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Figure 1: Efficiency in FP-PC and LR-PC auctions

and that of a random allocation. While observed efficiency is much higher in LR-PC auctions than
in FP-PC auctions, contrary to theory LR-PC auctions are not perfectly efficient. The difference
in efficiency between LR-PC and FP-PC auctions can be largely attributed to the fact that the
uncertainty regarding the common value of the good has been shifted to the auctioneer in LRAs.

4.2 Bidder Profits

Table 2 contains summary statistics of bidder payoffs (and revenue) in all four treatments. Figure
2 compares observed bidder profits to predicted bidder profits in all four treatments. Notice that in
all treatments except LR-C bidders are, on average, worse off than predicted by theory. In the case
of LR-C auctions, theory is an excellent predictor of bidder profits. Also, note that in first-price
auctions bidders are, on average, earning negative profits. This is in stark contrast to bidder profits
observed in LRAs, in which bidders, on average, earn small but positive profits.

Theory predicts that bidders will be better off when there are private and common values than
they would be in pure common value environments because the privately observed costs earn
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Table 1: Summary statistics for efficiency

FP-PC LR-PC
Efficiency Measure Periods 1-10 Periods 11-20 All Periods Periods 1-10 Periods 11-20 All Periods

Observed 0.660 0.652 0.656 0.849 0.879 0.864
(0.413) (0.411) (0.411) (0.301) (0.271) (0.286)

Random Allocation 0.504 0.484 0.494 0.504 0.484 0.494
(0.102) (0.084) (0.094) (0.102) (0.084) (0.094)

Nash Bidding 0.878 0.839 0.858 1.000 1.000 1.000
(0.258) (0.297) (0.278) (0.000) (0.000) (0.000)

Notes: Table contains means with standard deviations in parentheses.

Table 2: Bidder payoffs and revenue

Variable FP-C FP-PC LR-C LR-PC

Observed Revenue 135.492 138.634 124.267 132.024
(17.379) (23.300) (14.975) (17.070)

Predicted Revenue 116.319 120.367 124.558 124.028
(9.170) (8.858) (14.832) (15.241)

Observed Profits -3.645 -3.105 0.097 0.565
(11.365) (14.683) (0.896) (6.570)

Predicted Profits 2.452 9.043 0.000 4.398
(2.838) (16.140) (0.000) (4.905)

Fraction of Auctions with Positive Payoffs 0.250 0.341 0.984 0.834
(0.434) (0.475) (0.124) (0.372)

Notes: Table contains means with standard deviations in parentheses.
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Figure 2: Observed and predicted bidder profits

positive information rents. We are unable to find evidence that valuation structure significantly
affect payoffs in first-price auctions (robust rank order test, U = −0.776, n.s.)17 or in LRAs
(robust rank order test, U = −1.033, n.s.).18

We also find that bidders are better off in LRAs. When there are private and common values,
this result is marginally significant (robust rank order test, U = −1.586, p = 0.1).19 However, this
result is highly significant in the pure common values environment (robust rank order test, n.d.,
p = 0.014).20 The intuition behind this is that in first-price auctions bidders tend to substantially

17n.s. indicates that the test is not significant at conventional levels.
18As Figure 4 illustrates, in both auction formats, bidder profits are greater on average under private and common

values than under pure common values. However, using session level data (with only four observations per cell), we
cannot reject the null hypothesis of equality of means under using the robust rank order test. For FPAs, results are
not robust to dropping 1 session in each treatment where a bankruptcy occurred: dropping those sessions, payoffs are
significantly greater under FP-PC than under FP-C (robust rank order test, U = −2.348, p = 0.1). However, if we
drop all periods after a subject went bankrupt rather than the entire session, we cannot reject equality (robust rank
order test, U = −0.776, n.s.).

19If the session with bankruptcy in the FP-PC is dropped, this result is no longer significant (U = −1.000). If only
the periods after the bankruptcy occurred are dropped, rather than the entire session, the result is unchanged.

20When the lowest observation from one treatment is higher than the highest observation of the other treatment, the

16



Least-Revenue Auctions

overbid relative to Nash predictions, often resulting in negative payoffs. In first-price auctions
bidders must estimate the common value of the good, conditional on winning. By eliminating the
uncertainty regarding bidder profit conditional on winning, LRAs eliminate the need for bidders to
estimate this conditional expected value. A bidder in a LRA need only bid above her cost to ensure
(weakly) positive profits.

Revenue is, of course, closely related to bidder profits. As such, our results regarding auction
revenue closely mirror those of bidder profits. Contrary to theory, FP-PC auctions, on average,
generate more revenue than LR-PC, although this result is only marginally significant (robust rank
order test, U = 1.586, p = 0.1).21 FP-C auctions generate more revenue than LR-C revenue (robust
rank order test, n.d., p = 0.014). The intuition underlying this result mirrors the analogous finding
for profits. We also find that valuation structure does not significantly affect revenue in first-price
auctions (robust rank order test, U = 0.000, n.s.). However, in LRAs the private and common
value valuation structure generates more revenue than the pure common value valuation structure
(robust rank order test, n.d., p = 0.014).

4.3 Break-Even Bidding Threshold

In auctions with pure common values, bidders are widely observed to bid such that they guarantee
themselves negative payoffs in expectation. This is particularly true among inexperienced bidders
such as those who participated in the experimental sessions for this paper. GO provide evidence
that bidding above the break-even threshold is also prevalent in first-price auctions with private
and common values. We replicate both these results, and compare them to the LRA format. Ta-
ble 4 contains summary statistics of the prevalence of the bidding above the break-even bidding
threshold in all four treatments. Notice that, regardless of valuation structure, bidding above the
break-even threshold is, on average, dramatically less prevalent in LRAs. Nonparametric tests con-
firm these results; bidding above the break-even threshold is significantly lower in LRAs than in
FPAs with private and common value components (robust rank order test, U = 11.314, p < 0.029),
as well as in the pure common value environment (robust rank order test, U = 11.314, p < 0.029).
Figure 3 illustrates this result by showing the proportion of bids above the break-even bidding
threshold for all four treatments. Figure 4 breaks this into five period blocks. Notice that bidding
above the break-even threshold is almost entirely eliminated in LR-C auctions. The relative dearth
of bidding above the break-even threshold in LRAs is largely attributable to the fact that the uncer-
tain common value of the good does not translate into uncertainty regarding bidder profits. Indeed,
conditional on winning the auction, there is no uncertainty regarding bidder profits in LRAs. The

test statistic of the robust rank order test is undefined. We denote this highly significant case as n.d.
21If the FP-PC session in which a subject went bankrupt is dropped, this result is no longer significant. However, if

periods after the subject went bankrupt are dropped, rather than the entire session, the result is unchanged.
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Figure 3: Prevalence of bids above the break-even threshold

risk regarding this uncertain value has been completely shifted to the auctioneer.

We also find that the valuation structure does not significantly affect the frequency with which
bidders bid above the break-even bidding threshold in FPAs (robust rank order test, U = 1.016,
n.s.) or in LRAs (robust rank order test, U = −1.206, n.s.). This is not surprising because, holding
the auction format constant, moving from the pure common-value environment to the private and
common value environment does not change the level of uncertainty the bidder faces regarding the
net value of the good.

4.4 Cursed Equilibrium

We now turn to comparing observed bidding behavior directly with the cursed equilibrium pre-
dictions. Table 4 contains summary statistics regarding observed bids, as well as the two border
cases in cursed equilibrium. These border cases are: Nash equilibrium bids (where χ = 0), and for
FPAs (where the equilibrium bid function depends on χ) the fully cursed equilibrium (χ = 1). Of
note is the fact that, on average, bidders overbid relative to the Nash equilibrium in every treatment
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Figure 4: Prevalence of bids above the break-even threshold in five period blocks

except LR-C. In FPAs this overbidding is, on average, less than the fully cursed bidding strategy,
indicating that a bidding may be explained by an intermediate level of cursedness.

Figure 5 illustrates how observed bids in FP-C auctions compare to the Nash predictions, the
fully cursed bidding strategy, and the break-even bidding threshold. Notice that bids tend to be
well in excess of the Nash equilibrium prediction. Indeed, bids well above the break-even bidding
threshold, and above the fully cursed biding strategy are common. In these FP-C auctions, we find
that bids are greater than Nash predictions (sign test, w = 41, p < 0.001). 22 Further, FP-C bids
are less than the fully cursed bidding strategy (sign test, w = 32, p = 0.015).

Figure 6 provides the analogous graph for FP-PC auctions. Overbidding relative to Nash pre-
dictions, as well as bidding in excess of the break-even bidding threshold, is also common in this
environment. As in FP-C auctions, we find that bids in FP-PC auctions are greater than Nash pre-
dictions (sign test, w = 39, p < 0.001) but less than the fully cursed bidding strategy (sign test,

22The unit of observation used in the sign test is the individual participant. That is, the average bid of a participant
over all periods is compared with the average Nash equilibrium bid or the average naive bid. This unit of observation
was used for all non-parametric tests regarding observed bidding relative to theory.
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Table 3: Bidding above the break-even bidding threshold (proportion of bids)

Variable FP-C FP-PC LR-C LR-PC

Bids above break-even threshold 0.475 0.447 0.005 0.085
(0.500) (0.497) (0.072) (0.280)

Bids above break-even threshold 0.691 0.650 0.016 0.166
among winning bids (0.463) (0.478) (0.124) (0.372)

Notes: Table contains means with standard deviations in parentheses.

Table 4: Observed bids relative to Nash and fully cursed bids

Variable FP-C FP-PC LR-C LR-PC

Observed Bids 114.085 111.929 34.160 29.959
(27.243) (32.455) (24.606) (18.064)

Nash Bids 102.532 104.936 25.000 33.357
(15.568) (19.739) (0.000) (9.927)

Fully Cursed Bids 119.346 114.961 - -
(6.227) (12.287)

Notes: Table contains means with standard deviations in parentheses.

w = 30 , p = 0.056).

Figure 7 illustrates observed bidding behavior in LR-C auctions against the Nash predictions as
well as the break-even bidding strategy. Of note is the fact that aggresive bidding (bidding below
the Nash equlibrium) is largely nonexistant in this environment. In LR-C auctions, we find that
bidders are submitting bids that exceed Nash predictions (sign test, w = 47, p < 0.001). This
result could be an attempt to signal collusion at higher prices or it could be due to throwaway bids
-bidders rebelling against competing for meager profits.

Figure 8 compares observed bids in LR-PC auctions to Nash predictions and the break-even
bidding threshold. In stark contrast to what is observed in FPAs, bidding such that expected profits
are negative in expectation is almost non-existent. In LR-PC auctions, we find that bidders are
bidding more aggressively than predicted by the Nash equilibrium (sign test, w = 38, p < 0.001).
This is consistent with observed bidding behavior in FPAs with independent private values.

The cursed equilibrium model that we consider depends on some behavioral parameters. In
FPAs, the cursedness parameter χ predicts the extent to which bidders do not account for the
correlation between their opponents private information and their behavior. In LRAs payoffs do
not depend on χ. This provides a compelling theoretical rational for adopting the LRA in favor of
the FPA; the LRA provides an environment in which the cursedness of bidders is predicted to not
affect behavior.

Following Crawford and Ibiberri (2007), we estimate χ in FPAs and logit precision parameter
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Figure 5: Bidding in FP-PC auctions

in all four treatments. These logit precision parameters, roughly speaking, give us a measure of
how much noise must be added to the model in order for it to fit the data. Denoting the expected
payoff that bidder i believes she has when she observes a common value signal vit and a cost of
cit (note that in the pure common value environments cit = c̄) and who bids bit in auction type k
(where k is either FP-PC, FP-C, LR-PC or LR-C) as

∏k
it (bit|vit, cit). It is assumed that bidders

make errors when formulating their bids. Every bid in the strategy space is played with positive
probability, and this probability is increasing in the expected payoff that a bidder believes a bid
would yield. In particular, the probability of observing bid b is assumed to be

Pr (bit|vit, cit, χ, λ) =
exp

(
λ
∏k

it (bit|vit, cit)
)

∫ 200

0
exp

(
λ
∏k

it (x|vit, cit)
)
dx
.

In the denominator we are integrating over the strategy space (the maximum allowed bid in our
design was 200). λ is a logit precision parameter, which determines how sensitive the probabilities
are to relative expected payoffs. Note that if λ = 0, then each strategy is played with equal
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Figure 6: Bidding in LR-C auctions

probability, and that as λ → ∞, bidders no longer make mistakes. We assume that errors are
independent. Further, we assume that λ and χ do not vary over time or across subjects. For
subject i in auction type k we observe a sequence of bids bki =

(
bki1, b

k
i2, ..., b

k
i20

)
. This subject

observes a corresponding sequence of common value signals vki =
(
vki1, v

k
i2, ..., v

k
i20

)
and costs

cki =
(
cki1, c

k
i2, ..., c

k
i20

)
. Further, we have a total of 48 subjects in each auction type. The likelihood

of observing our sample in auction type k is then given by

L =
48∏
i=1

20∏
t=1

Pr (bit|vit, cit, χ, λ) .

The corresponding log-likelihood is simply

LL =
48∑
i=1

20∑
t=1

ln (Pr (bit|vit, cit, χ, λ)) .

Table 5 shows observed bids by treatment as well as the theoretical bids predicted by the two
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Figure 7: Figure 10: Bidding in LR-PC auctions

polar cases of our cursed equilibrium model. We break up the analysis by looking at three different
blocks according to the magnitude of the relevant signal. 23 In addition to showing the average
and standard deviation for observed and predicted (Nash and fully cursed) bidding, the table also
reports the p-values for one sided sign tests between observed and predicted bids according to each
model. 24 Notice that splitting the data into thirds allows us to check for differences in bidding
away from the center of the distribution of relevant signals.25 As the table shows, in FPAs, average

23For instance in FP-C, we split the data according to whether individuals observed a private signal about the
common value of the good that was in the lower, mid or higher third of the theoretical distribution of signals. For
FP-PC, the split is regarding the observed si relative to the theoretical distribution of the surplus summary statistic.
For LR-C there is no relevant signal since the weakly dominant strategy ignores the private signal about the common
value, but for comparability, we use the same blocks as in FP-C. Finally, for LR-PC, we split into blocks according to
whether the observed private cost falls into the lower, mid or upper third of the theoretical cost distribution.

24For these sign tests, we use individual level data (i.e. the average bid of each individual when the observed
relevant signal was in the specific block). For the test between observed and Nash bidding, the alternative hypothesis
is that bidders bid more aggressively than the theory predicts: the median of observed bids exceed the median of Nash
predicted bids. For the test between observed and fully cursed, the alternative hypothesis is that individuals bid more
conservatively than predicted: the median of observed bids is below the median of fully cursed predicted bids.

25We thank an anonymous referee for suggesting this analysis
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Table 5: Bidding relative to Nash and fully cursed, by signal magnitude

First Price Auctions C P&C
Observed Bid low mid high all low mid high all

Mean 93.48 115.54 131.58 114.08 85.76 113.19 135.80 111.93
Std. Dev. (24.12) (21.29) (22.43) (27.24) (30.57) (27.50) (23.68) (32.46)
Nash Bid

Mean 83.65 102.50 120.04 102.53 75.70 108.69 126.45 104.94
Std. Dev. (5.93) (5.48) (5.07) (15.57) (9.94) (8.55) (3.91) (19.74)
p-value 0.001 0.000 0.000 0.000 0.007 0.001 0.000 0.000

Fully Cursed Bid
Mean 111.79 119.33 126.35 119.35 97.35 116.62 129.25 114.96

Std. Dev. (2.37) (2.19) (2.03) (6.23) (5.42) (5.76) (2.66) (12.29)
p-value 0.000 0.097 1.000 0.015 0.000 0.015 1.000 0.0557

Least Revenue Auctions
Observed Bid

Mean 34.02 33.13 35.39 34.16 15.64 30.78 44.38 29.96
Std. Dev. (24.14) (22.15) (27.41) (24.61) (10.05) (16.65) (13.71) (18.06)
Nash Bid

Mean 25 25 25 25 22.21 33.65 44.93 33.36
Std. Dev. (0) (0) (0) (0) (3.33) (3.33) (3.24) (9.93)
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.000

observed bids tend to fall in between the two polar cases of the cursed equilibrium model. However,
once we break it into blocks we see that when bidders have relevant signals in the upper third of
the distribution, these bids tend to be statistically indistinguishable from the bids predicted by the
fully cursed equilibrium. The table also illustrates that there is more dispersion among observed
bids than among either theoretical prediction.26

Table 6 provides maximum likelihood estimates for all the behavioral parameters for all four
treatments.27 Recall that in LRAs,

∏k
it (bit|vit, cit) does not depend on χ. As such, in the LRA

treatments we only estimate λ. There are several interesting results. First, χ is significant in both
FP-PC and FP-C auctions. The degree of cursedness is higher in the pure common values en-
vironment. This indicates that the introduction of the private cost in first price auctions reduces
cursedness. This is intuitive, because when the private cost is introduced, a subjects private infor-
mation is more important in determining payoffs conditional on winning the auction. It is then not
surprising that subjects are less likely to fail to recognize that private information and subsequent
bids are related. Second, notice that the precision parameter λ is smaller in the FPA treatments
than in the LRA treatments. This indicates that there is less error in formulating bids in LRAs.

26This suggests that either bid formulation is a noisy process, there is bidder heterogeneity, or both.
27The Gauss code we used to obtain these results is available upon request.
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Table 6: Maximum likelihood estimates of behavioral parameters

Treatment FP-PC FP-C LR-PC LR-C

χ 0.663* 0.942*** – –
(0.312) (0.106)

λ 0.042*** 0.044*** 0.129*** 0.418***
(0.003) (0.003) (0.011) ( 0.084)

Log likelihood -466.407 -466.600 -470.360 -470.256
Notes: Standard errors (in parentheses)
+p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

This, combined with the fact that cursedness does affect perceived payoffs conditional on winning,
offers support for using LRAs in favor of FPAs.

4.5 Estimated Bid Functions

When estimating bid functions for the four treatments, we employ a random effects (at the individ-
ual level) specification, and cluster the standard errors to allow for intra-session correlation.28 We
control for the statistic upon which equilibrium bids are based as well as experience (ln (t+ 1)).29

In LRAs, we also control for vi, to test the hypothesis that the privately observed common-value
signal does not enter into the bid function. We also estimate specifications which control for gender
(Fi = 1 if the bidder is female, 0 otherwise), the interaction of gender and experience Fi ·ln (t+ 1).
We also control for the order of the risk attitude elicitation procedure (Oi), whether or not bidders
started with an endowment of E$500 (Ei), the number of safe choices in the risk elicitation proce-
dure (Ri), and subject dummies.30 Table 7 contains the estimated bid functions for FP-C auctions.
Several things are worth noting. First, the common value signal is, unsurprisingly, highly signifi-
cant and positive in all specifications. Second, subjects do not seem to be reducing their bids over
time, as evidenced by the insignificant coefficients on ln (t+ 1). Notice that when we control for
gender and the interaction between gender and ln (t+ 1) the respective coefficients are insignifi-
cant (although when we only control for gender, the coefficient is positive and significant). This
is in contrast to the result of Casari et al. (2007), which finds that women tend to initially overbid
more than men, but also learn to reduce their bids faster than men in first-price common-value

28As a robustness check, we also estimated bid functions with dummies for subjects who went bankrupt, and a
dummy indicating whether or not a bankruptcy occurred in the session. These results are available upon request.

29Recall that the equilibrium bid of LR-C bidders does not depend on the private information held by bidders.
30A subject is defined as the sequence of draws of vi and, if applicable, ci that a participant faced, as well as the

sequence of unobserved draws that her opponents faced. That is, in each session we utilized the same set of (once
random) draws as the other sessions. Thus, exactly one participant in each session observed each sequence of random
draws. The dummy variable for a subject is equal to one for the set of participants who observed that sequence, and
zero for the other participants.
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Table 7: Estimated Bid Functions for FP-C Auctions

(1) (2) (3) (4)

vit 0.595*** 0.594*** 0.594*** 0.595***
(0.033) (0.033) (0.033) (0.035)

ln (t+ 1) -4.135 -4.135 -3.527 -3.529
(2.638) (2.639) (4.352) (4.386)

Fi 2.488** 5.498 3.408
(0.959) (9.356) (9.353)

ln (t+ 1) · Fi -1.327 -1.326
(4.007) (4.037)

Ri -1.55
(0.955)

Ei -4.899*
(2.361)

Oi 3.431+
(2.032)

Subject Dummies No No No Yes
- - - -

Constant 34.547*** 33.416*** 32.043** 28.714*
(9.285) (8.958) (10.870) (14.515)

Observations 960 960 960 960
Notes: Standard errors (in parentheses) clustered to allow for intra-session correlation.
+p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

auctions. Table 8 contains the estimated bid functions for the FP-PC auctions.31 Of interest is the
fact that the coefficient on si is highly significant in all specifications, and approximately equal to
one. Note that in the most inclusive specification the interaction between gender and ln (t+ 1) is
significant and positive, and that gender is (marginally) significant. This indicates that women are
initially bidding less than men, but that as they gain experience they increase their bids more than
men. This result is in stark contrast to that of Casari et al. (2007). Table 9 contains the estimated
bid functions for LR-C auctions. As expected, the common-value signal is not significant. Also,
the coefficient for ln (t+ 1) is highly significant, and positive. That is, bidders are moving away
from equilibrium, on average, as they gain experience. This may be an attempt by some bidders
to send signals in order to tacitly collude with other bidders on a higher price. Since bidders were
randomly and anonymously re-matched every period, it would have been extremely difficult for
this type of coordination to happen. At the same time, it would have been a very low-cost strategy,

31The equilibrium bid function for FP-PC auctions is not predicted to be linear. However, for some values of si this
bid function cannot be separated into linear and nonlinear parts. We report linear bid functions, which we find to be a
better fit for the data than nonlinear specifications. As such, the reported regressions should not be interpreted as an
explicit test of the equilibrium bidding strategy.

26



Least-Revenue Auctions

Table 8: Estimated bid functions for FC-PC auctions

(1) (2) (3) (4)

sit 1.091*** 1.091*** 1.091*** 1.091***
(0.071) (0.071) (0.068) (0.069)

ln (t+ 1) -1.361 -1.361 -2.716 -2.715
(1.869) (1.870) (1.926) (1.941)

Fi 1.045 -8.171 -14.357+
(5.252) (7.309) (8.138)

ln (t+ 1) · Fi 4.062** 4.061**
(1.331) (1.341)

Ri 4.276*
(1.897)

Ei 3.586*
(1.708)

Oi 2.938
(1.984)

Subject Dummies No No No Yes
- - - -

Constant 87.952*** 87.604*** 90.659*** 64.064***
(6.336) (5.081) (5.227) (6.808)

Observations 960 960 960 960
Notes: Standard errors (in parentheses) clustered to allow for intra-session correlation.
+p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 9: Estimated bid functions for LR-C auctions

(1) (2) (3) (4)

vit 0.008 0.008 0.01 0.009
(0.028) (0.027) (0.028) (0.028)

ln (t+ 1) 3.750*** 3.750*** 7.110*** 7.111***
(1.135) (1.135) (2.074) (2.090)

Fi -7.657 5.911** 5.853
(6.796) (2.134) (3.791)

ln (t+ 1) · Fi -5.980* -5.979*
(2.458) (2.475)

Ri 5.818***
(0.582)

Ei -0.513
(5.665)

Oi -5.225
(5.505)

Subject Dummies No No No Yes
- - - -

Constant 24.396*** 28.698*** 20.847*** 3.634
(3.011) (4.938) (1.573) (7.330)

Observations 960 960 960 960
Notes: Standard errors (in parentheses) clustered to allow for intra-session correlation.
+p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

given the low profits observed in this auction. Alternatively, it might have been a case of throw-

away bidding in which bidders simply express their frustration over competing for extremely low
profits, conditional on winning. Additionally, in the most inclusive specification, the interaction
between gender and ln (t+ 1) is significant and negative. This implies that over time, the bids of
male participants are increasing, and moving away from equilibrium. Once again, however, gender
alone is not significant. Table 10 contains the estimated bid functions for LR-PC auctions. Notice
that, as predicted, the private cost observed by bidders is highly significant. Interestingly, the only
significant coefficient is that of ci. In particular, we find no significant gender effects,

5 Conclusion

In this paper we experimentally examine first-price and LRAs in two environments: one with
private and common values, and other with pure common values. In an LRA, a bidder’s bid
consists of the fixed amount of revenue from the common value of the good the bidder is willing to
accept upon winning the auction. The lowest of these bids wins the auction. The winning bidder
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Table 10: Estimated bid functions for LR-PC auctions

(1) (2) (3) (4)

vit 0.007 0.007 0.007 0.007
(0.012) (0.012) (0.012) (0.012)

cit 0.865*** 0.863*** 0.863*** 0.868***
(0.038) (0.039) (0.039) (0.037)

ln (t+ 1) 0.353 0.353 0.276 0.274
(0.234) (0.235) (0.322) (0.322)

Fi -4.938 -5.432 -8.424
(3.696) (4.235) (5.273)

ln (t+ 1) · Fi 0.218 0.219
(0.241) (0.242)

Ri 0.170
(0.491)

Ei -4.651
(2.831)

Oi 0.276
(1.137)

Subject Dummies No No No Yes
- - - -

Constant 6.533*** 8.337*** 8.505** 7.261***
(1.784) (2.504) (2.641) (1.576)

Observations 960 960 960 960
Notes: Standard errors (in parentheses) clustered to allow for intra-session correlation.
+p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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then incurs her cost.

Note that the uncertainty regarding the common value of the good is borne by the auctioneer in
LRAs. The concept of such a risk sharing arrangement for infrastructure concession contracts has
been theoretically studied in the past (Engel et al. (1997, 2001)). Theory predicts that the allocative
efficiency of LRAs will be higher than in first-price auctions. Despite this advantage, a caveat
regarding the general applicability of this format is in order: LRAs do not provide any incentive for
the winner to invest in maintaining and enhancing the value of the good. This problem is mitigated
if the ex-post value of the good is independent of the ex-post performance of the winning bidder.
Alternatively, if the value of the good depends on easily monitored ex-post performance, a contract
can be created which rewards and/or penalizes the winner contingent on ex-post performance. For
instance, some energy markets (e.g. the PJM market in the U.S., the strategic reserve market in
Sweden and Finland, the French energy market, etc.) employ capacity markets to secure adequate
level of generation capabilities for the demand peaks and system outages. Since these markets are
organized by a third party - typically the independent system operator or the transmission system
operator - it is relatively easy to monitor both the revenues and the quality of the procured back-
up generation service. If a company fails to provide the service during the outage, the system
operator observes the fact the very same second. A contract can be easily designed to penalize
such occurrences.

This paper is the first to examine, both theoretically and experimentally, allocative efficiency,
bidding behavior and auction performance in LRAs. This paper is also, to the best of our knowl-
edge, the first direct comparison of bidding behavior in first-price auctions with these two valuation
structures. We do not find any significant effect of the valuation structure on the prevalence of the
bidding above the break-even bidding threshold, the revenue generated, or bidder profits. This is
surprising, given that theory predicts that the additional private information held by bidders when
there are private and common value components of the valuation structure will lower revenue and
make bidders better off. However, when estimating a cursed equilibrium bidding model, we find
that the degree of cursedness is higher in the private and common valuation structure.

Perhaps the most interesting result is that, when there are private and common values, there are
large increases in efficiency to be obtained by moving from a first-price auction to an LRA. The
intuition underlying this result is clear: when there are private and common values, a bidder puts
some weight on her common value signal when deciding her bid, while the efficiency is entirely
determined by the private cost. As a result, the winning bidder may not have the lowest private
cost, and thus the allocation may be inefficient. In an LRA, however, the common value signal is
strategically irrelevant, and thus does not introduce inefficiency as in first-price auctions. This is,
in effect, a limiting case of the finding in GO that a reduction in uncertainty regarding the common
value component of the good reduces inefficiency.
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The other noteworthy result is that, regardless of the valuation structure, bidding above the
break-even threshold is significantly less prevalent in LRAs than in first-price auctions. Again, the
intuition is due to the reduction of uncertainty in LRAs. In particular, in LRAs bidders do not need
to estimate the expected common value of the good conditional on winning the auction in order to
determine their expected profit. This is an important practical advantage, as it allows bidders to
focus on their cost, as opposed to the uncertain common value and accounting for the information
conveyed by winning the auction. Given the high rate of reported bankruptcy in infrastructure
concessions allocated via traditional auction mechanisms (and the renegotiation that subsequently
occurs), this result suggests that the use of LRAs may be preferred by policymakers.

A Derivation of Equilibria

Derivation of Cursed Equilibrium in FP-PC Auctions

Consider bidder i who privately observes common value signal vi and private cost ci (so that
si = vi

n
−ci). The other bidders j 6= i are bidding according to the differentiable and monotonically

increasing bid function ρ (sj) where sj =
vj
n
− cj . Bidder i incorrectly believes that bidders j 6= i

only bid ρ (sj) with probability (1− χ) and bids E (ρ (s)) with probability χ. Bidder i bids b.
Given χ, bidder i incorrectly believes her expected profit to be

Πχ
i (b, si) =

Fs
(
ρ−1 (b)

)n−1(
si +

(
n− 1

n

)(
(1− χ)E

(
v|s ≤ ρ−1 (b)

)
+ χE (v)

)
− b
)
.

Taking the derivative with respect to b and noting that in a symmetric cursed equilibrium it
must be the case that b = ρ (si) leaves us with the differential equation

(n− 1)Fs (si)
n−2 fs (si)

ρ′ (si)
(si − ρ (si)) +

(n− 1)Fs (si)
n−2 fs (si)

ρ′ (si)

((
n− 1

n

)
((1− χ)E (v|s ≤ si) + χE (v))

)
+

Fs (si)
n−1
((

n− 1

n

)
(1− χ)

(
(E (v|s = si)− E (v|s ≤ si))

fs (si)

Fs (si) ρ′ (si)

))
−

Fs (si)
n−1 = 0.
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This can be written as

d

dsi

(
Fs (si)

n−1
(
ρ (si)−

(
n− 1

n

)
(1− χ)E (v|s ≤ si)

))
=

(n− 1)Fs (si)
n−2 fs (si)

(
si +

(
n− 1

n

)
χE (v)

)
.

Integrate both sides of this equation, and note that the initial condition is ρ (sL) =
(
n−χ(n−1)

n

)
vL+

χ
(
n−1
n

)
E (v)− cH . This leaves us with

Fs (si)
n−1
(
ρ (si)−

(
n− 1

n

)
(1− χ)E (v|s ≤ si)

)
=

si∫
sL

(n− 1)Fs (t)n−2 fs (t) tdt+

((
n− 1

n

)
χE (v)

) si∫
sL

(n− 1)Fs (t)n−2 fs (t) dt.

This can be rewritten as

Fs (si)
n−1
(
ρ (si)−

(
n− 1

n

)
(1− χ)E (v|s ≤ si)

)
=

Fs (si)
n−1E (y1|y1 ≤ si) +

((
n− 1

n

)
χE (v)

)
Fs (si)

n−1 ,

where y1 is the highest signal of the other n − 1 bidders. That is, y1 = maxj∈N−i
sj . Solving for

ρ (si) leaves us with the cursed equilibrium bid function:

ρ (si) =

(
n− 1

n

)
((1− χ)E (v|s ≤ si) + χE (v)) + E (y1|y1 ≤ si) .

Plugging in the cursed equilibrium bid function, we see that the actual expected profit of bidder
i in this cursed equilibrium is

Πi (ρ (si) , si) =

Fs (si)
n−1
(
si − E (y1|y1 ≤ si)− χ

(
n− 1

n

)
(E (v)− E (v|s ≤ si))

)
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Integrating over s, we find that the actual ex ante expected profit of bidder i is

E
(
ΠFP−PC
i (ρ (s) , s)

)
=

sH∫
sL

Fs (t)n−1 fs (t) tdt−

sH∫
sL

Fs (t)n−1E (y1|y1 ≤ t) fs (t) dt−

χ

(
n− 1

n

)
E (v)

sH∫
sL

Fs (t)n−1 fs (t) dt+

χ

(
n− 1

n

) sH∫
sL

Fs (t)n−1 fs (t)E (v|s ≤ t) dt.

This can be written as
E
(
ΠFP−PC
i (ρ (s) , s)

)
=

(
1

n

)
E (Y1)−

sH∫
sL

t∫
sL

(n− 1)Fs (z)n−2 fs (z) zdzfs (t) dt−

χ

(
n− 1

n

)
E (v)

(
1

n

)
+ χ

(
n− 1

n

)(
1

n

)
E (v|s ≤ Y1) ,

where Y1 is the highest of the n draws of s. By changing the order of integration in the second
term, this reduces to

E
(
ΠFP−PC
i (ρ (s) , s)

)
=(

1

n

)
E (Y1)−

sH∫
sL

(n− 1)Fs (z)n−2 fs (z) z (1− Fs (z)) dz−

χ

(
n− 1

n

)
E (v)

(
1

n

)
+ χ

(
n− 1

n

)(
1

n

)
E (v|s ≤ Y1) .

Since the density function for the second highest of the n draws of s (Y2) is given by n (n− 1)Fs (·)n−2 fs (·) (1− Fs (·)),
this simplifies to

E
(
ΠFP−PC
i (ρ (s) , s)

)
=

(
1

n

)
(E (Y1)− E (Y2))−

χ

(
n− 1

n

)(
1

n

)
(E (v)− E (v|s ≤ Y1)) .
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The ex ante expected profit of the winner in this cursed equilibrium is then

E
(
ΠFP−PC
winner

)
= E (Y1)− E (Y2)− χ

(
n− 1

n

)
(E (v)− E (v|s ≤ Y1)) .

Total expected surplus in this auction is given by W = E (V )− E (c|s = Y1). Thus, expected
revenue in this cursed equilibrium is RFP−PC = W − E

(
ΠFP−PC
winner

)
.

Derivation of the Equilibrium in FP-C Auctions

Consider bidder i who privately observes common value signal vi. The cost of winning the auction
is c̄ ∈ (0, vL). The other bidders j 6= i are bidding according to the differentiable and mono-
tonically increasing bid function β (vj). Bidder i incorrectly believes that bidders j 6= i only bid
β (vj) with probability (1− χ) and bids E (β (v)) with probability χ. Bidder i bids b. Given χ,
she incorrectly believes that her expected profit is

Πχ
i (b, vi) =

F
(
β−1 (b)

)n−1(vi
n

+

(
n− 1

n

)(
(1− χ)E

(
v|v ≤ β−1 (b)

)
+ χE (v)

)
− c̄− b

)
.

Taking the derivative with respect to b and noting that in a cursed equilibrium it must be the case
that b = β (vi), we are left with an ordinary differential equation:

(n− 1)F (vi)
n−2 f (vi)

β′ (vi)

((
n− 1

n

)
((1− χ)E (v|v ≤ vi) + χE (v))

)
+

(n− 1)F (vi)
n−2 f (vi)

β′ (vi)

(vi
n
− c̄− β (vi)

)
+

+F (vi)
n−1
((

n− 1

n

)
(1− χ)

(
(vi − E (v|v ≤ vi))

f (vi)

F (vi) β′ (vi)

)
− 1

)
= 0.

The initial condition is β (vL) =
(
n−χ(n−1)

n

)
vL + χ

(
n−1
n

)
E (v)− c̄. Notice that the above differ-

ential equation can be written as

d

dvi

(
F (vi)

n−1
(
β (vi)−

(
n− 1

n

)
(1− χ)E (v|v ≤ vi)

))
=
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(n− 1)F (vi)
n−2 f (vi)

(
vi
n

+

(
n− 1

n

)
χE (v)− c̄

)
.

Integrating both sides leaves us with

F (vi)
n−1
(
β (vi)−

(
n− 1

n

)
(1− χ)E (v|v ≤ vi)

)
=

vi∫
vL

(n− 1)F (t)n−2 f (t)

(
t

n
+

(
n− 1

n

)
χE (v)− c̄

)
dt.

Simplifying this yields the equilibrium bid function

β (vi) =

(
n− 1

n

)
((1− χ)E (v|v ≤ vi) + χE (v)) +

(
1

n

)
E (z1|z1 ≤ vi)− c̄,

where z1 is the highest signal of the other n− 1 bidders. That is, z1 = maxj∈N−i
vj .

Plugging in the cursed equilibrium bid function, we find the actual expected profit of bidder i
in this cursed equilibrium:

Πi (β (vi) , vi) =

F (vi)
n−1
(
vi
n
− χ

(
n− 1

n

)
(E (v)− E (v|v ≤ vi))−

(
1

n

)
E (z1|z1 ≤ vi)

)
.

Integrating over v we find the actual ex ante expected profit of bidder i is

E
(
ΠFP−C
i (β (v) , v)

)
=

vH∫
vL

F (t)n−1 f (t)
t

n
dt−

(
1

n

) vH∫
vL

F (t)n−1E (z1|z1 ≤ t) f (t) dt−

χ

(
n− 1

n

)
E (v)

vH∫
vL

F (t)n−1 f (t) dt+

χ

(
n− 1

n

) vH∫
vL

F (t)n−1 f (t)E (v|v ≤ t) dt.

This can be written as
E
(
ΠFP−C
i (β (v) , v)

)
=

(
1

n2

)
E (Z1)−
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(
1

n

) vH∫
vL

t∫
vL

(n− 1)F (u)n−2 f (u)uduf (t) dt−

χ

(
n− 1

n

)
E (v)

(
1

n

)
+ χ

(
n− 1

n

)(
1

n

)
E (v|v ≤ Z1) ,

where Z1 is the highest of the n draws of v. By changing the order of integration in the second
term, this reduces to

E
(
ΠFP−C
i (β (v) , v)

)
=

(
1

n2

)
E (Z1)−

(
1

n

) vH∫
vL

(n− 1)F (u)n−2 f (u)u (1− F (u)) du−

χ

(
n− 1

n

)
E (v)

(
1

n

)
+ χ

(
n− 1

n

)(
1

n

)
E (v|v ≤ Z1) .

Since the density function for the second highest of the n draws of v (Z2) is given by n (n− 1)F (·)n−2 f (·) (1− F (·)),
this simplifies to

E
(
ΠFP−C
i (β (v) , v)

)
=

(
1

n2

)
(E (Z1)− E (Z2))−

χ

(
n− 1

n

)(
1

n

)
(E (v)− E (v|v ≤ Z1)) .

The ex ante expected profit of the winner in this cursed equilibrium is then

E
(
ΠFP−C
winner

)
=(

1

n

)
(E (Z1)− E (Z2))− χ

(
n− 1

n

)
(E (v)− E (v|v ≤ Z1)) .

Total expected surplus in this auction is given by X = E (V ) − c̄. Thus, expected revenue in
this cursed equilibrium is RFP−C = X − E

(
ΠFP−C
winner

)
.

Derivation of the Equilibrium in LR-PC Auctions

Consider bidder i who privately observes ci The other bidders j 6= i are bidding according to the
differentiable and monotonically decreasing bid function ζ (cj). Bidder i incorrectly believes that
bidders j 6= i only bid ζ (cj) with probability (1− χ) and bids E (ζ (c)) with probability χ. Bidder
i bids b. Notice that for any given χ ∈ [0, 1) the expected profit of bidder i is the same as if χ = 0.
Thus, any symmetric cursed equilibrium will also be a symmetric Bayesian Nash equilibrium. This
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expected profit is given by

Πi (b, ci) =
(
1−G

(
ζ−1 (b)

))n−1
(b− ci) .

The first order condition associated with this problem is

− (n− 1)
(
1−G

(
ζ−1 (b)

))n−2 g (ζ−1 (b))

ζ ′ (ζ−1 (b))
(b− ci) +

(
1−G

(
ζ−1 (b)

))n−1
= 0.

In equilibrium, it must be the case that b = ζ (ci). Utilizing this, we are left with an ordinary
differential equation

− (n− 1) (1−G (ci))
n−2 g (ci) (ζ (ci)− ci) +

(1−G (ci))
n−1 (ζ ′ (ci)) = 0.

The initial condition is ζ (cH) = cH . Notice that the above differential equation can be written as

d

dvi

(
(1−G (ci))

n−1 (ζ (ci))
)

=

− (n− 1) (1−G (ci))
n−2 g (ci) ci.

Integrating both sides leaves us with

(1−G (ci))
n−1 (ζ (ci)) =

cH∫
ci

(n− 1) (1−G (t))n−2 tg (t) dt.

Simplifying this yields the equilibrium bid function

ζ (ci) = E (un−1|un−1 ≥ ci) ,

where un−1is the smallest of n− 1 draws of c.

The equilibrium expected profit of bidder i is then

Πi (ζ (ci) , ci) =

cH∫
ci

(n− 1) (1−G (t))n−2 tg (t) dt− (1−G (ci))
n−1 ci.
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The ex ante expected profit of bidder i is found by integrating with respect to c.

E
(
ΠLR−PC
i (ζ (c) , c)

)
=

cH∫
cL

cH∫
t

(n− 1) (1−G (u))n−2 ug (u) dug (t) dt−
cH∫
cL

(1−G (t))n−1 tg (t) dt.

This simplifies to
E
(
ΠLR−PC
i (ζ (c) , c)

)
=(

1

n

)
E (Un−1)−

(
1

n

)
E (Un) ,

where Un−1 is the second lowest of n draws of c. Thus the ex ante expected profit of the winner
is given by E

(
ΠLR−PC
winner

)
= E (Un−1) − E (Un). Since the total expected surplus in this auction

is given by D = E (V ) − E (c|c = Un), expected revenue in this equilibrium is RLR−PC = D −
E
(
ΠLR−PC
winner

)
.

B Instructions

What follows is an English translation of the instructions for least-revenue auctions with private
and common values (LR-PC). Instructions from the remaining treatments are available upon re-
quest.

SLIDE No.1

These instructions will explain how you can earn money based on your decisions and the de-
cisions of other participants during this part of the experiment. We recommend that you read the
instructions carefully, because your earnings may be affected if you do not understand them. If
you have any questions regarding there instructions, please raise your hand and we will answer
your question privately.

SLIDE No.2

Earnings in the experiment

From now on, participants will interact only through computers. If you disobey the rules, we
will end the experiment and ask you to leave without your accumulated earnings. The amounts in
the experiment are denominated in Experimental Pesos (E$). At the end of the experiment we will
convert your accumulated earnings to Quetzales (Q1=E$4) and we will pay it in cash (in Quetzales)

SLIDE No.3

The experiment consists in a series of periods. The computer will act as a seller and the partic-
ipants will act as buyers of a good whose VALUE is the same for all participants. For each seller
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there will be 3 buyers. All buyers will have a COST of obtaining the good which will likely be
different for each person.

You can make money if: 1) You make the lowest REQUEST of the AMOUNT. 2) The AMOUNT
received is higher than the COST of obtaining the good.

SLIDE No.4

Each period, groups of 3 buyers are chosen randomly. Buyers can obtain a good that has a
VALUE. This VALUE is the same for all buyers and represents how much the good being sold in
that period is worth.

However, no one will know the VALUE of the good before the period begins. When the period
begins, each buyer will receive an ESTIMATE of the VALUE.

SLIDE No.5

At the beginning of the period, each potential buyer will receive his own ESTIMATE of the
VALUE. The ESTIMATE of the VALUE will be a number chosen at random between 100 and
200.

All ESTIMATES of the VALUE in the mentioned range have the same probability of being
selected and are independent from the ESTIMATES of the VALUE of other buyers and those of
other periods.

SLIDE No.6

In other words, in each period you will have an ESTIMATE of VALUE which is likely to be
different from the ESTIMATES of VALUE of other buyers and ESTIMATES of VALUE in other
periods.

In each period, the VALUE of the good will be the average of the ESTIMATES of VALUE
of the 3 buyers of each group. Since all ESTIMATES of VALUE are between 100 and 200, the
VALUE will be in this range, and will be the same for all 3 buyers.

SLIDE No.7

For example, if your ESTIMATE of VALUE is 182.60 and the ESTIMATES of the other 2
buyers are 109.42 and 167.31, the VALUE of the good (for any of the 3 participants) would be
153.11.

(182.60 + 109.42 + 167.31) = 153.11 3

SLIDE No.8

Each buyer will have a COST of obtaining the good. This COST will likely be different for
each buyer. This COST is only incurred by the buyer of the good, and is paid in addition to the
PRICE paid to the seller.

In each period, the COST of each buyer is assigned randomly. All COSTS between E$0 and
E$50 are equally likely to be chosen. COSTS do not depend on the COSTS of other participants
or the COSTS in other periods.
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In other words, in each period you will have a COST (between E$0 and E$50) which will
likely be different than the COST of other potential buyers and different from the COSTS you had
in previous periods.

SLIDE No.9

At the beginning of the period, each buyer will know his ESTIMATE of the VALUE of the
good as well as his COST for obtaining the good. Each buyer can then make a REQUEST of
an AMOUNT of the VALUE of the good. The person who makes the lowest REQUEST of an
AMOUNT will buy the good. He will pay the difference between the VALUE and his REQUEST.
In case of a tie between two or more REQUESTS, the buyer will be determined randomly.

SLIDE No.10

In other words, the buyer will get the AMOUNT of the VALUE of the good (net of the price
paid to the seller). The AMOUNT obtained by the buyer cannot be higher than the VALUE of the
good. Whenever the REQUEST of the AMOUNT is less than the VALUE of the good, the buyer
will get that AMOUNT. If the REQUEST of the AMOUNT is larger than the VALUE of the good,
the AMOUNT obtained by the buyer will equal the VALUE.

SLIDE No.11

At the end of the period, your screen will display the REQUESTS of an AMOUNT of all
buyers (ranked lowest to highest), as well as the VALUE of the good, the AMOUNT obtained by
the buyer, and your EARNINGS.

For the person with the lowest REQUEST of an AMOUNT, the EARNINGS will be: AMOUNT
Obtained - COST = EARNINGS

All others will have PROFIT of: 0 Notice that the buyer could earn money if the AMOUNT
obtained is lower than its COST. Also notice that the buyer could lose money if the AMOUNT is
higher than its COST.

SLIDE No.12

For example, if you make a REQUEST of an AMOUNT of 34 and your REQUEST is the
lowest, you will buy the good. If the VALUE is 163 in that period and your COST is 24, your
EARNINGS will be: 34 - 24 = 10

If your REQUEST of an AMOUNT is not the lowest, then you do not purchase the good and
your EARNINGS is 0. For example, if your REQUEST of an AMOUNT is 42 and this is not the
lowest REQUEST, you will not purchase the good and will have EARNINGS of 0 in that period.

SLIDE No.13

In each period, groups will be randomly reassigned. That is, you will likely NOT interact with
the same people every period.

Moreover, you will never know the identity of the other participants in your group nor will they
know yours.
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SLIDE No.14

At the beginning of the experiment, all participants will receive an endowment of E$500. If at
any point during the experiment you have a loss greater than your balance, you cannot continue in
the experiment. You will then have to wait quietly until the end of the experiment to receive your
participation payment.

At the end of the experiment, while we prepare your payments, you will be asked to quietly fill
out a short questionnaire.

SLIDE No.15

Summary

You and two other people will be potential buyers for a good the computer will be selling.

In each period, you can make a REQUEST of an AMOUNT to try to buy the good.

The buyer with the lowest REQUEST of an AMOUNT will buy the good. When the REQUEST
is lower than the VALUE, the buyer will obtain the AMOUNT REQUESTED. The buyer will also
pay the COST of obtaining the good.

SLIDE No.16

Summary

Whoever buys the good will make money if his REQUEST obtained is higher than the COST
to obtain it.

EARNINGS (if you buy the good) = AMOUNT Obtained – COST

EARNINGS (if you do not buy the good) = 0
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