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Non-genera of curves with automorphisms in characteristic p

Darren Glass

ABSTRACT. We consider which integers g and o can occur respectively as the
genus and p-rank of a curve defined over a field of odd characteristic p which
admits an automorphism of degree p.

1. Introduction

This paper is intended to serve as a characteristic p analog to the paper by
O’Sullivan and Weaver [6]. In that paper, the authors consider for which genera g
there is a Riemann surface of genus g which admits an automorphism of order n
for various choices of n. In this note, I consider the same question where we are
instead working over an algebraically closed field of characteristic p and looking at
curves admitting a Z/pZ-action. We determine which genera g can occur for such
curves. Recall that the p-rank of a curve defined over a field k of characteristic p
is the integer o such that the cardinality of Jac(X)[p](k) is p?. It is well known
that 0 < o < g and in this note we establish conditions on pairs (g, o) so that there
exist curves of genus g and p-rank o which admit a Z/pZ-action.

In the case p = 2, Zhu has shown in [9] that all pairs (g,0) with g > o > 0
occur as the genus and 2-rank of curves over Fy, even for hyperelliptic curves with
automorphism group exactly Z/2Z. In [4], the author considers curves admitting a
Z/2mZ-action in characteristic 2 for all odd m. In light of these results, we restrict
our attention to the situation where our field has odd characteristic in this note.

In particular, if we let (a,b) be the submonoid of Z generated by a and b (i.e.
(a,b) = {az + by|lz,y € Z>0}) then we show in Sections 2 and 3 the following
necessary conditions for such a curve to exist.

THEOREM 1.1. Let X be a curve of genus g and p-rank o which admits a
Z/pZ-action. Then we have the following conditions on g and o.
e Either g € (p,251) or g=1 (mod p).
e FEither o € (p,p—1) oroc =1 (mod p)

s g—o €55

These conditions are not sufficient for such a curve to exist; the difficulty comes
because it is not possible to construct functions on arbitrary curves with arbitrary
numbers of branch points and ramification degrees. Sections 2 and 3 prove that
under additional hypotheses we can get sufficiency. One example of such a result
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is Theorem 2.4 which gives precise conditions under which a curve of genus g with
a Z/pZ-action exists. Another example is the following;:

COROLLARY 1.2. Let o0 > (p— 1)(p+ 2). Then there exist curves of genus g
and p-rank o admitting a Z/pZ-action if and only if g — o € (p, ”T_l)

We note that our results generalize the results in [7, Lemma 2.7], in which
the authors considered the possible p-ranks of Artin-Schreier curves. Our results
allow the quotient curve to have genus gy > 0, which allows for more possible
values of gx and o. The main approach in our investigation will be to assume
that X admits a Z/nZ-action with quotient Y, and consider the cover X — Y.
We then use the Riemann-Hurwitz formula to compare the genera of X and Y
and the Deuring-Shafarevich formula to compare their p-ranks. We also use results
about the Frobenius Problem (also known as the coin problem or the conductor
problem), which asks what numbers are representable as nonnegative integral linear
combinations of fixed integers. In particular, we recall the following theorem due
to Sylvester [8], which is standard in any undergraduate number theory text:

THEOREM 1.3. Let a and b be fized coprime integers. Then any integer d >
ab—a—b can be expressed as a linear combination d = ax'+ by where x,y € Z>g.
Moreover, ab—a—b ¢ {(a,b) and exactly half of the integers between 1 and ab—a—b+1
are in (a,b).

More generally, we will consider the sets (ai,...ax) of integers which can be
expressed as the linear combination ayxy + . ..axxr for nonnegative choices of ;.
While Sylvester’s theorem gives us a description of these sets in the case where
k = 2, the question becomes more difficult in the case where k& > 3. In particular,
while it is known that Z>¢ — (a1, ...ax) is a finite set, when k > 3 even finding the
largest number in this set is NP-hard [2].

The author would like to thank Tony Weaver, Rachel Pries, and the referees
for many valuable suggestions.

2. Non-genera for Z/pZ-actions

Let us begin by considering what genera occur as gx for some cover X — Y
whose degree is p when working over a field of odd characteristic p. We recall that
a Z/pZ-cover X — Y is defined by an equation T? — T = F where F' is a function
on the curve Y. Moreover, if the function F' has poles of order n; all of which are
relatively prime to p, then the Riemann-Hurwitz formula in characteristic p tells
us that gx =pgy —p+1+ pT_l > (n; + 1). Throughout this paper, we will define
the ramification type of a function with m poles of orders n; to be the m-tuple
(n1,...,nm). To illustrate our method, we begin by considering some examples.

EXAMPLE 2.1. Let p = 3. The Riemann-Hurwitz formula implies that gx =
39y — 2+ > (n; +1). Let us consider the case where gy = 0, and consider curves
ramified at two points, so that gx = ni + ny. We note that the only restriction
on the values of n; is that they cannot be multiples of 3. In particular, one can
obtain all values of gx > 2 by setting either ny = 1 and no = gx — 1 orny = 2
and ny = gx — 2. Moreover, one can construct a curve with gx = 0 (resp. 1)
by looking at the cover X — Y ramified at a single point with ramification degree
1 (resp. 2). This implies that every gx occurs as the genus of an Artin-Schreier
curve in characteristic 3 ramified in at most two points.
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EXAMPLE 2.2. Let p = 5. In this case, the Riemann-Hurwitz formula implies
that gx = 5gy —4+25 (n;+1). We again set gy = 0 and allow our cover to have
two ramification points, so that gx = 2(ny1+mns). Moreover, all even numbers gx >
4 can occur in this case, again by choosing ny = 1 or 2. Furthermore, an Artin-
Schreier curve of genus 0 (resp. 2) can be constructed with a single ramification
point.

While parity restrictions mean that we are unable to construct covers over P! of
odd genus in this case, we may be able to construct curves X of odd genus that are
covers of elliptic curves. The situation here is slightly more complicated, however,
as to do so one must construct functions on curves of genus 1 with prescribed
ramification divisors. For example, there are no functions on elliptic curves which
have a single pole of order one. As we will see below, however, the restrictions are
not as severe as they may initially seem.

We note the following result is true regardless of the characteristic:

LEMMA 2.3. Let Y be a curve of genus 0. Then for any nonnegative integer R
except R = 1 there exists a function F on'Y with poles of order n; so that p fn;
for alli and Y (n; +1) = R.

Let Y be a hyperelliptic curve of genus gy > 0. Then for any nonnegative
integer R # 1,2 there exists a function F on'Y with poles of order n; so thatp fn;
for alli and > (n; + 1) = R. No such function exists for R =1 or 2

PROOF. On any curve Y there exist constant functions. These have no poles
and therefore give the existence of functions where > (n; + 1) = 0.

On a curve of genus zero, there exists a function with a single pole of order
one, and therefore the appropriate power of this function will have ramification
type (R—1) as long as R # 1 (mod p). If R = 1 mod p we can construct a function
that has one pole of order R — 3 (which will not be a multiple of p as p > 2) and a
second pole of order 1. These two examples prove the first part of the lemma.

To prove the second part of the lemma, we note that hyperelliptic curves auto-
matically come equipped with functions that have ramification type (2) and (1,1)
and in particular there are many of the latter type of function. It is therefore pos-
sible to consider linear combinations of these functions that will have ramification
type (2k), (k, k), (2k,1,1) and (k, k,1,1) for all £ > 0 and p fk. In particular, this
allows us to get values of R of the form 2k + 1,2k + 2,2k + 5 and 2k + 6 for any
p fk. Every positive integer other than 1 and 2 takes one of these forms. Note that
R =1 is impossible as, if a function has a pole at a point then that order must be
at least one and vice versa. Moreover, the only way to obtain R = 2 would be to
have a single simple pole, which is impossible on curves of genus g > 1 (See, for
example, [3, §8.2, Prop 4]). a

Applying this lemma to our previous example, we are able to construct curves
of all odd genera other than gx = 3 or 5 as Z/5Z-covers of curves of genus one.
More generally, we note that computing the set of values gy that can occur has now
been reduced to something that is very similar to the two-dimensional Frobenius
Problem connected to the coprime pair of numbers p and %. In particular, we
can apply Theorem 1.3 to learn about the nonnegative linear combinations of p
and Lgi and then remove those entries where b = 0 and a > 0 (all of which are
multiples of p) and add in the entries where b = —2 (all of which are congruent to

one mod p).
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THEOREM 2.4. Define the set

=1 =1
G = ((p,p—z—> . {kp|0 <k< pT}) U{kp+ 1|k € Z>o}.

Then there exists a curve of genus g defined over an algebraically closed field of
characteristic p and admitting a Z/pZ-action if and only if g € G. Moreover, there

are exactly Ei:%l’_tii nonnegative integers not in G, the largest of which is L?E

PROOF. In order to construct a curve X of genus gx which admits a Z/pZ-
action, it suffices to construct a curve Y of genus gy and a function on Y so that
> (ni+1) = R where gx =pgy —p+1+ P—;—IR. Lemma 2.3 tells us that for most
choices of nonnegative integers gy and R we can do this. By also allowing the case
of unramified covers, it follows that gx can be expressed as a linear combination
ap + b251 where a = gy is a nonnegative integer and b = 3 (n; + 1) — 2 is either
equal to —2 or is a positive integer. Additionally, if a = 0 then b is allowed to be 0
as well. .

Theorem 1.3 tells us that (p, E;—l—) consists of all but ”—_2—&3 nonnegative in-
tegers, and that the largest integer not contained in this set is pz—_;‘m. We must
eliminate all of the genera that arise in the Frobenius problem with b = 0 and
a > 0. In particular, one cannot have curves whose genus is a multiple of p less
than p - P;—l admitting a Z/pZ-action, so we ‘lose’ 3;—3 possible genera. Moreover,
the largest such number is p- %3, which is larger than the largest number not lying
in (p, 251).

On the other hand, if b = —2 then we have the equation ¢ = (a — 1)p + 1
where a € N. Because we are only interested in the case where g > 0, this tells
us that ¢ = 1 mod p. and that any such genus can be obtained as an unramified
cover. We also note that if g = 1 mod p and g < ﬁ;"—ﬂ then g cannot be
representable as a nonnegative linear combination of p and P;—l In particular, if
g=ap+ b% then b = —2 mod p and therefore b > p — 2. But this implies that

g> (p _2)2(p =) - p2_3p+1‘ Therefore, all of the % genera which are congruent to
one are in fact new examples and exactly offset those genera lost in the previous
paragraph. This proves the theorem. |

We conclude this section by listing the values of gx that do not occur as genera
of a curve admitting a Z/pZ-action for some small values of p.

P non-genera

3 none

5 3.5

7 2,4,5,7,11,14

111 2,3,4,6,7,8,9,11,13,14,17,18, 19, 22, 24, 28, 29, 33, 39, 44

3. p-ranks

In this section, we consider the p-ranks which can occur for curves of various
genera that are defined over an algebraically closed field of characteristic p and
admit a Z/pZ-action. Our main tool will be the following fact, which follows from
the Deuring-Shafarevich formula [1]:
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LEMMA 3.1. Let X — Y be a Z/pZ-cover of curves ramified at n points, where
X has p-rank ox and Y has p-rank oy. The p-ranks are related by the formula

ox = poy +(p—-1(n-1).

It follows from the lemma that if X is a curve admitting a Z/pZ-action ramified
in at least one point then its p-rank ox is representable as a nonnegative linear
combination of p and p — 1 and if the action is unramified then ox is congruent to
1 mod p. Moreover, any such p-rank can be obtained by choosing an appropriate
Y and n. The values of ¢ that do not satisfy these conditions are given by

2,3,...,p—2,p+2,...,2p—3,2p+2,...,3p—4,...,(p—4)p+2

and in particular, there are L‘zﬂ non-p-ranks, as described by the following
theorem.

THEOREM 3.2. Let 0 = kp — s where 0 < s < p. Then there are no curves of
p-rank o which admit a Z/pZ-action if 1 <k <s<p—2.

All other values of o occur as the p-rank of some curve admitting a Z/pZ-
action, but not all possible p-ranks occur alongside all possible genera, and the
next theorem gives a condition on which pairs (g,0) can simultaneously occur as
the genus and the p-rank of a curve admitting a Z/pZ-action.

THEOREM 3.3. Let X be a curve of genus gx and p-rank ox which admits a
Z/pZ-action. Then gx —ox € (p, P;—l)

PRrROOF. Let X be a curve of genus gx and p-rank ox which admits a Z/pZ-
action ramified at n points and let Y be the quotient of the curve X by the Z/pZ-
action. One can compute from the Riemann-Hurwitz formula that gx = pgy — (p—
1)+ P—;—IR where R is the degree of the ramification divisor and in particular must
be at least 2n. Setting a = gy — oy > 0 and b = R — 2n > 0, we compute:

v p—1
gx = pgy—(P—1)+—2—R

= Doy —ov) +poy — (p— 1) + Lo (R—20) + 22 (2n)
= patox —(n-DE-1) -1+ b+ - n

-1
= pa+p—2—b+ax

-1
<p7p_2_> +ox

a

In order to prove conditions which are sufficient in addition to being necessary,
we need to show when there exists a function that has prescribed choices of R and
n. The following lemma will give some existence results in this direction.

LEMMA 3.4. LetY be a hyperelliptic curve and let R and m be integers such that
R >2m >0 and R=m (mod 2). Additionally, if m = 1 assume that R #1 (mod
p) and if m = 2 assume that R # 2 (mod p). Then there exists a function F on'Y
which has m poles of orders ny,...n,, so thatp fn; for all i and Y (n; +1) = R.
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PROOF. As in the proof of Lemma 2.3 we begin by noting that hyperelliptic
curves admit a function with a single pole of order 2 and they admit many functions
that admit two simple poles. In particular, we can look at combinations of such
functions to obtain functions with m poles that have the following ramification
types with the associated conditions on m and k

Ram. Type > (ng 4+ 1) m k
(k,k,1,...,1) 2k+2m —2 | m > 2 & even p fk
(k—1,k-1,2,2,1,...,1) | 2k+2m—2 | m>4 & even | p f(k—1)
(2k; 1,...,1) 2k+2m—1| m>1 & odd p fk
(2k—2,2,2,1,....1) |2k+2m—1|m>3&odd |p f(k—1)
This proves the lemma. (I

THEOREM 3.5. Let c =rp+s(p—1) withr >0 and s > 2. Let e =1 if s is
even and € =0 if s is odd. If g — o — ep;—l € (p,p — 1) then there exists a curve of
genus g and p-rank o admitting a Z/pZ-action.

We note that if o is sufficiently large then one can express it in the desired form
for either even or odd choices of s. Explicitly, if » > p — 1 then rp + s(p — 1) =
(r—p+1p+(s+p)(p—1) and s+ p will have opposite parity as s. Corollary 1.2
is an immediate consequence of Theorem 3.5.

PROOF. By the hypotheses, we can write gx = ap—l—b(p—1)4—7’;0—#5(13—1)4—61”—;l
for some a,b > 0. We wish to construct a curve with genus gx and p-rank o x which
has a Z/pZ-action. In order to do this, we define oy = r and gy = a+r. It follows
from [5] that there exist hyperelliptic curves of genus gy and p-rank oy; let Y be
one such curve.

It follows from Lemma 3.4 that as long as s > 2 there exists a function F' on
Y which is ramified at s + 1 points with ramification degree ny,...,ns41 so that
d(ni+1) =25+2b+2+¢. Welet X be the curve defined by the cover TP —T = F.
It follows from the Riemann-Hurwitz and Deuring-Shafarevich formulae that:

genus(X) = pgy —(p—1)+ p—;—l(Z(m +1))
= ap+rp—p+1+p%l(2s+2b+2+e)
= ap+b(p~1)+7"p—|—s(p~1)+ep_1
9x
and
prank of X = po,+ (p—1)(n—1)
= pr+(p—1)s
= ox
as desired. ; O

We note that allowing s = 0 and s = 1 would allow us to choose smaller values
of ox and therefore somewhat increase our range of allowable p-ranks. However,
this would add a congruence restriction on the ramification divisor and therefore
on the possible genera. We leave the details to the reader.
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Throughout this section, we have assumed that our base field is algebraically

closed. However, we note that the construction we give proving existence will work
over any field K of characteristic p so that there exists a hyperelliptic curve of genus
gy and p-rank oy with an appropriate number of points defined over K. In general,
the question about the minimal field over which such a curve will exist is open — in
particular, it is not even known whether curves of general genus and p-rank exist

over [, even without a restriction on the number of rational points.
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