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Latitudinal Variation in Seasonal Activity and Mortality in Ratsnakes
(Elaphe obsoleta)

Abstract
The ecology of ectotherms should be particularly affected by latitude because so much of their biology is
temperature dependent. Current latitudinal patterns should also be informative about how ectotherms will
have to modify their behavior in response to climate change. We used data from a total of 175 adult black
ratsnakes (Elaphe obsoleta) radio tracked in Ontario, Illinois, and Texas, a latitudinal distance of > 1500 km,
to test predictions about how seasonal patterns of activity and mortality should vary with latitude. Despite
pronounced differences in temperatures among study locations, and despite ratsnakes in Texas not
hibernating and switching from diurnal to nocturnal activity in the summer, seasonal patterns of snake activity
were remarkably similar during the months that snakes in all populations were active. Rather than being a
function of temperature, activity may be driven by the timing of reproduction, which appears similar among
populations. Contrary to the prediction that mortality should be highest in the most active population, overall
mortality did not follow a clinal pattern. Winter mortality did increase with latitude, however, consistent with
temperature limiting the northern distribution of ratsnakes. This result was opposite that found in the only
previous study of latitudinal variation in winter mortality in reptiles, which may be a consequence of whether
or not the animals exhibit true hibernation. Collectively, these results suggest that, at least in the northern part
of their range, ratsnakes should be able to adjust easily to, and may benefit from, a warmer climate, although
climate-based changes to the snakes' prey or habitat, for example, could alter that prediction.
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Latitudinal variation in seasonal activity and mortality 
in ratsnakes (Elaphe obsoleta) 
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Abstract. The ecology of ectotherms should be particularly affected by latitude because so 
much of their biology is temperature dependent. Current latitudinal patterns should also be 
informative about how ectotherms will have to modify their behavior in response to climate 
change. We used data from a total of 175 adult black ratsnakes (Elaphe obsoleta) radio 
tracked in Ontario, Illinois, and Texas, a latitudinal distance of > 1500 km, to test predictions 
about how seasonal patterns of activity and mortality should vary with latitude. Despite 
pronounced differences in temperatures among study locations, and despite ratsnakes in Texas 
not hibernating and switching from diurnal to nocturnal activity in the summer, seasonal 

patterns of snake activity were remarkably similar during the months that snakes in all 
populations were active. Rather than being a function of temperature, activity may be driven 

by the timing of reproduction, which appears similar among populations. Contrary to the 
prediction that mortality should be highest in the most active population, overall mortality did 
not follow a clinal pattern. Winter mortality did increase with latitude, however, consistent 

with temperature limiting the northern distribution of ratsnakes. This result was opposite that 
found in the only previous study of latitudinal variation in winter mortality in reptiles, which 

may be a consequence of whether or not the animals exhibit true hibernation. Collectively, 
these results suggest that, at least in the northern part of their range, ratsnakes should be able 
to adjust easily to, and may benefit from, a warmer climate, although climate-based changes to 

the snakes' prey or habitat, for example, could alter that prediction. 

Key words: activity; climate change; ectotherm; Elaphe obsoleta; latitude; mortality; season; snakes. 

Introduction 

Variation in climate associated with latitude affects 

many aspects of animal physiology, ecology, and life 

history (e.g., metabolism, Kendeigh 1976; home range 

size, Gompper and Gittleman 1991; predator-prey 

interactions, Sanford et al. 2003). Because so many 

aspects of ectotherm physiology are temperature depen 

dent (Huey 1982), the ecology of ectotherms should be 

particularly affected by latitude. For example, more 

frequent suboptimal temperatures, shorter active sea 
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sons, and extended hibernation result in slower growth 
with increasing latitude (e.g., Blouin-Demers et al. 2002, 

Laugen et al. 2003, Blanckenhorn and Demont 2004). 

Although latitudinal variation in ectotherm demography 
and physiology have received some attention (e.g., 

Davies and Bennett 1981, Wilson 1991, Blouin-Demers 

et al. 2002), little attention has been paid to behavioral 
variation. Changes in behavior can have important 

demographic consequences. For example, more active 

animals are more exposed to predators (e.g., Sih and 

Moore 1989, Werner and Anholt 1993, Sperry and 
Weatherhead 2009?). If animals are more active at lower 

latitudes, predation risks that are already expected to be 

higher at lower latitudes (e.g., Cody 1966, Palmer 1979, 
Fawcett 1984, Rypstra 1984) could be exacerbated. Here 
we document latitudinal variation in seasonal activity 

and mortality of black ratsnakes (Elaphe obsoleta; see 
Plate 1) in three populations that span the species' 
distribution from Ontario to Texas. 
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Plate 1. A black ratsnake {Elaphe obsoleta) in Ontario, Canada. Photo credit: G. Blouin-Demers. 

Ectotherm activity is tightly linked to temperature 
(e.g., Gibbons and Semlitsch 1987, Dalrymple et al. 

1991), so the length of their active season should vary 
with latitude. Although snakes can exercise considerable 

control over their body temperature by exploiting 
thermal heterogeneity in their environment (e.g., Bogert 

1949, Peterson et al. 1993), the amount of time each year 
that behavioral thermoregulation is feasible will decline 

with increasing latitude. Thus, at higher latitudes active 

seasons will become shorter as hibernation lasts longer. 
A less obvious effect of latitude on activity involves the 
extent to which snakes are actually active during the 

active season. Seasonal variation in activity should vary 

substantially with latitude, reflecting variation in op 

portunities for behavioral thermoregulation. Our first 

objective was to determine how seasonal activity 

patterns, and by inference the constraints on activity, 
varied with latitude. 

Latitudinal variation in both the extent of activity and 
the duration of hibernation should affect mortality. 
Even without predators being more abundant at lower 

latitudes (e.g., Cody 1966, Palmer 1979, Fawcett 1984, 
Rypstra 1984), longer active seasons should increase 

predation rates simply by increasing exposure of snakes 
to predators (Adolph and Porter 1993). To our 

knowledge no one has documented how snake mortality 

during the active season varies with latitude, but it is 

apparent that such data would be most valuable if 
collected in conjunction with data on activity. Our 

second objective was to determine whether active-season 

mortality decreases with increasing latitude, and wheth 

er mortality is higher in the most active populations. We 

have already demonstrated that within one of the 

populations, mortality increases with activity (Sperry 
and Weatherhead 2009a). 

Our final objective was to determine how winter 

mortality in ratsnakes varied across our study popula 
tions. Because latitudinal range limits of reptiles are 

thought to be determined by thermal constraints (e.g., 
Kiester 1971, Spellerberg 1972, Gregory 1982, Porter 
and Tracy 1983), it follows that winter mortality should 
increase with latitude. This could result from the risk of 

freezing and the duration of hibernation increasing with 
latitude (Gregory 1982). Total metabolic costs of 

hibernating longer could increase mortality despite 
reduced metabolic rates during hibernation. In the only 

study to examine latitudinal variation in winter mortal 

ity in reptiles, however, Wilson and Cooke (2004) found 
that at higher latitudes, daily mortality in side-blotched 
lizards decreased and overall winter mortality appeared 
to decline, which is inconsistent with thermal limitation 
of distributions and increased winter mortality at higher 
latitudes. Knowing how winter mortality varies with 

latitude is important for understanding what determines 

reptile range limits and for predicting how reptile 
populations are likely to be affected by climate change. 

Study Area and Methods 

Data were collected from 1996 to 2004 at Queen's 
University Biological Station in eastern Ontario, Can 

ada (44?34' N, 76?19' W), from 2002 to 2004 at Cache 
River State Natural Area in southern Illinois, USA 

(37?23' N, 88?54/ W), and from 2004 to 2007 at Fort 
Hood in central Texas, USA (30?10/ N, 97?45' W). The 
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Ontario and Texas sites are near the northern and 

southern limits of ratsnake distribution, respectively, 
and the Illinois site is in the middle of the latitudinal 
range. The coldest month in Texas is warmer than all 

but five months in Ontario and seven months in Illinois 
based on daily maximum temperatures, and four and 

five months, respectively, based on minimum tempera 
tures (see Supplement). Snakes in Ontario emerge from 
hibernation between mid-April and late May and return 

in late September (Weatherhead and Hoysak 1989, 
Blouin-Demers et al. 2000). In Illinois snakes emerge 
from hibernation from early April to early May and 
return in October (Carfagno and Weatherhead 2008). 
Ratsnakes in Texas are active on warm days throughout 
the year (see Results). 

Although we refer to ratsnakes at our three study sites 

as populations, the taxonomy of ratsnakes is unclear 

(see Burbrink et al. 2000, Burbrink 2001, Gibbs et al. 

2006). What is important for our purposes, however, is 

that our study "populations" are closely related and 

ecologically similar. Two potentially important differ 
ences among the populations are that during winter 

ratsnakes in Texas do not hibernate, although they alter 
habitat use (Sperry and Weatherhead 20096), whereas 
ratsnakes in both Illinois and Ontario hibernate, and 
that ratsnakes in Ontario and Illinois are exclusively 
diurnally active, but in Texas switch from being 
diurnally to nocturnally active during summer (J. 

Sperry, unpublished data). 
Data on activity and mortality were collected using 

radiotelemetry. For Ontario, we used activity data from 

snakes tracked from 1996 to 1999, using the same 
methods used at the other two sites. We expanded our 

survival data by including snakes tracked in 2001-2004 
that provided mortality but not activity data. In Ontario 
and Illinois, snakes were caught as they emerged from 

communal hibernacula in spring and opportunistically 

throughout the season. In Texas, ratsnakes were caught 

only opportunistically. At all sites, transmitters weighed 
<3% of snake body mass, transmitters were surgically 

implanted (Reinert and Cundall 1982, Blouin-Demers 
and Weatherhead 2001), and snakes were released at 

their capture locations. Transmitters weighed 9 or 13 g 

with batteries lasting 12 and 24 months, respectively 
(Model SI-2T, Holohil Systems, Carp, Ontario, Cana 

da). Snakes were relocated approximately every 48 h and 
date and location (UTM coordinates) were recorded. 

Temperature data were obtained from weather 

stations at Queen's University Biological Station, 
Ontario; Carbondale, Illinois; and Fort Hood, Texas. 

All weather stations were <40 km from snake study 
areas. 

Statistical analysis 

We used the straight-line distance between snake 

locations as our index of activity. Distance moved and 

frequency-of-movement are positively correlated in rat 

snakes (Sperry and Weatherhead 2009#). Distance 
moved was calculated using Hawth's Analysis Tools 

(Beyer 2004) in ESRI ArcGIS version 9 (Environmental 
Systems Research Institute, Redlands, California, 
USA). We excluded commuting movements to and 
from hibernacula, which can be atypically long when 
hibernacula are not part of an individual's home range 

(Blouin-Demers and Weatherhead 2002). We also 
excluded snakes tracked <50% of the active season. 

All analyses were performed on data averaged for 

individual snakes over the appropriate time period (i.e., 

hour, day, month). Relationships between monthly 
snake activity and mean daily maximum temperatures 

were analyzed using linear regression. Snake activity was 

compared among populations using ANOVA. All 
means are presented ? SE. 

All snakes, including those removed from activity 
analyses due to small sample sizes, were included in 
survival analyses. Snakes were considered dead if we 

found a carcass or transmitter alone, although we 

cannot rule out transmitter expulsion (Pearson and 

Shine 2002) for those with no associated carcass. Snakes 
were considered alive (survived) if they were alive at 

completion of the study or if we removed the 
transmitter. For some snakes the transmitter signal 

was lost permanently. This could result from transmitter 

failure, or could indicate mortality (e.g., the snake was 

carried out of the study area by a predator). Results 
were qualitatively the same if these snakes were assumed 

to be alive or assumed to have died, so we present only 
the former. Daily mortality was calculated as the 

number of mortalities/total observation days. Annual 

mortality was calculated as number of mortalities/total 
observation years, where observation years is total 

observation days/365. For snakes that died in hiberna 

tion, we assumed that death occurred midway between 

when the snake entered the hibernaculum and mean date 

that other snakes emerged from that hibernaculum. 

Survival is considered 1 ? mortality. Based on hiberna 

tion periods for Ontario and Illinois and activity 
patterns for Texas (see Results), we considered the 

active season to be May through September for Ontario, 

April through October for Illinois, and April through 
November for Texas. These boundaries are somewhat 

arbitrary in that ingress and egress from hibernacula is 
not highly synchronous. 

Results 

Activity analyses were based on 50 ratsnakes (37 
females and 13 males) with a mean of 56.1 ? 5.20 
locations per snake in Ontario, 19 ratsnakes (9 females 
and 10 males) with a mean of 44.8 ? 5.11 locations per 

snake in Illinois, and 57 ratsnakes (25 females and 38 

males) with a mean of 129.8 ? 11.71 locations per snake 

in Texas. Only adult ratsnakes were included in 
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Fig. 1. Monthly activity of ratsnakes, Elaphe obsoleta (distance traveled, mean ? SE) for (A) females and (B) males at Fort 
Hood, Texas (2004-2007), Cache River State Natural Area, Illinois (2001-2004), and Queen's University Biological Station 
Ontario (1996-2000). 

analyses. Although Illinois snakes were slightly larger 
than Texas and Ontario snakes (snout-vent length 

= 

126.74 ? 3.53 cm, 120.11 ? 1.99 cm, and 117.19 ? 2.12 
cm, respectively; F2,122 

= 
2.69, P = 

0.07), size of snake 

and distances traveled were not correlated (R2 
= 

0.13) 
and so should not affect activity comparison among 
populations. For activity analyses, we included only 
months in which we had activity data at all three sites 
(May-September). Averaged by individual snake, over 

all distances (meters) traveled by females were shorter in 
Canada compared to Illinois and Texas (31.29 ? 3.17 m, 
44.17 ? 6.44 m, and 47.22 ? 4.12 m, respectively; F2,65 

= 

5.20, P < 0.01), whereas distances traveled by males 
were similar among populations (40.40 ? 4.91 m, 54.12 
? 5.59 m, and 46.87 ? 2.99 m, respectively; F2,56 

= 
1-70, 

P = 
0.19). Contrary to the expectation that seasonal 

activity would vary substantially with latitude, activity 
profiles across the three populations were remarkably 
similar (Fig. 1). For females in both Ontario and Illinois, 
activity peaked in May and July and then declined 
thereafter, whereas activity of females in Texas peaked 

only in May. For males, we did not have sufficient data 
for May in Ontario, but all three populations peaked in 
early summer and declined thereafter. The early summer 

peak in activity did not coincide with the peak in 
ambient temperature, which occurred in July for both 

Illinois and Ontario and in August in Texas. Monthly 
activity was negatively related to temperatures during 

the active season in Texas (R2 = 0.30, P = 0.02) but not 
related to temperature for the other sites (Ontario R2 < 

0.01, P = 0.91 and Illinois R2 < 0.01, /> = 0.99). 
Eighty-nine snakes (28 males and 61 females) were 

included in survival analyses for Ontario, 23 snakes (12 
males and 11 females) for Illinois, and 63 snakes (38 
males and 25 females) for Texas. Overall yearly survival 
rates were highest in Illinois (0.73, 95% CI = 0.52-0.89) 
followed by Ontario (0.62, 95% CI = 0.50-0.73) and 
Texas (0.57, 95% CI = 0.39-0.73). This pattern was the 
same when we examined males and females separately 

(Illinois, 0.83 and 0.68, respectively; Ontario, 0.71 and 
0.56, respectively; Texas, 0.66 and 0.34, respectively). 
That trend was also apparent during the active season, 
which is not consistent with the prediction that active 
season survival should increase with latitude. 

Winter mortality patterns were consistent with the 

expectation that winter mortality should increase with 

latitude. Winter mortality was highest in Ontario (16 
deaths; survival - 

0.75, 95% CI = 
0.61-0.86) and 

intermediate in Illinois (1 death; survival = 0.92, 95% 
CI = 0.77-0.99), with no winter mortality recorded in 
Texas. Four deaths in Ontario during winter were 

aboveground predation immediately prior to or follow 
ing hibernation. The rest occurred while snakes were 

hibernating. Winter accounted for 37% of Ontario 
deaths, 12.5% of Illinois deaths, and none of the deaths 
in Texas (Fig. 2). 
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Fig. 2. (A) Annual survival rates during the winter and active seasons at Fort Hood, Texas (2004-2007), Cache River State 
Natural Area, Illinois (2001-2004), and Queen's University Biological Station, Ontario (1996-2004). Error bars are 95% CI. Active 
season was considered to be May through September for Ontario, April through October for Illinois, and April through November 
for Texas. Survival rates are based on 22 712 winter and 18 041 summer observation days in Ontario; 5280 winter and 5517 summer 
observation days in Illinois; and 4815 winter and 15420 summer observation days in Texas. (B) Percentage of mortalities that 
occurred in winter vs. active seasons at Fort Hood, Texas (2004-2007), Cache River State Natural Area, Illinois (2001-2004), and 

Queen's University Biological Station, Ontario (1996-2004). 

Discussion 

As North American ratsnakes expanded their range 
northward following the last glaciation, their seasonal 

activity pattern appears to have remained highly 
conserved. The pattern in Illinois looks like that in 
Texas but with November to March removed. Further 

removal of October and April produces the pattern in 
Canada. The similarity among populations is all the 
more remarkable given climate differences among sites 

and the fact that ratsnakes in Texas do not hibernate 

and switch from diurnal to nocturnal activity during 
summer. We did find pronounced differences in mortal 

ity patterns among ratsnake populations, however. We 

did not find the predicted latitudinal cline in overall 

predation rate, but winter mortality increased substan 

tially from Texas to Ontario. We first consider why 
seasonal activity is so conserved in ratsnakes and then 

address the links between activity and mortality and the 
broader implications of our results. 

Our expectation that patterns of activity would vary 

latitudinally was based on temperature being of general 

importance to ectotherms. However, monthly activity 
was related to temperature only for the Texas popula 

tion, where activity peaked in May when temperatures 
were mild and then declined as temperatures increased. 

Activity also peaked in May for ratsnakes in Illinois and 
Ontario, even though temperatures peaked later in the 

summer but remained well below the hotter conditions 

associated with reduced activity in Texas. If seasonal 

activity is not simply a function of temperature, at least 

in Illinois and Ontario, some other factor that varies 

seasonally must underlie activity. Snakes in each 

population presumably use behavioral thermoregulation 
to maintain activity levels necessary to meet those other 

seasonal needs. Reproduction is a likely candidate for 

what that seasonal need might be. In Ontario, ratsnakes 

mate between 15 May and 30 June, which coincides with 
the peak in activity (Blouin-Demers and Weatherhead 

2002). The timing of reproduction is less well docu 
mented for the other two populations, but the available 
evidence indicates that mating also occurs in spring 
(April-June) in both Illinois (Carfagno and Weather 
head 2008) and Texas (Sperry and Weatherhead 2009a). 

An implication of the snakes being most active during 
the mating season is that, following mating, the snakes 
become less active than thermal conditions would allow. 

Given that activity increases mortality risks in ratsnakes 

(Sperry and Weatherhead 2009a), the decline in activity 
following mating may reflect the snakes balancing 
foraging with survival (Lima and Dill 1990). We had 

predicted that active season mortality should increase 

from Ontario to Texas because longer active seasons 

should increase overall exposure to predators (Adolph 
and Porter 1993). Also, predators are expected to be 
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more abundant at lower latitudes (e.g., Cody 1966, 

Palmer 1979, Fawcett 1984, Rypstra 1984). In fact, 
mortality rates were similar in Ontario and Texas and 

lower in Illinois. Studies of lizards over latitudinal 

(Wilson 1991) and altitudinal (Sears 2005) gradients also 
failed to find that mortality increased as active seasons 
became longer. Failure of the prediction suggests that 

factors relevant to the activity-mortality trade-off (e.g., 

prey availability, predator abundance) affect mortality 
much more than does latitude. 

We did find that winter mortality increased from 
Texas to Ontario, as expected if climate limits northern 

distributions of reptiles (e.g., Kiester 1971, Spellerberg 
1972, Gregory 1982, Porter and Tracy 1983). This result 
also suggests that any advantage from reduced meta 

bolic rates during winter at higher latitudes (Gregory 
1982, Zani 2008) was minor compared to having to 

hibernate longer. Our result for ratsnakes is opposite 

that found by Wilson and Cooke (2004) for side 
blotched lizards. This may be explained by differences in 
winter ecology of the two species. Wilson and Cooke 

(2004) interpreted winter mortality as most likely 
resulting from predation on active lizards. The decline 

in mortality at higher latitudes resulted from those 

populations being less active in winter and, therefore, 

less exposed to predators. Ratsnakes in Texas are similar 

to side-blotched lizards in that they did not hibernate 
but just became inactive during cold weather. In Illinois 
and Ontario, however, the snakes stayed below ground 

throughout the winter and few winter mortalities were 

attributable to predation. Therefore, to the extent that 

one can generalize from these two studies, the nature of 

the latitudinal gradient in winter-mortality in ectotherms 

may depend on whether the animals actually hibernate 
or just limit activity to warmer days. In the former case 

mortality will be driven by abiotic factors (i.e., climate) 
and increase with latitude whereas in the latter case 

biotic factors (i.e., predation) will determine mortality. 
Reptiles are thought to be at considerable risk from 

climate change (Gibbons et al. 2000). However, given 
the highly conserved active season we documented in 

ratsnakes, a likely response to climate warming would be 

lengthening of the active season for northern popula 

tions, but no change in the general pattern of activity. 
Southern populations may shift their active seasons to 

earlier in the year to take advantage of milder 

temperatures. Additionally, assuming the switch from 

diurnal to nocturnal activity is entirely facultative, 
southern populations could respond to a warmer climate 

by increasing the proportion of the active season that 

they are active at night. Warmer temperatures should 

reduce winter mortality in northern populations, which 

should allow ratsnakes to expand their range northward. 

Of course, these simple projections do not consider how 

climate change might affect ratsnakes' predators, their 

prey, or their habitat, changes in any of which could 

potentially complement or cancel any direct effect of 

temperature on ratsnakes. 
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SUPPLEMENT 
A data file of daily minimum and maximum air temperatures at Fort Hood, Texas, USA (2004-2007), Carbondale, Illinois, 

USA (2001-2004), and Queen's University Biological Station, Ontario, Canada (1996-2000) (Ecological Archives E091-123-S1). 
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