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Parity Violation in 232Th Neutron Resonances Above 250 eV

Abstract
The analysis of parity nonconservation (PNC) measurements performed on 232Th by the TRIPLE
Collaboration has been extended to include the neutron energy range of 250 to 1900 eV. Below 250 eV all ten
statistically significant parity violations have the same sign. However, at higher energies PNC effects of both
signs were observed in the transmission of longitudinally polarized neutrons through a thick thorium target.
Although the limited experimental energy resolution precluded analysis in terms of the longitudinal
asymmetry, parity violations were observed and the cross section differences for positive and negative neutron
helicities were obtained. For comparison, a similar analysis was performed on the data below 250 eV, for
which longitudinal asymmetries were obtained previously. For energies below 250 eV, the p-wave neutron
strength functions for the J=1/2 and J=3/2 states were extracted: S1/21=(1.68±0.61)×10-4 and S3/

21=(0.75±0.18)×10-4. The data provide constraints on the properties of local doorway states proposed to
explain the PNC sign effect in thorium.
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The analysis of parity nonconservation~PNC! measurements performed on232Th by the TRIPLE Collabo-
ration has been extended to include the neutron energy range of 250 to 1900 eV. Below 250 eV all ten
statistically significant parity violations have the same sign. However, at higher energies PNC effects of both
signs were observed in the transmission of longitudinally polarized neutrons through a thick thorium target.
Although the limited experimental energy resolution precluded analysis in terms of the longitudinal asymme-
try, parity violations were observed and the cross section differences for positive and negative neutron helici-
ties were obtained. For comparison, a similar analysis was performed on the data below 250 eV, for which
longitudinal asymmetries were obtained previously. For energies below 250 eV, thep-wave neutron strength
functions for theJ51/2 andJ53/2 states were extracted:S1/2

1 5(1.6860.61)31024 andS3/2
1 5(0.7560.18)

31024. The data provide constraints on the properties of local doorway states proposed to explain the PNC
sign effect in thorium.

PACS number~s!: 24.80.1y, 25.40.Ny, 27.90.1b, 11.30.Er

I. INTRODUCTION

The Time Reversal Invariance and Parity at Low Energy
~TRIPLE! Collaboration discovered@1,2# an unexpected sign
correlation in the longitudinal asymmetries of the232Th
p-wave neutron cross sections measured with polarized neu-
trons. The longitudinal asymmetries,p, are defined by

s6~E!5sp~E!~16p!, ~1!

wheres6(E) is the neutron cross section for the1 and –
neutron helicity states, andsp(E) is the p-wave resonance
cross section for unpolarized neutrons. The cross section de-
pends on the energyE, neutron widthGn , total widthG, and
resonance energyE0, while the asymmetryp is constant for

a given resonance with the value depending on the specific
resonance parameters and the weak matrix elements between
the compound states. The parity nonconservation~PNC! ef-
fects result from mixing~by the weak interaction! of com-
pound states with different parity and the same spin. For
232Th ~a target with spin I5 0! s-wave neutrons excite states
with spins J51/2, while p-wave neutrons~orbital angular
momentuml 51) excite compound states with spinsJ51/2
and J53/2. Parity violation may occur only in theJ51/2
resonances. Although there have been no direct measure-
ments to determine the spins of thep-wave resonances in
thorium, the PNC data serve to assign spinJ51/2 to those
resonances that show parity violation.

The sign correlation effect in thorium was confirmed in a
recent measurement@3# which shows ten statistically signifi-
cant asymmetries below 250 eV, all with positive sign~the
same as the sign of the PNC effect at 0.74 eV in139La). This
is unexpected, since the longitudinal asymmetry is presum-
ably @1,4# a mean zero Gaussian variable. Numerous theoret-
ical attempts were made to explain this nonstatistical effect.
The early attempts focused on distant doorway states; all
failed because these explanations required a weak single par-
ticle matrix element at least two orders of magnitude larger
than consistent with all other information. These efforts are
summarized by Stephensonet al. @3#. More recent attempts
to explain the sign correlation effect have invoked local
doorways@5–8#. At present there is no generally accepted
explanation for the sign effect. Many of the theoretical dis-
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cussions emphasize the need for PNC data at higher energies
in thorium, in order to constrain the properties of the hypo-
thetical doorways.

With the improved sensitivity of the TRIPLE experimen-
tal system, and extension of the measurement to higher en-
ergies, one might expect to observe PNC effects above the
highest previously observed parity violating resonance at 232
eV. The standard analysis procedure to obtain the asymme-
tries p relies on knowledge of the resonance cross sections
sp(E). However, such an analysis is unreliable at higher
energies since the limited experimental resolution obscures
manyp-wave resonances. Due to the large interest in the sign
correlation effect, the TRIPLE Collaboration published the
improved lower energy data@3# ~where a complete analysis
was possible!, and decided to consider the remaining higher
energy data separately. In Stephensonet al. @3# a cutoff en-
ergy of 285 eV was adopted—of course the choice of a spe-
cific cutoff energy is somewhat arbitrary. In the present pa-
per the data above 250 eV are presented. These data are
analyzed in terms of the PNC cross section differences
Ds(E)5s1(E)2s2(E), instead of the asymmetriesp.

II. PNC TRANSMISSION ASYMMETRIES:
Ds EXTRACTION

In the present analysis it is important to distinguish be-
tween the ~ideal! Breit-Wigner cross section difference
Ds(E), the Doppler-broadened cross section difference
DsD(E), and the resolution-broadened cross section differ-
ence DsR(E). The last quantity is related directly to the
PNC transmission experiment, while the quantityDs(E),
which is convenient for theorists@9,10#, must be determined
indirectly from DsR(E). The experiment measures the PNC
transmission asymmetry,e, which is the relative difference
in the detector yield due to the neutron spin flip. Since the
asymmetry is small,e(E) can be related~see, for example,
Refs.@4,11#! to DsR(E) by

e~E!5
Yn f~E!2Yf l~E!

Yn f~E!1Yf l~E!
>2

n

2
f nDsR~E!. ~2!

Here Ynf(E) and Yfl(E) are the detector yields for the non-
flipped ~NF! and flipped~fl! states of the spin flipper device,
n is the number of nuclei per cm2 in the target, andf n is the
neutron beam polarization at the entrance of the spin flipper.
Changing the sign off n , while maintaining the same condi-
tions for the spin flipper and the data acquisition system,
provides a sensitive method to determine whether an ob-
served effect is real or a statistical artifact—a true PNC ef-
fect will show a change in sign while an artifact will not. The
key point is that Eq.~2! provides the tool to perform the
analysis without knowledge of the resonance parameters. Al-
though precise information onp cannot be obtained with this
approach, one can estimate the size ofp by using calculated
values of the average peak cross sections. The essential point
is that even if thep-wave resonances themselves are not
observed, one can still under favorable circumstances ob-
serve PNC effects, and determine their sign and approximate
magnitude.

For simplicity we shall consider only peak effects: all
energy dependent quantities in Eq.~2! will be evaluated at
the p-wave resonance energyE5E0. The general convolu-
tion form for the cross section is

sR~E!5E sD~E8!R~E,E8!dE8, ~3!

where R(E,E8) is the instrumental response function~dis-
cussed below! and sD(E8) is the Doppler-broadened cross
section~see Lynn@12#!. The peak cross section can be re-
written as

sR~E0!5sD~E0!r DR~E0!. ~4!

Conversely, ifr DR is known, the deconvoluted Doppler peak
cross section is

sD~E0!5r DR
21~E0!sR~E0!. ~5!

In its turn, the deconvoluted Breit-Wigner peak cross section
is

s~E0!5r sD
21~E0!sD~E0!. ~6!

Combining Eqs.~5! and ~6! gives the basic equation for our
analysis:

s~E0!5r sD
21~E0!r DR

21~E0!sR~E0!. ~7!

In our case, the functionr DR
21(E0) can be approximated~see

discussion below! by

r DR
21~E0!50.610.02E0~eV!, ~8!

while the functionr sD
21(E0) is well known in an analytical

form ~see Lynn@12#!

r sD
21~E0!51/„aAp expa2~12erfa!…,

with

a5G/2DD~E0!, ~9!

where the square of the Doppler width isDD
2

54E0(kTeff)/A, with Teff the effective temperature@13# and
A the mass number.

III. EXPERIMENTAL METHOD

A. Apparatus

The measurements@3# were performed by the TRIPLE
Collaboration at the spallation pulsed neutron source@14# of
the Manuel Lujan, Jr. Neutron Scattering Center at the Los
Alamos Neutron Science Center. A detailed up-to-date de-
scription of the experimental setup and the measurement pro-
cedure is provided in Refs.@3,15#. Here we note only a few
key features of the PNC apparatus that are relevant for our
analysis. The neutron beam was longitudinally polarized
(u f nu.70%) by transmission through a polarized proton tar-
get developed by Penttila¨ et al. @16#. The proton polarization
direction~and correspondingly the sign off n) relative to the
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polarizing magnetic field was reversed every few days. The
neutron spin direction was reversed every 10 s by an adia-
batic spin flipper devised by Bowman, Penttila¨ and Tippens
@17#. The 232Th sample hadn53.4031023 nuclei/cm2. To
reduce the Doppler resonance broadening, the sample was
cooled to 77 K by a liquid-nitrogen chiller. The chiller was
placed at the exit of the spin flipper. Neutrons transmitted
through the sample were counted at 56.7 m by a large area
10B-loaded liquid scintillation detector@18#, using a digital-
current mode signal processing circuit and the time-of-flight
~TOF! technique. TheYn f andYfl detector yields were accu-
mulated by the acquisition system in 30-min ‘‘runs’’ and
stored on a disk in nonflipped (n f) and flipped~fl! data areas
each containing 8192 TOF channels of width 100 ns. Both
data areas were in turn subdivided, into good~stable-beam!
and bad~unstable-beam! areas. The sorting was achieved by
monitoring the flux after each neutron burst and checking
against the average flux 20 times per run. If the flux deviated
by more than 8% from the average, the data were labeled
‘‘bad.’’ The entire run was discarded from the analysis if the
data in bad areas were more than 50% of the total data. Runs
with chiller malfunctions~when the target temperature was
higher than 80 K! were rejected as well. Finally, for this
analysis, 147 runs were selected and their good data areas
were summed for subsequent analysis using Eq.~2!.

B. Resolution function and the deconvolution procedure

A crucial aspect of our analysis is the use of the measured
instrumental TOF response functionR(E,E8) of our experi-
mental system. The instrumental response depends upon the
flight path length, the shape of the neutron pulse after the
moderator, and the timing characteristics of the detector and
electronics. This function has been studied in detail@15,19#
and was implemented in the codeFITXS @20#, which was
written specifically to obtain the asymmetriesp from the
TOF spectra. With this code we calculated transmission
through our sample at different resonances with and without
the R(E,E8) function. We used as input the Doppler-
broadened total cross sections obtained from resonance pa-
rameters of theENDF data file for 232Th @21#. Figure 1@22#
presents the cross section in the energy region 210 to 310
eV. The p-wave resonances are extremely weak, and there
ares-wave interference minima which provide high intensity
transmission maxima in the detector yield. Such energy
‘‘windows’’ in the vicinity of s-wave resonances are optimal
for finding nonzeroe—the background cross section is
smaller and the dynamic enhancement factor@4# is large be-
cause thes- and p-wave resonances are close in energy. A
thick sample helps to amplify the size of an isolated weak
resonance in transmission, but the poor resolution makes the
weakp-wave peaks almost invisible on the high level of the
surrounding ‘‘background.’’

An example of the calculated transmission for a relatively
strongp-wave resonance at 302.4 eV is shown in Fig. 2 both
for the idealized case~with no interferings-wave resonances
and with perfect resolution! at the bottom and with a realistic
resolution function at the top. This comparison was per-
formed for a number of resonances that satisfied the condi-

tion nsD(E0)<1.0. From these data we obtained values of
r DR

215sD(E0)/sR(E0) for a range ofE0. We found the linear
function of Eq.~8! to be a good representation forr DR

21 above
;50 eV. Below the energy of;100 eV, the peak deconvo-
lution begins to depend progressively on thep-wave reso-
nance parameters. Above the energy of;100 eV, the instru-
mental width (DE)R dominates over the Doppler widthDD ,
and therefore forp-wave resonances, which are experimen-
tally observed, the ratiosD(E0)/sR(E0) is practically inde-
pendent of the resonance parameters. The linear dependence
for r DR

21 is expected then, sincer DR
21 behaves approximately as

the ratio (DE)R /DD ; in our case (DE)R.0.2431023EAE,

FIG. 1. The Doppler broadened total cross section calculated
from the ENDF data, Ref.@21#, for 232Th in the energy range 210 to
310 eV. Plot produced by the T2 web server http://t2.lanl.gov/ using
the programNJOY of MacFarlaneet al.

FIG. 2. Calculated transmission through the thorium sample due
to the 302.4-eVp-wave resonance for perfect resolution~bottom!
and with a realistic resolution function~top!.
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while DD50.011AE. Of course, the available TOF resolu-
tion sets the minimal value of the neutron width which can
be observed at a given energy, e.g.,gGn;0.03 meV @or
sp(E0);10 b# at 300 eV in our case.

There remains the question—under what conditions can
this procedure forcross sectionsbe applied toDsR(E) in
Eq. ~2!. From the yield definition in Eq.~2! for an isolated
p-wave resonance, it is clear that if the resonance transmis-
sion exp(2nsD) goes to zero~and therefore neutrons are not
detected!, then theDsD contribution toe from the central
region nearE5E0 will be suppressed in the instrumental
convolution. To keep the systematic uncertainty of the de-
convolution procedure below 10%, one should use a sample
with nsD(E0)<1.0 for all p-wave resonances. In light of
this requirement, our232Th sample (nss54.4 for the poten-
tial scattering cross sectionss513.0 b!, was not optimal for
the high energy study. We stress that the apparent suppres-
sion of the weakp-wave peaks on the large ‘‘background’’
count rate may not occur for the difference of the detector
countsYnF(E)2Yfl(E). In a case of an ideal statistics, the
count rate differenceYnF(E)2Yfl(E) is expected to be large
only nearp-wave resonances that show a PNC effect.

IV. DATA AND RESULTS

A. PNC transmision asymmetry data

The neutron TOF yields and the PNC transmission asym-
metries for selected energy regions are shown in Figs. 3–7.

All of these figures show the background-unsubtracted spec-
tra with the TOF-channel axis converted to the neutron en-
ergy scale. The 167.1-eV resonance shown in Fig. 3 is an
example from our low energy data. The peak value of the
asymmetry is quite large. The well-developed low energy tail
of the transmission asymmetry is a characteristic feature of
the TOF resolution function. The next example, Fig. 4, pre-
sents data near the 302.4-eVp-wave resonance. The trans-
mission dip for this resonance is stronger than for the 167-eV
resonance, and is situated near the interference maximum in
the yield due to thes-wave resonance at 306 eV~note the
strong dip on the right-hand side!. However, the transmission
asymmetries for the 167- and the 302.4-eV resonances are
very different: the 302.4-eV resonance has a smaller asym-
metry with a negative sign. Yield and transmission asymme-
try 232Th spectra near the 687-eV resonance are shown in
Fig. 5. This resonance is on the interference yield maximum
from the 688.0-eVs-wave resonance@21,24#. Aside from the
three points on the tail, the asymmetric shape is typical of the
TOF-resolution function for this energy region. This is a
clear case of a newp-wave resonance. There is an additional
small cusp that reverses sign just as a longitudinal asymme-
try does. However, its width is too narrow to be a real PNC
effect and therefore it is most likely to be an artifact. Yield
and transmission asymmetry232Th spectra near 1517 eV are
shown in Fig. 6. There is a knownp-wave resonance at
1516.5 eV@21,24#, that is situated at the interference yield
maximum due to the 1519.6- and 1525-eVs-wave reso-
nances, which are visible as one broad dip in the yield spec-

FIG. 3. Sample yield and transmission asymmetry232Th spectra
near the 167.1-eV resonance for positive~top! and negative~bot-
tom! polarizations of the proton target. The TOF scale is converted
to the neutron energy scale. The yield is the sumYnF(E)1Yfl(E)
and the asymmetry is defined by Eq.~2!.

FIG. 4. Yield and transmission asymmetry232Th spectra near
the 302.4-eV resonance for positive~top! and negative~bottom!
polarizations of the proton target.
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tra. Finally, spectra in the energy region 1800–2100 eV are
shown in Fig. 7. The asymmetries again occur at the inter-
ference maxima in the yield. The first effect corresponds to
the known 1898.4-eVp-wave resonance@21,24#, while the
second effect corresponds to a newp-wave resonance.

B. Experimental results

The results fore and Ds are listed in Table I together
with Dsp andsp calculated with Eq.~1! from thep values
and resonance parameters reported in Refs.@3,21#. The re-
sults are presented only for resonances with an observed
PNC effect. The resonance at 8.36 eV was not in the energy
range of our data taken with 100-ns TOF width. Errors
shown fore andDs are the statistical errors. The data in the
fourth column stops at the last PNC effect reported in Ref.
@3#. The last column in Table I lists the average peak reso-
nance cross section̂sp1/2(E)& calculated in the framework
of the statistical model in two steps. First, theJ51/2 com-
ponent of the energy averagedp-wave resonance cross sec-
tion ^s1/2

1 & was obtained from

^s1/2
1 ~E!&>2p2R2AE/~1 eV!S1/2

1 , ~10!

which is a good approximation to the exact expression@23#
for our energy region. HereR51.35A1/3 fm is the neutron-
nucleus interaction radius@24#, E is the energy in eV, and
S1/2

1 is the p-wave neutron strength function for resonances

with spins J51/2. Next, thep1/2 average peak resonance
cross sections were calculated from ^sp1/2&
52^s1/2

1 &Dp1/2/(pG). We used the valuesG524.5 meV,
Dp1/2517 eV ~the same as thes-wave level spacingDs1/2),
and S1/2

1 51.6860.6131024. The latter value was obtained
for energies below 285 eV, according to the definitionS1/2

1

5^Gn1/2
1 &/Dp1/2, using the observed resonance parameters

from Ref.@3#, and theJ51/2 spin assignment for resonances
with statistically significant PNC asymmetries. The other
p-wave resonances have a smaller value ofS3/2

1 5(0.75
60.18)31024 for theJ53/2 strength function. Comparison
of Ds with Dsp for resonances below 250 eV shows that the
two analysis methods agree for all but the two resonances at
128.17 and 196.20 eV. For these resonances the new values
are approximately a factor of 2 smaller. Comparing the peak
cross sectionssp with the expected averaged valuessav, we
note that these two resonances are the strongestp-wave reso-
nances, and as discussed above, suppression of theDs con-
tribution is expected. The observed resonance peak cross
sections fluctuate because they are proportional to the neu-
tron widths, which obey the very broad Porter-Thomas dis-
tribution. Therefore, we underestimateDs by a factor of 2
for resonances which are several times stronger than the av-
erage value at the corresponding energy.

C. Matrix elements

For several reasons we believe that the newly observed
asymmetriese are true PNC effects. The values ofe(E

FIG. 5. Yield and transmission asymmetry232Th spectra near
the 687-eV resonance for positive~top! and negative~bottom! po-
larizations of the proton target.

FIG. 6. Yield and transmission asymmetry232Th spectra near
the 1517-eV resonance for positive~top! and negative~bottom! po-
larizations of the proton target.
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5E0) are statistically significant. The fact thate(E5E0)
changes sign for positive and negative proton polarizations is
a very strong argument in favor of the effects being true PNC
effects and not statistical accidents. The cases at the 302.4,
1517, and 1898 eV correspond to knownp-wave resonances
at 302.6, 1516.6, and 1898.4 eV, respectively@21,24#. Al-
though only the 302.4-eV resonance is observed in the
summed TOF spectrumYn f1Yfl because of the high count
level in the vicinity and the poor resolution, the new reso-
nances are observed in the yield differenceYn f2Yfl due to
their apparent PNC effect.

In order to consider whether the newDs values are con-
sistent with our lower energy data in thorium, we determined
the weak matrix elementsu using the two-level approxima-
tion. Thes-wave resonance~at energyEs) that is closest to
the PNC effect was assumed to be responsible for the entire
effect. Using Eq.~1! and the widely used expressionp
52uAGn

s/Gn
p/(Es2E0) @4#, we obtain

Ds~E5E0!516pR2uAGn
0Gn

1/@k1R~Es2E0!G#, ~11!

whereGn
0 and Gn

1 are the reduced neutron widths of thes-
and p-wave resonances,k1 the neutron wave number atE
51 eV,G the total width of thep-wave resonance, andu the
weak matrix element. For the newp-wave resonances, for
which there are no measured widths, we estimatedGn

1 from
the corresponding average peak cross section given in Table
I. The results for individual matrix elementsu are 0.15, 0.35,
2.0, 1.8, 1.7, and 8 meV for the resonances at 250, 302.4,
687, 1517, 1898, and 1967 eV, respectively. The same pro-
cedure applied to resonances below 250 eV gave individual
matrix elements in the range 0.5 to 5.0 meV, with an average

FIG. 7. Yield and transmission asymmetry232Th spectra near
the 1898-eV and 1967-eV resonances for positive~top! and nega-
tive ~bottom! polarizations of the proton target.

TABLE I. Longitudinal transmission asymmetriese, PNC cross section differencesDs, and resonance
cross sections for232Th.

E0 ~eV! e (1023) Ds ~mb! Dsp ~mb!a sp ~b!a ^sp1/2& ~b!b

8.36c 12166 3.39 2.9
38.23 3.5060.25 156611 172619 1.34 6.2
47.07 3.3060.20 180611 197615 3.92 6.9
64.57 4.4160.18 332613 368625 1.30 8.0
98.06 0.5460.16 67620 65620 4.64 9.9

128.17 6.3260.35 1210668 30636260 66.3 11.3
167.11 2.3760.09 581622 9576105 14.9 13.0
196.20 0.9060.27 265680 6826150 37.9 14.0
202.58 0.9560.15 310650 4866130 22.1 14.2
231.95 1.3060.13 470650 445689 4.66 15.3
250.0 20.2760.05 2110620 – 15.8
302.4 20.5860.06 2320633 49d 17.4
687.2 3.0060.10 52506180 26.3

1517 0.7060.04 36506210 115d 39.0
1898 20.5060.13 236006900 213d 43.6
1967 20.8060.08 263106630 44.4

aCalculated from data of Ref.@3#.
bCalculated with the use ofS1/2

1 .
cNot analyzed in this work.
dCalculated from data of Ref.@21#.
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value of 1.8 meV. The detailed likelihood analysis of the set
of longitudinal asymmetries$p%E for resonances below 250
eV gave the value of the root-mean-square matrix element of
(1.5820.31

10.44) meV @3#. Therefore theDs values for the six
new PNC effects in232Th are completely consistent with
those obtained from the PNC effects at lower energy in
232Th.

V. CONCLUSION

In summary, we again emphasize that the experimental
conditions for these measurements~the flight path, detector,
and sample thickness! were not optimized for the neutron
energy region that we have analyzed here. In particular, the
energy resolution was poor. The energy regions that are sen-
sitive to the observation of PNC effects are very limited—
only those regions near thes-wave interference cross section
minima. In those regions we observed four negative and two
positive statistically significant longitudinal transmission
asymmetries. Three of these correspond to known resonances
and three others to newp-wave resonances in232Th. The
longitudinal transmission asymmetriese were converted to
PNC differences of thep-wave resonance peak cross sections
Ds. The systematic uncertainty due to this conversion is
about 15% for those resonances whose strength is less than
or equal to the average strength in232Th. For stronger reso-
nances, theDs value could be as much as twice as large.
The size of the PNC asymmetries observed at high energies
can be estimated with the use of averagep-wave peak cross

sections. The asymmetry values do not exceed 10%, consis-
tent with the values observed at energies below 250 eV@3#.
The individual weak matrix elements for the new effects
were estimated in the two-level approximation. They are
consistent with the rms matrix element determined from de-
tailed analysis of the lower energy data.

The new results show that negative PNC effects in232Th
appear at neutron energies above 250 eV. This provides
some constraints on the properties of doorway states pro-
posed to explain the PNC sign effect in thorium. Due to the
selectivity of these measurements—only for large PNC ef-
fects and only in thes-wave interference regions—these re-
sults do not represent a complete picture of PNC effects in
232Th at higher energies. Any detailed inference regarding
the behavior of the PNC effects in232Th seems premature
without dedicated measurements with neutrons above 250
eV.
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