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Invariance: A Tale of Intellectual Migration

Abstract
The plotline of the standard story told about the development of intellectual history at the end of the 19th/
turn of the 20th century follows the move from absolutism to perspectivalism. The narrative takes us, on the
one hand, from the scientism of late Enlightenment writers like Voltaire, Mill, D’Alebert, and Comte and the
historical determinism of Hegel, all of which were based upon a universal picture of rationality, to, on the
other hand, the relativistic physics of Einstein, the perspectival art of Picasso, and the individualism of
Nietzsche and Kierkegaard leading to the phenomenology of Husserl and Heidegger to and on through the
deconstructivist work of Derrida in which universal proclamations were deemed meaningless. In their place,
was relative dependent upon subjective, political, and social factors, influences, and interpretations. Like all
sketches, of course, the story is more complicated than that.

There is another trend in the intellectual air of the early 20th century that gets left out of this oversimplified
picture, one that threads a middle path between absolutism and perspectivalism, a path that considers both
frame-dependent or covariant truths and frame-independent or invariant truths and examines the relations
between them. Indeed, the notions of covariance and invariance play important roles in the development of
the fields of mathematics, physics, philosophy, and psychology in the decades after the turn of the 20th
century.

The migration of the concepts of invariance and covariance illustrates not only the interconnectedness of the
working communities of intellectuals, but also displays ways in which the personal, social, and political
overlaps between groups of disciplinary thinkers are essential conduits for the conceptual cross-fertilization
that aids in the health of our modern fields of study. [excerpt]
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Invariance: A Tale of Intellectual Migration

The plotline of  the standard story told about the development of  intellectual 
history at the end of  the 19th/turn of  the 20th century follows the move 
from absolutism to perspectivalism. The narrative takes us, on the one hand, 

from the scientism of  late Enlightenment writers like Voltaire, Mill, D’Alebert, and 
Comte and the historical determinism of  Hegel, all of  which were based upon a 
universal picture of  rationality, to, on the other hand, the relativistic physics of  
Einstein, the perspectival art of  Picasso, and the individualism of  Nietzsche and 
Kierkegaard leading to the phenomenology of  Husserl and Heidegger to and on 
through the deconstructivist work of  Derrida in which universal proclamations were 
deemed meaningless. In their place, was relative dependent upon subjective, political, 
and social factors, influences, and interpretations. Like all sketches, of  course, the 
story is more complicated than that.

There is another trend in the intellectual air of  the early 20th century that gets left 
out of  this oversimplified picture, one that threads a middle path between absolutism 
and perspectivalism, a path that considers both frame-dependent or covariant truths 
and frame-independent or invariant truths and examines the relations between 
them. Indeed, the notions of  covariance and invariance play important roles in the 
development of  the fields of  mathematics, physics, philosophy, and psychology in the 
decades after the turn of  the 20th century. 

The migration of  the concepts of  invariance and covariance illustrates not 
only the interconnectedness of  the working communities of  intellectuals, but also 
displays ways in which the personal, social, and political overlaps between groups of  
disciplinary thinkers are essential conduits for the conceptual cross-fertilization that 
aids in the health of  our modern fields of  study.

Late 19th Century Algebra and the Introduction of  Covariance and 
Invariance

The theory of  invariants is invariably associated with the famed British 
mathematical pair Arthur Cayley and J.J. Sylvester, who developed the theory while 
working as lawyers. Both displayed great talent for mathematics while young, yet 
both ended up in law because the British professorate at the time required Anglican 
priesthood. This line was not available to Sylvester, who was Jewish, and was refused 
by Cayley who, while an orthodox Anglican of  undeniable faith, did not feel a call 
to the priesthood and so could not in god conscience take Holy Orders for mere 
personal advantage.1 

This sense of  earnestness was a trait Cayley displayed through all of  his life. 
Sylvester, on the other hand, was a man in search of  what he deemed to be legitimate 
recognition for a mind of  his outstanding caliber and this led him to fight vigorously 
whenever he felt he had been slighted in personal or intellectual matters,2  even trivially 
so, and to work on open mathematical problems of  massive historical significance.3 
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Sylvester’s fire to Cayley’s ice allowed the pair to work fruitfully on problems across 
the mathematical spectrum, but the place where their efforts had the most impact was 
in the field of  algebra.

Algebraists in the 19th century were studying the way the forms of  equations 
changed under transformation of  variables. Equations posit relations between 
quantities. These quantities are written in terms of  coordinates that are freely chosen 
linguistic conventions. Some choice of  coordinates must be made in order to have a 
language in which to express the relations. The variables themselves are meaningless 
empty names, but once a coordinate frame is selected, one may meaningfully make 
statements about relations between them. You can translate these relations between 
choices of  coordinates, just as one may translate the sentence “Snow is cold” into 
German or French, but some language is needed and this requires a choice of  
coordinates. Certain choices may make particular calculations easier than others, 
and so it is often advantageous to transform the equations by replacing one variable 
selection with another, but ultimately it is a completely free choice what coordinates 
are invoked.

The French mathematicians Joseph-Louis Lagrange and Pierre-Simon Laplace, 
the Germans Friedrich Gauss and Gotthold Eisenstein, and the Englishman George 
Boole had all investigated interesting cases in which, for certain classes of  equations, 
certain properties of  the structure of  the equations and their solutions remained the 
same before and after transforming their variables by choosing different coordinate 
systems. Cayley termed these unchanging properties, “hyperdeterminants,” but 
Sylvester – who wrote of  himself, “Perhaps I may without immodesty lay claim to 
the appellation of  the Mathematical Adam, as I believe that I have given more names 
(passed into general circulation) to the creatures of  the mathematical reason than 
all other mathematicians of  the age combined”4 – coined a new name for them, 
“invariants.” 

Upon reading Boole’s paper of  1841, “Exposition of  a General Theory of  Linear 
Transformations,” Cayley became fascinated with the notion of  invariants and began 
a correspondence with Boole in which he became determined to ferret out all the 
invariants of  the binary quadratic and binary quintic forms and, more importantly, 
to find a systematic way of  accounting for them. Some invariants, it turned out were 
special cases of  more general invariants, and Cayley was determined to find the 
complete basis set of  these invariants, that is the smallest set of  invariants that could 
be used to construct all possible invariants associated with those forms of  equations. 
Cayley and Sylvester worked on this problem throughout their lives, but they made 
their historic strides in the 1840s and 1850s, giving rise to invariant theory in the form 
we know it today.

Once they had begun their great work in earnest, Cayley came to realize that 
their new theory of  invariants was not just a curiosity of  certain algebraic equations. 
Rather, it had a deeper meaning. 

This idea of  ‘permanence among change’ has been such a recurring 
idea in religious, philosophic, and scientific thought that it’s explicit 
appearance in mathematics would have acted as a magnet to the 
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young mathematician on the lookout for new subjects. Had he not 
assimilated the Platonic vision of  scientific research as taught at 
King’s College, London? Classics, supervised by R. W. Browne at 
King’s, taught that Plato’s interpretation of  the object of  science as 
the search for ‘the true, the eternal, the immutable” was the correct 
vision and that to succeed in this cause ‘is to know intellectually the 
essence of  things absolutely.’5 

Not only did invariants expose something meaningful within algebra, but it was a 
Platonic tool to be used to revolutionize fields throughout mathematics. 

The Migration of  Invariance into 19th/20th Century Geometry
When meeting Felix Klein, one 

could not have avoided being impressed. Klein was a tall, handsome, 
dark haired and dark bearded man with shining eyes, whose 
mathematical lectures were universally admired and circulated even 
as far as America.6

Widely considered second only to the great Henri Poincaré as the most important 
mathematical mind in the first half  of  the 20th century, it could be said of  Klein, 
like Cayley, that “his mathematical interest was all-inclusive. Geometry, number 
theory, group theory, invariant theory, algebra.”7 Also, like Cayley, he was one to draw 
connections between the seemingly distinct mathematical subfields.

Traditionally, mathematics had two seemingly distinct areas of  study: algebra and 
geometry. By the time Cayley was helping to revolutionize algebra, geometry had 
already commenced a radical transformation. Ivan Lobachevski’s created hyperbolic 
geometry, a new geometric system whose basic axioms were inconsistent with those 
of  Euclid, whose work The Elements had shaped the field since classical times and 
were thought by the greatest minds of  history to be unassailable. Lobachevski’s work 
struck at the core of  confidence in mathematical truth. Mathematics, it was held, 
was the one place where definite knowledge was available to humans. From Plato 
to Descartes, mathematics, particularly the rigorous proofs of  Euclidean geometry, 
provided the model for the finished state of  all other human intellectual endeavors. 
But the specter of  a competitor to Euclid meant that perhaps the certainty that was 
attributed to geometry could not be counted upon. If  we could not fall back on 
Euclid for certainty, then perhaps nothing at all was certain. But this seemed absurd.

As absurd as Lobachevski’s new geometric system. In the space Lobachevski 
describes, it is impossible to have figures of  different sizes with the same internal 
angles. There could be no rectangles. The internal angles of  a triangle were always less 
than two right angles. It all seemed so bizarre, so counter to our most basic intuitions 
and so surely had to be false. In mathematics, that means that it would have to give 
rise to a contradiction. But while more and more fantastic theorems could be derived, 
no inconsistency arose. The search continued on for if  even a single contradiction 
could be shown to follow from the axiom set of  this new geometry, then it could be 
rejected wholesale, the supremacy of  Euclid reestablished, and the basis for belief  in 
classical thought reasserted with complete confidence. All hopes for rescuing the old 
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order rested on this hope.
But Klein, along with Poincaré and Eugeno Beltrami, showed that the superiority 

of  Euclid could never be established. Klein gave the basic geometric terms new 
meanings and showed that Lobachevski’s axioms, when understood in this new, 
non-standard fashion, were true of  a set of  Euclidean objects. Since a sentence is a 
contradiction by virtue of  its form (the sentence “I have a blim and I don’t have a blim” 
is false no matter what I decide to mean by the word “blim”), by cleverly translating 
the non-Euclidean axioms into the Euclidean language so that the reinterpreted non-
Euclidean axioms became deductively necessary results of  Euclid’s own system, Klein 
demonstrated that the only way Lobachevski’s axioms could imply a contraction is if  
the Euclidean axioms also implied a contraction. No one wanted to say that Euclid 
was flawed, so on the basis of  this relative consistency proof, no one could not say 
that the non-Euclidean geometry was flawed either.

But Lobachevski’s system was not the only new geometry. Indeed, geometric 
systems proliferated at a stunning rate. More conservative geometers refused to even 
consider such studies geometry. Klein, to his detriment, did not belong to such a 
group.

[Klein] was much younger than his colleagues, and they resented 
his innovating tendencies. In particular, there was opposition to his 
determination to avail himself  of  the vaunted German ‘Lehrfreiheit,’ 
and to interpret the word “Geometry” in its widest sense.8

Klein embraced the non-standard geometries, but this proliferation came 
with a cost, the field lost its elegance and that is a property mathematicians revere. 
Something had to be done to tame the wildness emerging in geometry, to bring order 
and structure to the multiplicity of  systems. The concept that could be used to do the 
job was invariance and it was Cayley himself  who first realized it. 

Among the more abstract systems to arise was projective geometry. Think of  
trying to make a flat map out of  a globe. To do this, the landmasses on the globe would 
have to be projected onto a flat screen and traced out. But in this tracing process, the 
move from the curved surface of  the globe to the flat surface of  the screen would 
distort size, shape, and angles – consider, for example the way that countries far 
from the equator, like Greenland, are significantly larger on the standard Mercator 
projection maps than they ought to be. Size in such a projection is not invariant. 
But there are geometric relations that do remain invariant and Cayley realized that 
these relations form what mathematicians call a group, that is, it is a closed set with 
an operator that when applied to any member of  the set will point you to another 
member of  the set. 

Klein first read of  Cayley’s work in George Salmon’s textbooks9 that were widely 
translated and were one of  the major routes through which English mathematics was 
channeled to the Continent. Salmon had been a friend and constant correspondent 
of  Cayley and Sylvester and his four careful, detailed textbooks were well-studied and 
appreciated in his time. Cayley’s application of  invariant theory coupled with group 
theory had opened a door to understanding geometry in a much broader sense, but 
the intellectually conservative Cayley refused to admit what was in the room behind it. 
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He denied the legitimacy of  the new geometric systems, even though he realized that 
in some way invariant theory would allow us to make sense of  them.

Klein, on the other hand, had no such problem and when he received his first 
significant academic post at the university in Erlangen, he used the occasion of  his 
inaugural lecture to set out what became known as the Erlangen Programm, the project 
of  accounting for the interrelatedness of  all geometric systems in terms of  associated 
groups and invariants. If  one system had a group of  invariants that was a subgroup of  
the invariants of  another system, one could see the relation between the two. 

Klein continued to expand his work in this direction through his positions at 
Erlangen, Munich, Leipzig, and ultimately Göttingen, a beautiful, pastoral university 
that he transformed into the mathematical Mecca. But this work was not done in 
isolation.

In looking through Klein’s Autobiography, one is struck by his 
consistent references to his friendships. It was characteristic of  
him that they all bore directly, or indirectly, on his mathematical 
development and on his power of  organization. He was indeed 
a man without a hobby; in particular, and this is curious and 
interesting from a psychological point of  view, although a German, 
and although endowed with an excessive acuteness of  hearing, he 
could not distinguish one tune from another.

Social intercourse for Klein meant the interchange of  ideas, and 
for that he was as eager as the ancient Athenians. It was in such give-
and-take that his own conceptions took form. There is, perhaps, no 
contradiction in saying that Klein was never the originator of  his 
own ideas. He had not the generating force of  a Cauchy or a Georg 
Cantor, but he had a phenomenal power of  grasping the import of  
a suggestion, and working it out on a grander scale than any before 
him had imagined.10

Klein was a social thinker who depended on interaction to cross-pollinate his thoughts. 
One such occasion was afforded when Klein was in Munich and Cayley, with whom 
he had been corresponding, spent the three months of  the summer of  1880 visiting 
the Kleins.

While Cayley never accepted the breadth of  Klein’s geometric work, the result – 
now called Cayley-Klein geometry – shaped and structured the way the field advanced. 
The notion of  invariance became an essential mathematical tool beyond its algebraic 
origins.

Invariance and the Theory of  Special Relativity
Klein had a bright young student named Adolf  Hurwitz who followed him from 

Munich to Leipzig where he received his Ph.D. under Klein and ultimately secured a 
university post at Königsberg, an isolated country outpost in the German academy, 
but a pleasant place with a long and treasured intellectual history. 

Here, he found himself  with a pair of  young, but very inspired and incredibly 
talented students. One, David Hilbert, would go on to be one of  the most famed 
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minds in the history of  mathematics and would be the co-discoverer of  the general 
theory of  relativity, developing it at the same time – although along a different 
methodological path – as Albert Einstein. The other, Hermann Minkowski, would 
also work in both pure mathematics and mathematical physics. 

While Hilbert was an out-going, social person who loved dancehall music and was 
an interminable flirt, his dear and life-long friend Minkowski was bookish and shy. 
Minkowski’s family was Russian Jewish and had moved west to Königsberg because of  
the oppression of  Jews under the Czar. It was an experience that shaped Minkowski. 
After having to sell all of  the family’s possessions, including their books, Minkowski 
memorized the works of  Goethe so that should he again end up without books, he 
would never be without literature.11 Hilbert’s mind, like his personality, was broad and 
explosive, while Minkowski was much more rigorous and thorough. The three would 
meet regularly under an apple tree near the university and take long walks arguing and 
exploring topics and open questions covering the entire span of  mathematics. 

Hilbert’s doctoral dissertation topic was an extension of  Cayley’s theory of  
invariants and a copy was sent to Minkowski who responded,

I studied your work with great interest, and rejoiced over all the 
processes which the poor invariants had to pass through before they 
managed to disappear. I would not have supposed that such a good 
mathematical theorem could have been obtained in Königsberg!12

It would be Minkowski, though, who would use invariant theory to make his greatest 
contribution.

They complimented each other and corresponded whenever they were separated. 
As Hilbert climbed the ladder of  the German academy, moving to ever more 
prestigious positions, he always made sure to use his leverage to pull Minkowski into 
the newly vacated position. This continued until Minkowski left the German system 
and took a position at the Eidgenössische Technishe Hochschule in Zürich where he 
was to have his most famous student, Einstein.

The relationship between Minkowski and the young Einstein was not a pleasant 
one. In the classroom, Minkowski’s shyness led him to speak quietly in a halting 
and stammering fashion. His pedagogical flaws led Einstein, who needed little 
reason, to skip many of  Minkowski’s lectures, relying upon the notes of  his friend 
and classmate Marcel Grossman without whom he likely would not have made it 
through his university exams. Minkowski thought Einstein arrogant, impudent, and 
insufficiently serious, referring to him as a lazy dog. Einstein did not think any better 
of  his professor Minkowski at the time although he was later to list him among his 
“excellent teachers” at the ETH.13

Einstein did graduate from the ETH, but his poor relationship with his professors 
left him without a job as an assistant despite great effort and years of  trying. It would 
be virtually assumed that a graduate from this prestigious school, with well-connected 
faculty would naturally take the next step along the career path of  a developing 
scientist, but Einstein, because of  his attitude as a student was denied. Instead, 
Grossman again saved him when his father secured him a position as a patent clerk, a 
respectable civil service job. He was working this job in the miraculous year of  1905, 
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when Einstein wrote his famous “On the Electrodynamics of  Moving Bodies,” the 
paper that introduced the special theory of  relativity to the world. 

The work begins in a curious fashion, considering two thought experiments. In 
the first, a magnet is held still and a wire coil around it, while connected to a circuit, 
is moved back and forth. This gives rise to an induction current. Next, the coil is held 
still while the magnet is moved back and forth in the same way inside of  it, giving rise 
to an equivalent current. Under the old theory, Maxwell’s electrodynamics with a field 
bearing, but invisible ether, the two received different physical explanations.

Take, for example, the reciprocal electrodynamic action of  a magnet 
and a conductor. The observable phenomenon here depends only 
on the relative motion of  the conductor and the magnet, whereas 
the customary view draws a sharp distinction between the two cases 
in which either the one or the other of  these bodies is in motion. 
For if  the magnet is in motion and the conductor at rest, there arises 
in the neighborhood of  the magnet an electric field with a certain 
definite energy, producing a current at the places where parts of  
the conductor are situated. But if  the magnet is stationary and the 
conductor in motion, no electric field arises in the neighborhood of  
the magnet. In the conductor, however, we find an electromotive 
force, to which in itself  there is no corresponding energy, but which 
gives rise – assuming equality of  relative motion in the two cases 
discussed – to electric currents of  the same path and intensity as 
those produced by the electric forces in the former case.14

From this equivalence, that is, from the invariance of  the hypothetically measured 
electrical current in the circuit, Einstein argues that the invisible ether, a significant 
metaphysical postulation by advocates of  classical physics, in fact does not exist.

Examples of  this sort, together with the unsuccessful attempts to 
discover any motion of  the earth relatively to the ‘light medium,’ 
suggest that the phenomena of  electrodynamics as well as mechanics 
possess no properties corresponding to the idea of  absolute rest. 
They suggest rather that, as has already been shown to the first order 
of  small quantities, the same laws of  electrodynamics and optics 
will be valid for all frames of  reference for which the equations 
of  mechanics hold good…The introduction of  a ‘luminiferous 
ether’ will prove to be superfluous inasmuch as the view here to be 
developed will not require an ‘absolutely stationary space’ provided 
with special properties.15

Einstein employs Cayley’s concept of  invariance under transformation here, except 
that instead of  a mathematical entity maintaining its form under transformation of  
coordinates, it is a physical measurement maintaining its numerical value under a 
change of  reference frame. The concept of  invariance is key to the very notion of  
relativity.

While Einstein’s ideas were revolutionary, not many paid attention to them. 
Challenging Isaac Newton’s theory of  mechanics which was the best confirmed 
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scientific theory in history, standing unchallenged for three centuries was audacious 
enough, but to replace it with a theory so peculiar, such an affront to common sense, 
led many to think it a complete non-starter. The theory claimed that there was no 
fact in the world about the simultaneity of  spatially separated events. It claimed that 
moving objects would be shorter in moving frames of  reference than they were in 
frames attached to the objects. Einstein argued that the length of  time passing depends 
upon your state of  motion. It was a bizarre theory challenging the heart of  classical 
physics as proposed by a nobody and most physicists would have none of  it.

But there was one who did see the insight, the genius, the completely revolutionary 
nature of  the theory – Hermann Minkowski, who commented about the theory, “Oh, 
that Einstein, always missing lectures – I really would not have thought him capable 
of  it!”16 Minkowski saw in Einstein’s work a new picture of  the world that was not 
completely seen at the time by anyone else, including Einstein himself  because of  
the sort of  mathematical language in which the theory was worked out. “Einstein’s 
presentation of  his deep theory is mathematically awkward – I can say that because 
he got his mathematical education from me at Zürich,”17 Minkowski was known to 
comment having joined Hilbert and Klein at Göttingen. 

In an address entitled “Space and Time” delivered to the 80th Assembly of  
German Natural Scientists and Physicians in 1908 at Cologne, he expressed Einstein’s 
theory in an entirely novel way. Einstein writes,

Minkowski’s important contribution to the theory lies in the 
following: Before Minkowski’s investigation it was necessary to carry 
out a Lorentz-transformation on a law in order to test its invariance 
under such transformations; he, on the other hand, succeeded in 
introducing a formalism such that the mathematical form of  the law 
itself  guarantees its invariance under Lorentz-transformations.18

This understates the case a bit. This formalism used by Minkowski takes the geometric 
work of  Cayley and Klein and “geometrizes” the theory of  relativity, that is, it shows 
how the theory forces us into a fundamentally new understanding of  the universe as 
a four-dimensional integrated picture of  space and time. 

Minkowski begins the address with his famed passage, 
The views of  space and time which I wish to lay before you have 
sprung from the soil of  experimental physics, and therein lays their 
strength. They are radical. Henceforth, space by itself, and time by 
itself, are doomed to fade away into mere shadows, and only a kind 
of  union of  the two will preserve an independent reality.19

It is clear that there is more than a new formalism here, more than simply a clearer 
linguistic framing, rather, there is a new way to understand the structure of  the 
universe itself. 

We must think of  the world in which we live as a combination of  three spatial 
dimensions and a fourth temporal dimension combined together. The points of  this 
world are events, that is, places at a time. Objects in this space-time are like tubes 
flowing through it. Any slice along that tube is the object at a given time. The trail of  
its tube is its world-line through space-time. 
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Attached to each event is a light cone in the future pointing direction and one in 
the past pointing direction. It is called a light cone because it is formed by considering 
all of  the points in space-time that could be reached by a signal moving at the speed 
of  light from or to that point. Since no signal can travel faster than the speed of  light, 
the points inside of  the past pointing light cone are the set of  all events that could 
causally effect the point, that is, the set of  events in the past pointing light cone of  
an event contains everything about the universe that it is possible for someone at that 
point in space at that time to know and everything in the universe that could have any 
effect at all on that event. If  an event is outside of  the light cone, someone at that 
point could have no knowledge of  it and it could in no way influence it. Similarly, the 
future pointing light cone contains all of  the events in the universe that this event 
could have any effect upon. If  an event is outside of  the future pointing light cone, 
the original event cannot be causally related to it and an observer at that point could 
have no knowledge of  the original event.

More than a formalism, what Minkowski provides for special relativity is a 
complete worldview, a metaphysic, a new image of  the nature of  reality itself. It was 
the use of  the Cayley-Klein approach to geometry on Einstein’s clumsily formulated 
mathematics that changed the way we see space and time.

General Covariance and the General Theory of  Relativity
Minkowski’s work completely changed the way Einstein himself  understood his 

own theory. As he thought about the malleable space-time Minkowski sketched from 
his work, Einstein came to find two flaws. First, while the theory included aspects of  
mechanics, optics, electricity and magnetism, there was one physical force that was 
nowhere to be found – gravitation. The theory would have to be expanded. Second 
and more related to Minkowski, the invariant quantities Minkowski points out only 
remain invariant in a special set of  reference frames, those that move in straight lines 
at a constant speed relative to each other. These covariant frames are called “inertial 
frames” and the laws of  the theory held good only for them. This limitation bothered 
Einstein who thought that the laws of  physics should be the same for all observers.

In contrast to [the limited invariance of  the special theory of  relativity] 
we wish to understand by the ‘general principle of  relativity’ the 
following statement: All bodies of  reference K, K’, etc., are equivalent 
for the description of  natural phenomena (formulation of  the general 
laws of  nature), whatever may be their state of  motion.20

This limitation of  the theory to the special case of  inertial reference frames is why 
the theory is called “special relativity.” Einstein wanted to make the theory universal, 
to make the governing physical equations of  a relativistic gravitation theory hold for 
all possible observers, that is, to create a general theory of  relativity, not just one for 
special reference frames.

Just as his 1905 paper began with a thought experiment in which two cases were 
seen to be different accounts of  the same phenomenon, so too with his 1916 paper 
introducing the general theory of  relativity. Consider the counter-intuitive fact that 
heavier things do not fall faster. This is a strange and unique aspect to gravitation. If  
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you have two charged bodies and you double the charge on one, then you double the 
acceleration due to the resulting electrical force. It is the same with magnetic force. 
But if  you double the mass, that is, the gravitational charge, you do not double the 
acceleration due to gravity. 

Suppose you were in an elevator with a bathroom scale sitting still on the bottom 
floor of  a tall office building. Stepping on the scale, it would read your normal weight. 
This is because your weight is pushing down on the top of  the scale, the floor is not 
letting the scale move, thereby compressing the springs within to a certain degree. 
Now, the elevator begins to moves upward. What happens? Your weight is still 
pressing down in the same way, but now the upwardly accelerating floor is pressing 
up more than it was. As a result, the displayed weight increases. At the top floor of  
the building, the unthinkable happens, the cable snaps and you plummet downward 
in gravitational freefall. In your last seconds, you look down at the scale to see it reads 
zero. You are still pushing down in the same fashion, but now the floor is accelerating 
downward at the same rate, meaning it is not pushing back, so the springs cannot 
compress, and the scale reads zero. 

Now suppose you were in a small spacecraft with a bathroom scale far away from 
anything so that there is no gravity. You step on the scale and it reads zero. Now 
suppose the spacecraft fires its engines so that it accelerates upward. The pressing of  
the spacecraft’s floor and your mass against the top and bottom of  the scale compress 
the spring and your weight is given. If  the spacecraft accelerated at 9.8 meters per 
second each second, what would the scale read? Your weight on Earth. 

So, if  you woke up to find yourself  in a small room with nothing but a bathroom 
scale, could you figure out if  you were in a non-accelerating reference frame in a 
gravitational field, in an accelerating spaceship in a gravity-free region, or some 
combination? No. No matter what the result, it could be equally well explained in 
either way. Not only that, but notice that if  we tried to explain it as acceleration, then 
everything around you, no matter how much mass it has, would have to be held to 
have the same acceleration. But this is exactly what we want. Einstein could now argue 
that gravitation and acceleration were just different descriptions of  the same thing.

But someone accelerating would “see” the light cones of  events shifted at an 
angle compared to those at rest with respect to them. If  acceleration and gravitation 
are equivalent descriptions, then gravitation should skew the light cones, but this is the 
same thing as warping space-time itself, that is, gravitation would bend the universe. 
This was the big insight. Einstein now just had to find the equations that described 
the geometry of  the universe for any given distribution of  matter and energy. To be 
successful, they had to satisfy two conditions – they had to be generally covariant, that 
is, keep the invariants the same regardless of  the frame of  reference, and they had 
to satisfy a criterion of  uniqueness (Eindeutigkeit), that is, they had to give a unique 
value for the strength of  the gravitational field at every point. The equations had to 
hold for all observers and for each one provide a fixed value for the field strength for 
each point in space-time.

Marcel Grossman once again coming to the rescue and helping Einstein acquire 
an understanding of  the new tensor calculus, a more powerful mathematics needed for 
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the project, he began to work. As he progressed, he reached a point where the project 
was promising. But then, he hit a snag. Einstein realized that he had field equations 
that were generally covariant, but they permitted him to do something strange. He 
could take a small region of  space-time that was devoid of  masses, he referred to such 
an empty region as a “hole,” and twist the field values for the geometry of  space in 
the hole in arbitrary ways. This meant that within the hole, the field equations would 
not uniquely nail down the physical values for the curvature of  space-time. He could 
easily fix this, but it would cost him general covariance. If  he wanted to save what 
Minkowski gave him in the extension of  the theory, it seemed he would have to 
surrender the ability to give a complete and unique description of  reality. But such a 
complete and unique description is the very point of  a scientific theory. What to do?

Einstein struggled with this “hole problem” from late 1913 through 1915.21 The 
original field equations seemed right, but they meant that he could not have both 
general covariance and uniqueness so they could not be right. He took the physics in 
several different directions, trying to avoid the problem. Ultimately, Einstein realized 
that it was not a problem of  the physics, rather it was a philosophical problem; the 
trouble came not from the field equations, but from his interpretation of  them. He 
was taking the values of  the metric field, the curvature of  space-time to be a real 
thing. But, after all, it was a hole, a region where there was nothing to be altered. 
It was a difference that made no difference. If  he considered the different values 
in the hole to just be different descriptions of  the same reality, the reality made up 
of  coincidences, that is, events which lie at the intersection of  world lines (in other 
words, actual interactions among things), then he would have a theory that described 
the world in a way that would work for all possible observers.

Einstein sets this out in what is called the “point-coincidence argument” in his 
1916 paper “The Foundation of  the General Theory of  Relativity.”

The general laws of  nature are to be expressed by equations which 
hold good for all systems of  co-ordinates, that is, are co-variant with 
respect to any substitutions whatever (generally co-variant).

It is clear that a physical theory which satisfies this postulate 
will also be suitable for the general postulate of  relativity…That 
this requirement of  general co-variance takes away from space and 
time the last remnant of  physical objectivity, is a natural one, will be 
seen from the following reflexion. All our space-time verifications 
invariably amount to a determination of  space-time coincidences. 
If, for example, events consisted merely in the motion of  material 
points, then ultimately nothing would be observable but the meetings 
of  two or more of  these points. Moreover, the results of  our 
measurings are nothing but verifications of  such meetings of  the 
material points of  our measuring instruments with other material 
points, coincidences between the hands of  a clock and points on the 
clock dial, and observed point-events happening at the same place 
at the same time.

The introduction of  a system of  reference serves no other 



52
Convergence Review

purpose than to facilitate the description of  the totality of  such 
coincidences…22

What is real, Einstein argues is what is observationally verifiable, and what is verifiable 
are the interactions of  things, the coincidences of  world lines. That this line of  
reasoning, key to the understanding of  the general theory of  relativity was a claim 
about the nature of  knowledge was not a fact that would escape the philosophical 
community for long.

Invariance and Uniqueness in Philosophy
When Einstein gave his first graduate seminar on the general theory of  relativity at 

the University of  Berlin in 1919, there were five attendees. One was Hans Reichenbach, 
a philosopher.

Reichenbach had been an engineer before writing a doctoral dissertation in the 
philosophy of  physics, a field that did not exist at the time. His readers included a 
physicist who did not understand the philosophy and a philosopher who did not 
understand the mathematics or physics. When he had a chance as a newly minted 
Ph.D. to take Einstein’s seminar, he jumped at the chance and the two would become 
friends and ultimately colleagues.

Reichenbach was quick to understand that the theory of  relativity did not only 
overturn core beliefs in physics, but also in philosophy. The philosophical world at 
the time was dominated by the thought of  Immanuel Kant. If  one was not pursuing 
a neo-Kantian project of  some sort, then one was most likely part of  a conversation 
that was a response to Kant (say, Hegelian) or a response to a response to Kant (say, 
Nietzschean, Marxist, or existential). These reactions tended to take the conversation 
far afield when viewed from the perspective of  a natural scientist, so those interested 
in the foundations of  physics tended to remain within the Kantian conversation. 

For Kant, the central question of  philosophy was “How is synthetic a priori 
knowledge possible?”, in other words, all observation must be a combination of  
sense data collected by the body with rational concepts provided by the mind. These 
mental notions must exist before the observations as they are preconditions for even 
the possibility of  observing. We must take the raw sense data and put it through an 
intellectual filter to create the complex observations we have. Since these intellectual 
categories must come before observation, they cannot come from the world. But 
since they provide us with non-tautological knowledge, they cannot be merely logical, 
they must have content beyond their form. Where, then, could such knowledge come 
from?

Kant argues that it must preexist within the human mind; it must be innate, a 
standard part of  the structure of  the human consciousness. Included among these 
beliefs, Kant contends, are Euclidean geometry and Newtonian physics. They are 
the psychological rules by which we construct the world we see in all its complexity 
from the blur of  colors our eyes feed into our minds. As such, they are not facts that 
can be confirmed or falsified by observation as they are the very rules by which all 
observations are created. Rather, they are undeniable truths about the structure of  
our minds.
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Of  course, both Euclidean geometry and Newtonian physics are denied by the 
general theory of  relativity, a theory Einstein bases upon observation. In studying 
the theory with Einstein, Reichenbach realizes that Einstein has not only overturned 
the view we hold in terms of  mathematics and physics, but in doing so Einstein 
completely undermines the philosophical foundation that was generally accepted for 
the basis of  belief  in the truth of  these systems. In refuting Kant, we would now 
need a new philosophy to go with the new physical worldview. But rather than tie it 
to Einstein’s theory – the way Kant was tied to Newton and therefore would require 
replacing when Einstein’s theory found its successor – Reichenbach aimed to create 
a method that would be informed by our views of  the world, but still allow us to 
understand how to go about forming and justifying them.

This would be the goal of  Reichenbach’s first book, The Theory of  Relativity and A 
Priori Knowledge, dedicated to and vetted by Einstein, and written immediately following 
the seminar. In it, Reichenbach sketches out the fundamental axiomatic assertions of  
Kant’s Newtonianism and those of  the theory of  relativity, showing how they are 
incompatible and how the observational consequences of  the two diverge, providing 
support for those of  Einstein. His introduction to the book begins:

Einstein’s theory of  relativity has greatly affected the fundamental 
principles of  epistemology. It will not serve any purpose to deny this 
fact or to pretend that the physical theory changed only the concepts 
of  physics while the philosophical truths remained inviolate. Even 
though the theory of  relativity concerns only relations of  physical 
measurability and physical magnitudes, it must be admitted that these 
physical assertions contradict general philosophical principles. The 
philosophical axioms, even in their critical [viz., Kantian] form, were 
always formulated in such a way that they remained invariant with 
respect to specific interpretations but definitely excluded certain 
kinds of  physical statements. Yet the theory of  relativity selected 
exactly those statements that had been regarded as inadmissible and 
made them the guiding principles of  its physical assumptions.23

Notice the way Reichenbach frames the discussion – “The philosophical axioms…
were always formulated in such a way that they remained invariant with respect to specific 
interpretation.” Here, we have the notion of  invariance invoked yet again, but in an 
entirely new context. Where Cayley had used the notion to talk about the form of  an 
equation under a transformation of  coordinates and Einstein used the concept with 
respect to the reference frame of  an observer, Reichenbach is now referring to the 
invariance of  the meaning of  sentences under different interpretations. 

This is no accident. Reichenbach’s new epistemological foundation inspired by 
and accounting for the theory of  relativity will hinge on the notion of  coordination. 
He makes clear that there is a difference between mathematical coordinates 
[Koordinaten] and his notion of  coordinating statements [Zuordnung], but the 
words are both translated into English using the same notions of  coordinating and 
it is clear that Reichenbach is playing metaphorically on the similarity. Indeed, for a 
coordination to be successful, he borrows the term uniqueness [Eindeutigkeit] that 
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we saw in Einstein’s point-coincidence argument in his 1916 paper.24

Further, the eventual philosophical stance that emerges from the work of  
Reichenbach and Moritz Schlick, a physicist trained under Max Planck turned 
philosopher who was the first to work on the philosophical ramifications of  the 
theory of  relativity25 and who was a correspondent with Einstein, would find its 
central tenet in the point-coincidence argument. Logical Empiricism sought to 
eliminate meaningless propositions from philosophical discourse by use of  a criterion 
of  cognitive significance. This condition on the meaningfulness of  propositions 
would take various forms as a principle of  verifiability. Einstein had realized that the 
different formulations of  the world with and without the hole were just different ways 
of  describing the same reality. In the same way, Reichenbach and Schlick would argue 
that the meaning of  a sentence is completely contained within the empirical content 
of  the sentence and therefore that any two sentences or theories that had the same 
observable consequences were merely different ways of  saying the same thing.26

The logical empiricists saw the job of  philosophy to be quite different from its 
previous inception. Philosophical discourse, they contended had become mired down 
in meaningless chatter about pseudoquestions.27 It had become impressive sounding 
nonsense. A question is a request for information. If  there is such a fact to be found, 
then it would be determinable either through mere logical analysis of  the language 
of  the question in trivial cases or by checking the world, i.e., employing the means of  
science, in non-trivial cases. If  there was no such information, then the question was 
not in fact a question, but nonsense, in other words, a pseudoquestion. Such it was, 
they claimed, with much of  traditional and contemporary philosophy. The work of  
the philosopher, therefore, as they saw it was two fold: (i) to separate the meaningful 
from the meaningless, the real questions from the pseudoquestions, and ship them 
off  to the physicist, biologist, psychologist, or whichever scientist was appropriate 
to find the relevant fact, and (ii) to provide the logical foundations justifying the 
methodologies of  those scientific endeavors.

The deep attachment to science, mathematics, and logic amongst the logical 
empiricists came not only from an embrace of  the advances in science from Einstein, 
mathematics from Klein, and logic from Bertrand Russell, but also from the times. In 
the shadow of  the horrors of  World War I with its trench warfare, chemical weapons, 
and mass death, the German speaking world became politically bifurcated with the 
pro-nationalist conservatives blaming the modernist, Jewish, and scientific trends 
for the ghastly results while the internationalist, pro-scientific left blamed the old 
religious, monarchic structures for their militarism, rigidity, and superstition.28 The 
logical empiricists saw the scientific community as a functioning human community 
that fostered international cooperation and therefore a bulwark against war. Further, 
science would be able to undermine the over-simplistic and false worldviews that riled 
a population into such a frenzy that they could commit and condone the sorts of  
atrocities seen in Europe during the Great War.29 Science and a worldview based on 
and modeled after science could save humanity from itself  they thought.
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Invariance in Gestalt Psychology
If  the logical empiricists wanted to base all human belief  and social structure on 

science, then they needed a clear and complete understanding of  how science worked. 
An inextricable element of  the scientific method is observation. Science provides 
evidence based upon the actual sense experiences of  the scientist. They needed to 
understand the logical structure of  inferences that took them from observations of  
particular things, like reading the number on a meter, to universal truths and laws of  
nature. But more basically, they also needed to understand how observation itself  
worked. 

One of  Kant’s great insights, a realization that the logical empiricists cherished, is 
that the naïve view of  early empiricists like John Locke who held that the mind is initially 
a tabula rasa written upon by observation could not possibly be correct. The world did 
not simply leave impressions on our minds. In The Critique of  Pure Reason, Kant argues 
that there must be pre-existing mental structures to create the observations from the 
raw sense data fed in through our senses. Observation is a combination of  the world 
sending messages through our sense organs and pre-established psychological means 
within our minds to order and make sense of  sensation. If  the logical empiricists were 
going to completely understand science, they would need to completely understand 
the science that explained how observation worked, observation that stood at the 
heart of  science.

As it would happen, as Reichenbach was assembling a multi-disciplinary group of  
intellectuals to embark on this project through coordinated presentations, university 
seminars, and informal discussion groups, there was a group of  psychologists at the 
University of  Berlin who were working on exactly the question of  interest.

Gestalt psychology began in the late 1910s with Max Wertheimer’s work in 
Frankfurt where he took two young students under his wing, Wolfgang Köhler and 
Kurt Koffka. The three would be the founding figures in the Gestalt movement.

Wertheimer and Köhler took positions at Berlin after the war and while pursuing 
work that would establish Gestalt doctrines as major advances in the history of  
psychology, they also became active members in Reichenbach’s discussion groups. 
They were well aware of  the philosophical import of  their work. In his address, “Über 
Gestalttheorie” to the Kant Society in Berlin 1924, Wertheimer makes explicit that 
Gestalt psychology is part of  the larger movement of  the times,

What is Gestalt theory and what does it intend? Gestalt theory was 
the outcome of  concrete investigations in psychology, logic, and 
epistemology.30

The terms “logic” and “epistemology,” when used in Berlin in 1924 would clearly 
point to Reichenbach.

The links between Reichenbach’s philosophical circle and the Gestalt community 
were deep. Reichenbach was deeply impressed by Wertheimer’s works. Even though 
Reichenbach had to flee Germany once the universities were purged in 1933 by 
Hitler, taking a position for five years in Istanbul then ultimately ending up at UCLA, 
Wertheimer’s books remained part of  Reichenbach’s personal library until his death. 

Kurt Lewin, widely held to be the founder of  social psychology, was a contemporary 
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of  Reichenbach who would work on his Habitationschrift at Berlin when Reichenbach 
was there taking Einstein’s seminar. The two would collaborate on work and Lewin 
was the only person other than Einstein whom Reichenbach would show drafts of  
his work in the foundations of  physics.31 Lewin, in addition to Reichenbach’s student 
Kurt Grelling32 would work in both the fields of  philosophy of  science and Gestalt 
psychology in collaboration with Wertheimer, Köhler, and Koffka.

Köhler was widely celebrated as a teacher. His lectures would overflow their 
venues. Yet, in spite of  his renown and his own duties, at Reichenbach’s behest, it was 
Köhler who took over supervision of  Reichenbach’s doctoral students, most famously 
Carl Gustav Hempel, after Reichenbach’s forced departure from Berlin.

The heart of  the Gestalt theory was the Kantian idea that there were preexisting 
structures in the mind needed to make sense of  raw perception. What made Gestalt 
theory unique was the claim that this only happened when the mind interpreted input 
as a whole. 

Is it really true that when I hear a melody I have a sum of  individual 
tones (pieces) which constitute the primary foundation of  my 
experience? Is not perhaps the reverse of  this true? What I really have, 
what I hear of  each individual note, what I experience in each place 
in the melody is a part which is itself  determined by the character of  
the whole. What is given me by the melody does not arise (through 
the agency of  any auxiliary factor) as a secondary process from the 
sum of  the pieces as such. Instead, what takes place in each single 
part already depends upon what the whole is. The flesh and blood 
of  a tone depends from the start upon its role in the melody: a b as a 
leading tone to cis something radically different from the b as a tonic. 
It belongs to the flesh and blood of  the things given in experience, 
how, in what role, in what function they are in the whole.33 

The mind does not create the whole from the part, but rather understands the part 
only in terms of  the whole, often supplying parts of  the whole that may not actually 
be experienced as in the famous Gestalt examples of  incomplete shapes clearly seen.

When the Gestalt theorists write of  this relation of  part to whole, what term do 
we find employed? “Invariance,” of  course.

The Invariants. Therefore we shall discard the empiristic theory as an 
ultimate explanation of  our framework, without, however, raising 
the claim that experience can have no effect at all upon it. Such a 
claim would, in the present state of  our knowledge, be unwarranted. 
Having rid ourselves of  the empiristic bias we find in our last 
examples a very simple principle: such parts of  the behavioral 
environment as become part of  our general spatial framework 
assume one of  the main spatial directions. Let us see what this 
principle means in our examples. When we look through the window 
of  our mountain-railway carriage, this window becomes our spatial 
framework and appears, therefore, in normal, horizontal-vertical 
orientation. The contours of  the objects seen through the window 
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do not intersect with the sash at right angles. Therefore, if  the sash is 
seen as horizontal, these objects cannot be seen as vertical, but must 
appear leaning away from us on the ascent, and towards us on the 
descent. If  Fig. 72 gives a somewhat exaggerated picture of  the real 
positions of  the window and the telegraph pole, then it shows at the 
same time why the telegraph pole cannot appear vertical when the 
window becomes the framework and thereby horizontally-vertically 
oriented. All one has to do is turn this picture until the lower side of  
the window is horizontal; then of  course the telegraph pole is tilted 
to the right as much as in our drawing the window is tilted to the left. 
The angle between the pole and the window sash, then, determines 
the relative localization of  the two objects with regard to each other, 
whereas their absolute localization is determined by those parts 
of  the field which form the spatial framework. If  one sticks one’s 
head out of  the window, the telegraph pole will soon look vertical; 
when then, without losing sight of  it, one withdraws the head, the 
telegraph pole will still look vertical and the windows, the whole 
carriage, tilted. One factor in these two situations is invariant, the 
angle between ground and object…

We shall find the same principle, involving naturally other 
invariants, operative in the field of  colour and of  movement as well: 
relative properties of  the stimulus distribution determining relative 
properties of  the objects and events in the behavioural world, but 
the absolute properties of  these latter depending upon a new factor, 
which in our case of  the spatial framework is the stress of  this 
framework towards the main directions of  space.34

Koffka’s use of  the notion of  invariant as that which is real and establishes a 
framework for truth beyond the relative is more than a little reminiscent of  the point-
coincidence argument from Einstein and the notion of  uniqueness in interpretation 
from Reichenbach. 

Koffka is careful to draw a distinction between the image on the retina and the 
phenomenological or behavioural observation. We can have the same image on our 
retina at different times and yet see different things. As he points out in the passage 
above, the way the behavioural experience is created by a combination of  the sense 
organs and the mind will create relative truths, that is, truths that are experienced 
relative to relative factors. But then there are invariant factors and these create 
experiential truths that outrun particular frames of  reference. This is precisely the sort 
of  invariance of  interpretation suggested by Einstein’s 1916 theory of  general relativity 
and appropriated by Reichenbach as the central feature of  his epistemology.

Through the relationships, both intellectually and personally, between the algebra 
of  Cayley, the geometry of  Klein, the physics of  Einstein, the interpretation of  
Minkowski, the philosophy of  Reichenbach, and the psychology of  Wertheimer, 
Köhler, and Koffka, we see the term “invariance” assume covariant senses in several 
intellectual frames of  reference. Yet, through it all, there is an invariance to “invariance,” 
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a sense of  the reality of  the absolute, but an absolute that appears and can only be 
completely understood in the particularity of  its circumstances. Science is a human 
endeavor and as in all other human occupations who you know will influence what 
you know and what you do. 

As Newton so rightly pointed out, standing on the shoulders of  giants does not 
diminish what one sees from their wonderful vantage point. One fascinating aspect of  
the story of  science, though, is that the pyramid of  giants whose shoulders one stands 
upon gets very wide at the base, thereby including giants one might not expect.
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