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Curve Interpolation and Coding Theory

Abstract

Whether it is downloading files from the Internet, having conversations between cell phones, or sending
information from a laptop to a printer, we often want to transmit data in situations where we need to worry
about interference from other signals that may cause errors in the transmission. The branch of mathematics
known as coding theory is dedicated to finding ways to tell when these are errors in transmission and, when
possible, how to correct those errors. The goal of coding theory is to build as much redundancy as possible
into a message without greatly increasing its length. [excerpt]
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Intfroduction

Whether it is downloading files from the Internet, having conversations
between cell phones, or sending information from a laptop to a printer, we
often want to transmit data in situations where we need to worry about
interference from other signals that may cause errors in the transmission.

The branch of mathematics known as coding theory is dedicated to find-
ing ways to tell when there are errors in transmission and, when possible,
how to correct those errors. The goal of coding theory is to build as much
redundancy as possible into a message without greatly increasing its length.
Much of coding theory uses deep mathematics to achieve this end, but a
surprising amount of work follows from the following fact of Euclidean
geometry, which is known by schoolchildren:

Two points determine a unique line.

More accurately, we will use the more sophisticated version of this fact that
says:

Fact: Any n points with different z-coordinates determine a unique
(n — 1)st-degree polynomial y = a, 121 + ...+ a1 + ao.

In the following section, we discuss why this fact is true and mention a
couple of approaches to proving it. We then discuss how Reed and Solomon
[1960] used it to create a family of error-correcting codes. In our opinion,
Reed-Solomon codes are an underappreciated application of mathematics
that is both extremely useful and very accessible to any student who has
made it through the opening weeks of a linear algebra course.
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Polynomial Interpolation

That through two points a line can be drawn is Postulate 1 of Euclid; that
the line is unique, we know from analytic geometry applied to Euclidean
geometry. But why is it that three points with distinct z-coordinates deter-
mine a unique quadratic equation?

We start by sketching one possible answer: In drawing a parabola, you
could choose any two z-values to be the zeros. For example, let’s choose
the values z; = —1 and z; = 3. As you can see in Figure 1, many different
parabolas have these two zeros. In fact, for any constant a, the curve y =
a(z + 1)(z — 3) passes through the two points (—1,0) and (3, 0).
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Figure 1. Many parabolas through three specified points.

According to the Fact cited above on p. 189, we can choose one more
point so as to obtain a unique quadratic equation. Since we did not choose
z = 0 as either of the zeros, we could choose the y-intercept as the third
point. In particular, we could specify that the curve pass through (0, 3),
finding then that the unique quadratic equation passing through these three
points is y = —z% + 2z + 3. (As an interesting aside, think about what
would happen if we chose (0, 0) as the y-intercept.)

This approach of determining a unique curve by picking points based
on their z-coordinates generalizes to situations where we wish to have a
parabola that does not have two distinct zeros or where we specify more
than three points (and therefore are considering polynomials of higher de-
gree). However, writing down a careful general proof of the Fact, using
analytic geometry, can be tedious.

A different approach to proving the Fact in general, which many stu-
dents see in a course in linear algebra, is to show thatas long as zy,...,Z,
are distinct, the following Vandermonde matrix is invertible:

~a
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Showing that this matrix is invertible is an exercise in many linear alge-
bra texts [Lay 2003, Ch. 2; Shifrin and Adams 2002, Sect. 1.6; Leon 1980,
Sect. 1.4]. From the invertibility, it follows that for any choice of y1,- .-, Yns

the following linear system has a unique solution @y, ..., @t
1 2 =2 - =t ao n
1 2 @2 -+ @™t ay Y2
1 z, T2 - m"n—l ", Ap—1 Yn

The uniqueness of the a;s yields a unique polynomial
P(z) = a1z ' +... + a1z + ao

of degree at most n — 1 that passes through the desired points (@i, ys)-

In addition to being useful in curve interpolation, the Vangiermonde
matrix also shows up in discrete Fourier transforms, representation theory
of the symmetric group, and many other places in mat}_lematlcs.. )

Finding the a;s can be done quickly via Lagrange interpolation, which
defines the polynomial by the following formula:

P(z) ZZ%Hﬁ-

=1 i

Coding Theory

The goal of coding theory is to build enough redundancy into a message
so that errors can be corrected while keeping the message reasonably short.

For example, let’s say that you want to transmit the message 8675309
but you are worried that the line is too noisy, so that errors are hkely‘to
occur. One naive approach would be simply to transmit the message fwice.
If the message received is 8679300/8695329, then one can easily tell that
errors have occurred because the two transmissions don’t exactly match
up. For example, we can be sure that there'is an error in the third position
in (at least) one of the two transmissions. Unfortunately, we have no way
of knowing which message is correct in this position. _

The slightly less naive approach of transmitting the message three times
may allow the recipient to correct errors. Assume that the message received




'
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is 8679300,/8695329/8775309. Decode by majority rule: If two or all three
of the transmissions agree in a position, assume that they are correct, since
the odds of the same error occurring in the same place twice will be small.

You have probably hit on the next generalization: If you want to be
surer that the message gets through correctly, repeat it more times! This
will certainly work, but at the cost of increasing the transmission length,
taking up more bandwidth (or cellphone minutes).

However, there are many other approaches to error correction; many use
sophisticated mathematics in complicated ways. An interested beginner
might start investigating in Gallian [1993] or Roman [1997].

Reed-Solomon Codes .

Reed-Solomon codes require only simple polynomial interpolation to
correct errors more efficiently than the naive approach above.

Example. Assume that we want to communicate the message (1, ~2, —1).
We firstencode this message as the coefficients of a polynomial: f(x) =

z? — 2z — 1. Next, we compute the value of this polynomial at a set
of prescribed points and transmit those values. For our example, we
assume that the pre-chosen points are 2 = 0,1, 2, 3, 4; so we compute
F(0) = —1, f(1) = =2, f(2) = —1, f(3) = 2, and f(4) = 7 and trans-
mit the message C; = (—1,-2,—1,2,7). :

If there are no errors, the recipient of the message can use Lagrange
interpolation or other methods to discover the unique quadratic through
the points (0, —1), (1,-2), (2,~1), (3,2), and (4,7) and recover the
intended message (1, —2, —1) as its coefficients.

To see the advantage of this method, note what will happen if
one of the values in the message is received incorrectly. For example,
maybe the message received is C = (—1,-2,1,2,7).

If we plot the resulting five points (0, —1), (1, —~2), (2, 1), (3, 2), and
(4,7), we can easily detect that there has been an error in transmission,
because the points no longer lie on a parabola (Figure 2). Moreover,
we can correct the error by finding a polynomial that fits as many of
the points as possible.

If we fit the first three points to a quadratic polynomial (using,
for example, Lagrange interpolation), we get f(z) = 22* — 3z — 1,
which misses the last two points (Figure 3).

Similarly, if we fit the middle three points to a quadratic polyno-
mial, we get f>(x) = —z? + 6z — 7, which misses the other two points.

However, if we fit the first, second, and fourth points to a quadratic
polynomial, we get f(z) = 22 — 2z — 1, whichalso passes through the
fifth point! And this is the best that we can do, since all five points do
not lie on a quadratic.

—
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Figure 2. Because no parabola fits, there is an error.

Figure 3. A parabola that fits the first three points does not fit the ast two.

Moreover, because any three points lie onaunique quadraticcurve,
there is no quadratic that passes through any other set of four of the
points. Thus, this process recovers the initial message. Comparing
this example to the naive approach of sending the message twice,
here we send a shorter message (five characters instead of §1x) :and
can correct an error instead of just identifying it. This capability gives
some indication of the strength of Reed-Solomon codes.

enerally, suppose that we have a message of length k but the
techlvril?cr; %apacityyandptgme to send a transmission of length n. The Reed-
Solomon approach begins by fixing n numbers Ty, - - -, Tn- An n-tupleis a
k-valid codeword if it can be generated by evaluatinga polynomial of degree
strictly less than k at these n predetermined points.




194 The UMAP Journal 31.3 (2010)

IS £y
prrr v terr o

r

°

TTTT{TTTTI[TATTI[TTITT]
1 3 4
x

Figure 3. A parabola that fits the first, second, and fourth points also pas through the fifth
point—but not through the third. P passes through the ff
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Example. If n =4, 2, = 1, 2, = 2, 23 = 3, and z4 = 4, then

o (—2,—1,0,1)isa2-valid codeword, becauseitis (f(1), £(2), f(3), f(4))

where f(z) = z — 3 is a linear equation; but

e (0,0,0,1)is nota 2-valid codeword, because there is no linear or
constant equation with f(1) = f(2) = f(3) =0and f(4) = 1.

To send our message, we construct a polynomial g(z) of degree k — 1.
We evaluate the polynomial at n distinct predetermined points z, ..., Zs
and transmit the message

(g(acl), . ,g(zn)).

Because any two k-valid n-tuples agree in at most k — 1 coordinates—if two
polynomials of degree less than k agree in k points, then they are the same
polynomiall—the n-tuples must disagree in at least n — (k — 1) of the n
preselected points. Therefore, changing fewer thann — k + 1 of the values
in the n-tuple will result in an invalid codeword, and we can thus detect up
ton — k errors.

To see this in an explicit example, try changing any two of the values in
the 2-valid 4-tuple (-2,-1,0,1)—you will se% thgat t}}:e resulting 4-tuple is
invalid! Moreover, if you change only one of the values, I can correct it by
finding the unique line through the other three points (I can do this even if
I do not know which point you changed, since only one set of three of the
four points will be collinear!). In this manner,

Reed-Solomon codes can correct up to I_"T“"J errors.
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Hamming Distance

One way to reconceptualize the situation is to view each k-valid n-tuple
as a point in n-dimensional space. However, instead of measuring the
distance between two points in the normal Euclidean way, we define a new
distance measure, the number of coordinates in which they disagree, called
the Hamming distance, after Richard Hamming, who is often credited as the
father of coding theory.

In this conceptualization, two k-valid points obtained from polynomi-
als as on p. 194 must be at least n — k + 1 apart in Hamming distance.
Therefore, from any given point z, there is at most one k-valid point whose
distance is at most | 25% | from z. Indeed, if there were two k-valid points
y and z whose distances were less than or equal to | 2%, then the trian-
gle inequality would tell us that the distance between y and z was at most
2| 2 |, which is strictly less thann — k + 1.

In particular, if we start at a k-valid point and make changes in up to
| 25% ] positions, our original point will be the only k-valid point within a
radius of | 25 |. Therefore, we can correct up to this number of errors by
moving to the unique k-valid point thatis closest to the received codeword.

Generalizations

This approach can be generalized further to find other sets of valid code-
words that work nicely, known as AG-codes, which were first developed by
Goppa [1981]. The curve-interpolation approach starts with a polynomial
of given degree, defined everywhere on the z-axis and with a single pole
of fixed order at = = 0o. More-general AG-codes look at functions on other
curves with prescribed zeros together with points (poles) where the func-
tion is allowed to be undefined but where the pole has a fixed order. The
general idea is that by evaluating these functions at n different points on
the curve, you get a codeword of length n. There may be other valid code-
words, depending on the genus of the curve and the set of prescribed zeros
and points where the function is not defined. Depending on the choices
of curve and functions, there may also be efficiencies (or a lack thereof)
in encoding and decoding. Fully understanding this approach involves
learning some algebraic geometry as well as some analysis. An excellent
introduction is Walker [2000].

There are other approaches to constructing codes. In fact, many people
would say that the real goal of coding theory is to define large sets of points
in n-dimensional space so that they are efficiently packed, with a large
minimum distance but a small total volume. Sphere packing is a long-
studied problem with many other applications. For a full discussion, see
Pfender and Ziegler [2004].
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