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Abstract
In today’s technologically driven world, there is a need to better understand the ways that common computer
malfunctions affect computer users. These malfunctions may have measurable influences on computer user’s
cognitive, emotional, and behavioral responses. An experiment was conducted where participants conducted
a series of web search tasks while wearing functional nearinfrared spectroscopy (f NIRS) and galvanic skin
response sensors. Two computer malfunctions were introduced during the sessions which had the potential to
influence correlates of user trust and suspicion. Surveys were given after each session to measure user’s
perceived emotional state, cognitive load, and perceived trust. Results suggest that f NIRS can be used to
measure the different cognitive and emotional responses associated with computer malfunctions. These
cognitive and emotional changes were correlated with users’ self-report levels of suspicion and trust, and they
in turn suggest future work that further explores the capability of f NIRS for the measurement of user
experience during human-computer interactions.
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In today’s technologically driven world, there is a need to better understand the ways that common computer malfunctions affect
computer users. These malfunctions may have measurable influences on computer user’s cognitive, emotional, and behavioral
responses. An experiment was conducted where participants conducted a series of web search tasks while wearing functional near-
infrared spectroscopy (fNIRS) and galvanic skin response sensors. Two computermalfunctionswere introduced during the sessions
which had the potential to influence correlates of user trust and suspicion. Surveys were given after each session to measure user’s
perceived emotional state, cognitive load, and perceived trust. Results suggest that fNIRS can be used to measure the different
cognitive and emotional responses associated with computer malfunctions.These cognitive and emotional changes were correlated
with users’ self-report levels of suspicion and trust, and they in turn suggest future work that further explores the capability of
fNIRS for the measurement of user experience during human-computer interactions.

1. Introduction

As the lines between humans and computers become blurred,
research is beginning to measure users’ experiences while
interacting with a technology or information system. In par-
ticular, dealing with computermalfunctions that involve slow
internet connectivity, or those that involve the introduction
of malware onto one’s computer system, has unfortunately
become a somewhat regular part of users’ interactions with
computers. Computer users’ cognitive load and emotional
state may change depending on the type and severity of
the malfunction. Additionally, one’s perceived trust in, or
suspicion of, the computer system may be correlated with
these changes in cognitive load and emotional state.

It is commonplace to use surveys to acquire users’ self-
reports of their cognitive load and psychological states during

human-computer interactions. For example, the NASA-TLX
is one of the most commonly used surveys for assessing
workload [1]. As another example, when attempting to
measure self-report emotional states, users often complete
surveys such as semantic differentials, the Self-Assessment
Manikin, or the Positive and Negative Affect Schedule [2,
3]. The vast majority of trust research to date has also
relied on surveys to assess people’s trust in others [4, 5].
Although this method of measurement is commonplace and
valuable for understanding and measuring changes in user
states, it is limited by many of the well-known drawbacks of
subjective, self-report measures. For example, subjects may
have different frames of reference when completing surveys;
further, survey responses correlate only moderately with
actual behavior and/or others’ perceptions of the subject’s
behavior [6]. Also, subjects’ use of rating scales is prone to
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2 Advances in Human-Computer Interaction

distortion due to social desirability [7], and surveys and self-
reports are often administered after a task has been completed
(postdictively). They are thus limited in their capacity to
accurately collect valuable insight into the users’ changing
experiences throughout a task.

To compensate for the shortcomings of subjective, self-
report techniques, in this study we use noninvasive brain
measurement techniques to measure changes in user states
objectively and in real time. Such measurement techniques
have emerged in the literature with fMRI and the elec-
troencephalograph (EEG) being used to measure workload
and emotional states in human-computer interactions [8–
14]. Furthermore, some researchers have recently used fMRI
and associated brain activity to measure aspects of trust and
distrust [15, 16]. Although fMRI provides valuable informa-
tion about cognitive functioning in the brain, the device is
quite constricting. It requires subjects to lie still in a large
magnet and is extremely expensive [17, 18]. Although fMRI
results suggest that we can measure trust objectively by
assessing brain functioning, the tool cannot be used outside
the research lab, limiting its uses formonitoring trust inmore
operational, real-world situations.

In order to enable the measurement of cognitive load,
emotion, and the correlated constructs of trust and suspicion
in real-world contexts, we employed a new, noninvasive
brain sensing technique called functional near infrared spec-
troscopy (fNIRS) to make real-time, objective measurements
of users’ mental states while they conduct tasks in operational
working conditions. The fNIRS device (shown in Figure 1)
is easy to set up, lightweight, comfortable, and portable, and
it can be implemented wirelessly, allowing for use in many
settings.

One overarching goal in this study was to demonstrate
the feasibility of using fNIRS to objectively measure users’
states in real time while they work with, and interact with,
computer systems. Towards these ends, we first provide a
summary of the literatures on workload, emotional state,
trust, and suspicion. We also describe specific research that
guided our experimental goals and hypotheses [19]. We then
describe our protocol, data analysis techniques, findings,
and interpretations. We conclude with a discussion of the
implications of this work for future research.

2. Background and Literature Review

2.1. Workload and Emotional State. The term cognitive work-
load is used in literature from various fields. Many describe
cognitive workload in general terms, for example, as the ratio
of the cognitive resources needed to complete a task to the
cognitive resources available from the human operator [20].
Some view workload as a measure that can be determined
subjectively, as done with the NASA TLX [1]. Others view
workload via performance measurements, focusing on the
operator’s performance on a given task to determine levels of
cognitive workload [20]. Yet others view cognitive workload
as a measure of the overall activation measured by various
brain imaging devices while subjects complete some task
[8, 21, 22]. Cognitive psychologists note that there is not one

Figure 1: A subject wearing a 52-channel fNIRS device.

area in the brain that activates when a person is experiencing
mental workload. However, these researchers look at specific
areas in the brain to see which areas are activated while
subjects perform simple tasks [23–25]. We have used fNIRS
to measure spatial and verbal working memory load, as well
as response inhibition load and visual search load [11, 12].

Regarding emotional reactions, most researchers agree
that emotions are affective states that exist in a short period
of time and are related to a particular event [26, 27]. From a
psychological point of view, emotions are often mapped to
points in a two-dimensional space of affective valence and
arousal. Valence represents overall pleasantness of emotional
experiences and arousal represents the intensity level of
emotion, ranging from calm to excited [2, 28, 29]. These 2
dimensions enable researchers to differentiate among four
categories of emotions. Some researchers even differentiate
among nine categories of emotion by including a neutral
section on both the valence and arousal axis. However, in
principle, an infinite amount of other arbitrary numbers of
categories can be defined [30].

2.2. Trust and Suspicion

2.2.1. The Agent of Trust and Suspicion. There is substantial
literature exploring interpersonal trust—often in the man-
agement and other social science domains [4, 31–35] As the
interactions between humans and their computer interfaces
become increasingly “personal,” research in the information
technology (IT) realm is broadening this context to explore
an individual’s trust and distrust based on interactions not
onlywith another person, but alsowith other types of external
agents (e.g., computers and information systems). Across the
literature on trust and automation [35–37], we note that the
concept of trust has been (or can be) applied to trust in

(i) the operator of another IT system,
(ii) the programmer/designer of the IT system,
(iii) the programmer/developer of the algorithms used in

the software,
(iv) the software itself (without reference to the program-

mer), and
(v) the hardware in the system.
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2.2.2. Trust (and Distrust). Rousseau et al.’s review on the
topic of trust in the management domain concluded that
there are many definitions of trust [31]. Mayer et al.’s
definition of interpersonal trust is most frequently cited
(including the three trustworthiness components of ability,
integrity, and benevolence) [32]. Rousseau et al.’s review
leads to a similar definition of trust; that is, “a psychological
state comprising the intention to accept vulnerability based
upon positive expectations of the intentions or behavior of
another” (page 395).This is consistent with Lyons et al.’s (2011)
recent definition in IT contexts, and we adopt it here, with
the modification that “another” can be “another person” or
“another agent” such as an IT system [19].

2.2.3. Suspicion. The construct of suspicion seems related
to trust and distrust, yet there is scant literature available
on this topic; let alone literature that considers suspicion
in IT contexts. Thus, we also investigate the concept of
suspicion, but in an exploratory manner. Based on work
in social psychology, marketing, communication, human
factors, and management, Bobko et al. [38] define state
suspicion as the “simultaneous combination of uncertainty,
perceived (mal) intent, and cognitive activity (searching
for alternative explanations or new data).” Note that a key
component of suspicion is uncertainty—and it occurs with
a negative frame (“concern”) that is linked to cognitive
activity regarding the uncertainty. In one of the few empirical
papers in this area, Lyons et al. preliminarily investigated
suspicion, trust, distrust, and an operator’s decision confi-
dence [19].They also stated that trust, distrust, and suspicion
are orthogonal constructs, although their conclusions are
potentially confounded by the referents used (e.g., suspicion
was about the subject’s particular computer, whereas trust and
distrust were about an IT system). As noted above, most, if
not all, measures of trust and distrust in the literature are
self-report assessments that ask the trustor to respond using
Likert scales or behavioral checklists. The scarce literature on
suspicion uses the same methodology [38].

2.3. Users’ Cognitive and Emotional Reactions to Computer
Malfunctions. When users are confronted with unexpected
stimuli during their human-computer interactions, we expect
them to have a negative emotional response, and we expect
a decrease in trust to be correlated with that emotional
response. In some scenarios, the usersmay become frustrated
with the computer (“This computer always freezes on me!”),
or in other instances they may even become concerned that
a malevolent agent has gained access to their computer (“I
think this website stole my credit card information!”). Both
examples imply that the computer user’s beliefs about the
cause of an unexpected stimulus will affect his or her physio-
logical response to that stimulus; that is, characteristics of the
unexpected stimulus moderate the physiological, cognitive,
and emotional responses.

Regarding potential emotional responses, Figure 2 shows
two variants of Russell’s circumplex model of affect, arguably
the most popular model depicting the arousal and valence
dimensions and their relation to emotional state [28].

Research states thatmost people’s neutral (a.k.a baseline) state
is located near point (0, 0) in Russell’s model [28].The current
study focuses primarily on the model to the left in Figure 2.
We symbolically place our hypotheses on the model in the
left panel of Figure 2, while the depiction in the right panel of
Figure 2 containsmore detailed semantic descriptors. Indeed,
note that our first example above (“this computer always
freezes on me”) was suggested as inducing user frustration.
In Figure 2, “frustration” is associated with high negative
valence, but only moderate arousal (see H1a in Figure 2). In
contrast, our second example above (“I think this website
stole my credit card information”) was suggested as inducing
user reactions of concern, alarm, and fear. In Figure 2, these
terms are associated with high arousal, but only moderate
negative valence (posited in Figure 2 as H1b).

With these depictions in mind, we hypothesize the
following.

H1a. If unexpected computer-generated stimuli are negative,
but minor, they will cause reactions similar to being frus-
trated and/or annoyed. More specifically, when compared to
a user’s baseline state, unexpectedminor negative stimuli will
be associated with a moderate increase in arousal and a large
decrease in valence, as indicated by the letter “H1a” in Figure 2.

H1b. If unexpected computer-generated stimuli are perceived
as severely negative, or they are attributed to possible mal-
intent by an external agent, they will cause individuals to
feel afraid and/or alarmed.More specifically, when compared
to a user’s baseline state, the presence of these unexpected
and severely negative stimuli will be associated with a large
increase in arousal and only a moderate decrease in valence, as
indicated by the letter “H1b” in Figure 2.

fMRI methods have recently been used to identify
neural networks in the brain that are associated with dif-
ferent semantic emotional states [39] and with Russell’s
2-dimensional valence/arousal model [40]. However, this
research remains in the nascent stage, and more work is
needed to understand the neural correlates of emotion. In
particular, the the neural correlates of mental states such
as fear or alarm (i.e., the regions associated with the “H1b”
label in Figure 2) remain largely unexplored in the research
literature. In the limited work that has been done with fMRI,
the emotional state of “fear” has been found to activate areas
in the dorsolateral prefrontal cortex (DLPFC), in the pre-
and supplementary motor cortex, and in Broca’s area [13].
Furthermore, research has found that high levels of stress
and arousal have a direct effect on Broca’s area [41]. Also,
activation in the orbitofrontal cortex has been linked to an
“alarm signal” that is sent by the brain in response to negative
affect, when there is a need to regulate the negative emotion
[42]. Lastly, much research has linked DLPFC activation to
the cognitive load associated with regulating one’s emotions
such as frustration or fear (i.e., the regions labeled with the
“H1a” and “H1b,” respectively, in Figure 2) [13, 17].

Although all of the above brain measurement research
was done with fMRI, fNIRS sensors, with a depth into
the brain of up to 3 cm, are capable of reaching Broca’s
area, the DLPFC, the supplementary motor cortex, and the
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Figure 2: Two schematics of Russell’s circumplex model of affect [28]. As we are less interested in semantic meaning than we are in the
physiological responses related to our experimental stimuli, we focus on the model to the left.

orbitofrontal cortex. This suggests that the neural correlates
relating to high arousal and moderately low levels of valence
can be measured noninvasively. This leads us to an instru-
mentation corollary to our first set of hypotheses:

H1 Corollary. The regions identified by H1a and H1b in
Figure 2 can be distinguished noninvasively, with fNIRS and
GSR sensors.

In addition to affective state, we also expect computer
malfunctions to affect users’ cognitive load (and to reduce
trust in a computer system). The overall cognitive load
required to perform a task using a computer is composed
of a portion attributable to the difficulty of the task itself
plus a portion attributable to the complexity of operating
the computer. In this regard, we follow Shneiderman’s theory
of syntactic and semantic components of a user interface
[43].The semantic component involves the workload needed
to complete the task. The syntactic component includes
interpreting the computer’s feedback and then formulating
and inputting commands to the computer. A goal in user
interface design is to reduce the mental effort devoted to the
syntactic aspects so that more workload can be devoted to
the underlying task, or semantic, aspects [11]. People prefer to
expend as little cognitive effort as possiblewhenworkingwith
a computer system, and well-designed systems are able to
minimize syntactic workload in order to meet this important
user goal.

Therefore, when a computer malfunctions, we expect to
see increases in the users’ cognitive load and a potential loss
of trust, as the user is forced to account for the shortcomings
of the computer. For example, if the computer is performing
slowly while a user tries to compose an email, the user may
need to use more verbal working memory load while she
keeps her train of thought andwaits for the computer to catch
up. Or if a user is working with a poorly designed software
program, he may continually have difficulties finding the
correct menu items and commands to achieve his desired
outcome. Accompanying his loss of trust in the software will
be an increase in cognitive load as he tries to navigate the
interface and complete his target task. Literature has also
shown that increases in negative affect are directly related
to increases in cognitive load [17, 44]. While this cognitive

load can take many forms in the brain, one form involves
activation in the DLPFC brain region, which has been linked
to the cognitively demanding effort involved in emotion
regulation [45].

This leads to our next hypothesis.

H2. Computer users will experience more cognitive load
when interacting with a malfunctioning computer than they
did when working on a properly functioning machine.

2.3.1. MRI Studies Related to Trust and Suspicion. Thecurrent
experiment focuses on the changing cognitive and emo-
tional state changes that result from two common computer
malfunctions. A secondary experimental goal is to explore
the way that users’ levels of trust and/or suspicion may
be related to these measured cognitive and emotional state
changes. Several brain regions that are of interest in trust
research relate to a paradigm called “theory of mind” (ToM;
Premack and Woodruff, 1978 [46]), which is concerned with
understanding how individuals attribute beliefs, desires, and
intentions to oneself and others. Researchers conducting
ToMstudies have found that the anterior paracingulate cortex
is activated when participants are deciding whether or not to
trust someone else [15, 16]. The anterior paracingulate cortex
is a subset of the anterior cingulate cortex, which can be
measured by fNIRS. Krueger et al. used fMRI to measure the
brain activity of pairs of people playing a classic trust game
[16].They found that building a trust relationship was related
to activation in the paracingulate cortex, which (as shown
in the ToM research stated above) is involved in the process
by which we infer another’s intentions. They also found that
unconditional trust was related to activity in the septal area,
a region that has been linked to social attachment behavior.
Dimoka constructed a study that mimics typical interactions
with e-bay sellers. She asked participants, while in an MRI
machine, to complete a series of purchasing interactions
with hypothetical “sellers” [15]. She noted that participant’s
thoughts when working with “low distrust” sellers were
associated with brain activation in the anterior paracingulate
cortex.
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In summary, the fMRI research presented in this sec-
tion suggests that higher brain activation in the anterior
paracingulate cortex will be associated with the process by
which users conduct the cognitively demanding process to
infer whether or not another person is trustworthy (actively
trying to infer another’s intentions). Because people tend
to be cognitive misers, they prefer to adopt truth (or lie)
biases that enable them to unconditionally trust (or distrust)
others and thereby reduce their cognitive load [47, 48].
Thus, we suggest that individuals tax the paracingulate cortex
when there is a need to place cognitive effort toward the
determination of an external agent’s intentions.This may also
indicate suspicion on the part of the user, because cognitive
activation (generation of alternative possible explanations
for observed behavior) is an important component of state
suspicion [38]. This leads to our third hypothesis.

H3. Increases in paracingulate cortex activity will be associ-
ated with increased suspicion in individuals as they conduct
the cognitively demanding process involved in inferring the
intentions of others.

Research has also suggested that if an individual is
uncertain about the intentions of another (or uncertain about
any number of other interactions within their environment,
and that uncertainty is perceived to have potentially negative
consequences), then anxiety will increase [14, 38]. Because
uncertainty is a component of state suspicion, and subsequent
anxiety is associated with increases in arousal (see Figure 2);
we further hypothesize the following.

H3a. Suspicion will be accompanied by an increase in
physiological indices of arousal.

2.3.2. The Utility of Functional Near-Infrared Spectroscopy.
Users in the brain imaging studies described above were
placed in cumbersome, expensive, and constricting fMRI
scanners during all studies.There is a need to study trust, dis-
trust, and suspicion, as well as their associated affective states,
while computer users conduct more naturalistic human-
computer interactions. To this end, we use the noninvasive
fNIRs and GSR sensors in our study.

The fNIRS device was introduced in the 1990’s to comple-
ment, and in some cases overcome, the limitations of the EEG
and other brain imaging techniques [49]. The fNIRS device
uses light sources in the wavelength range (690–830 nm) that
are pulsed into the brain. Deoxygenated hemoglobin (Hb)
and oxygenated hemoglobin (HbO) are the main absorbers
of near-infrared light in tissues during hemodynamic and
metabolic changes associated with neural activity in the
brain [49]. These changes can be detected by measuring the
diffusively reflected light that has probed the brain cortex
[21, 49, 50]. We have used fNIRS to successfully measure a
range of cognitive states [11, 12, 18, 51, 52] while computer
users complete tasks under normal working conditions and,
as noted above, one purpose of the current study is to further
explicate the utility of fNIRS measurements.

2.4. Experimental Design. Eleven individuals (4 males) par-
ticipated in this study (mean age = 20.2 years; SD = 0.603).

Participants were college students representing a range of
majors. Informed consent was obtained, and participants
were compensated for their time. All participants filled
out a preexperimental survey, which included demographic
information and computer usage queries. All participants
answered that they frequently used the Internet and had
previous experience shopping online. Our experimental pro-
tocol was designed to begin with the participant at a level of
normalcy and trust and to end with the participant in a state
of distrust.

2.5. Task and Manipulations. Participants were asked to
use the Google search engine to shop online for the least
expensive model of a specified bike. We chose this search
engine task because it involved a task with which most
subjects had previous experience (i.e., online shopping). Dur-
ing each session, subjects had fifteen minutes to search for
three specific bicycles online. Participants received financial
bonuses for finding bicycles priced below a given benchmark
price. Financial bonuseswere calculated as a percentage of the
subject’s discount on the benchmark price.Thus, participants
had incentive to continue searching for the lowest possible
price on all bikes during their entire 15 minute task session.
The participants were specifically instructed to use only the
Google search engine while searching for the bikes. The
participants were told that the objective of the study was to
measure workload levels as users navigate shopping websites.

Each participant completed this 15-minute-long task four
times over the course of four consecutive days. Participants
were told that there would be five such sessions, but as
described below, our intervention on day four obviated the
need for a fifth session. During each session, the participant
was placed in a small room containing the fNIRS device and
a standard desktop computer to use while shopping. Placing
the participant in a room alone was intended to distance
the subject from the researchers. This distance prevented the
subject from relying on the researchers when manipulations
occurred (see below). Also in the participant’s room was a
“Call Researchers Button” that would alert the researchers
if assistance was required. Participants were told to use the
button only if they felt that the experiment needed to be
stopped or if they required researcher intervention (i.e., if
they felt uncomfortable with the measurement devices, or if
they wanted to end the study for some reason).

2.5.1. Days One and Two: Baseline. During the first two
days, each participant conducted his/her 15-minute-long task
without any intervention on the part of the researchers; that
is, participants searched for the lowest price of three bikes
that were assigned to them without any other intervention.
The purposes of these two sessions were to (a) establish
participant familiarity with both the computer system and
with the researchers and (b) establish positive, consistent
interactions during the computer tasks. We felt that these
two aspects would create a sufficient level of trust that
could be weakened by subsequent manipulations (and our
manipulation check confirms this; see next section).
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2.5.2. Day Three: Slowed Internet Manipulation. This manip-
ulation was created to target Hypothesis 1a (among others),
where the unexpected manipulation was negative, but minor.
During the third 15-minute-long session we let users work
for several minutes on the search task before introducing
any changes. Our manipulation followed a set of carefully
scheduled variations of the speed of the Internet. Levels of
Internet speed were based upon a previous pilot study. The
levels were chosen because they were overt enough to cause
a noticeable delay in the Internet speed, yet subtle enough to
remain within a speed range that subjects considered to be
a frustrating, but believable, speed. Thus, the manipulation
on day three was intended to induce frustration and to lower
users’ trust in the computer system. The lowered trust was
expected because the slowdown could create reductions in
perceived ability/integrity of the system.

2.5.3. Day Four: Malware Manipulation. This manipulation
was created to test Hypothesis 1b, where the stimuli are
perceived as severely negative, or they are attributed to
malintent. On day four, subjects again had to shop for three
bicycles online. No manipulations were introduced while
searching for the first two bikes (which took approximately 10
minutes out of the day four session).We did this to reestablish
any trust thatmay have been lost during the day three Internet
speed manipulation. However, on this fourth day, the third
bicycle presented to subjects was fictitious, and it could only
be found on our custom website, “XtremeBestPrice.com”
(this website is no longer accessible online as we did not want
people outside of our study to stumble upon the fakemalware
site). This website was Google-indexed, and we purposely
made some common web page design flaws (e.g., flashing
animations, a few misspelled words) on the page in order to
lower its trustworthiness (cf. Lee and See [35]). There was
no indication that the researchers were responsible for its
existence. We also wrote about our website in several web
forums in order to add legitimacy to the website. When
participants made their way to our website, they did so
using the same methods that they had previously used on
many occasions. As the participant navigated around our
site, a series of pop-ups and downloads were automatically
triggered, eventually launching a “Blue Screen of Death”
to indicate a computer crash (this process is depicted in
Figure 3). There was no way to exit this blue screen, so
participants had little option but to call the researchers into
the room using the “Call Researchers Button”.

2.5.4. Debriefing and Suspicion Exit Survey. At the end of the
fourth day, we debriefed subjects about the true nature of our
study. After explaining that we had indeed caused the Internet
to slow down on the third day and that we had created the
fake xtremebestprice.com website, we asked subjects (via an
open-ended survey) whether or not they had suspected that
we, the researchers, rather than the internet connection or the
website, were the cause of the computer glitches.

2.6. Equipment Set-Up. We collected fNIRS data using
a Hitachi ETG-4000 near-infrared spectroscopy device.

Figure 3: Screenshots of the day four manipulations. Figure 3(a)
shows the homepage of xtremebestprice.com, 3(b) shows the pop-
ups that occur on the site, and 3(c) shows the “blue screen of death”.

Participants wore a cap with 52 channels that take mea-
surements two times per second. As fNIRS equipment is
somewhat sensitive to movement, participants were placed
at a comfortable distance from the keyboard and mouse
and were asked to minimize movement throughout the
experiment. Prior research has shown that this minimal
movement does not corrupt the fNIRS signal with motion
artifacts [53]. All fNIRS data were synchronized by placing
marks in the datasets whenever a task started or ended, or
whenever a manipulation occurred. We collected GSR data
using a wireless Affectiva Q-Sensor bracelet. We examined
the participants’ electrodermal activity (EDA) with the GSR
sensor.

2.7. Survey Instruments. At the end of each 15-minute session,
participants filled out postsession surveys that included
the NASA Task Load index (TLX) for subjective workload
assessment, a semantic differential survey [1], and the Self-
Assessment Manikin (SAM) for valence and arousal emo-
tional state assessment. Lang’s SAM [2] has been used to
identify a number of emotional states that fall on the 2-
dimensional valence-arousal schema developed by Russell.
Semantic differential surveys measure the connotative mean-
ing of concepts. Participants were asked: “Place a mark on
each scale to indicate your feelings or your opinions regarding
the time you spent today working on the computer and
browsing through the various websites searching for bikes.”
They then had to indicate how they felt during that day’s
tasks by placing a mark on a scale defined by two bipolar
adjectives (for example, “Adequate-Inadequate,” “Enjoyable-
Frustrating,” or “Difficult to use-Easy to use”). Embedded
within a list of adjective pairings was the adjective pairing of
“Trusting-Distrusting”. We included this pairing within the
longer list to subjectively gauge levels of trust in a way that
would not cause users to become suspicious of our research
paradigm.

2.7.1. End of Experiment Survey. As described previously,
after the final experiment session and the subject debriefing,
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we asked the subjects to complete a final postsurvey that
asked them three questions (did they notice a slow-down on
day three?; if so, to what did they attribute the slow-down?;
during day four, what were their thoughts about the causes of
the computer issues?).

2.8. Measures of Valence and Arousal. Lang’s Self-Assessment
Manikin (SAM) survey has been used by many researchers
to acquire subjects’ self-report valence and arousal. From an
objective, real-time measurement point of view, the galvanic
skin response (GSR) sensor is also capable of measuring
arousal. GSR sensors measure changes in electrical resistance
across two regions of the skin, and the electrical resistance
of the skin fluctuates quickly during mental, physical, and
emotional arousal. This change in the skin’s electrodermal
activity (EDA) can be used to measure arousal in individuals,
although not valence. Despite this limitation, GSR has been
used in controlled experiments to measure arousal while
participants experienced a variety of emotions such as stress,
excitement, boredom, and anger [27, 54].

2.9. Manipulation Checks. We checked our manipulations by
reviewing participant responses to the postexperiment open-
ended survey and by analyzing the subject results on the post-
session surveys. All participants reported that they believed
the malware they encountered (the malware manipulation)
was the result of their visit to amalevolentwebsite, which they
believe that they had stumbled across on their own via their
Google searches. The slow internet manipulation introduced
on day three received mixed responses from participants.
Five participants noted feeling suspicious of the researchers
during the third experiment session—they suspected that we
were behind the slow internet manipulation.We examine the
data from this subset of subjects at the end of this paper.

3. Results

Survey, GSR, and fNIRS data were recorded for all 11 par-
ticipants. Figure 4 provides a graph of these trends, averaged
across subjects, over the course of days two, three, and four.

We aimed to determine whether or not there were sta-
tistically significant differences between the baseline, slowed
internet manipulation, and malware manipulation sessions.
We made statistical comparisons of our survey, GSR, and
fNIRS datasets. All 𝑡-test results are available in Table 1 and
they are discussed in the analysis section of this paper. Paired
comparison 𝑡-tests were conducted on our postsession survey
responses.

The GSR data were analyzed using paired sample one-
tailed 𝑡-tests to compare the electrodermal activity (EDA)
values before and after targetmanipulations. On day three, we
compared EDA immediately before the onset of the slowed
internet manipulation and then 100 seconds after the slowed
internet manipulation began. GSR data for two subjects were
discarded due to poor contact with the skin on the third
measurement day and substantialmotion artifacts in the data.
On day four, we used a paired sample one-tailed 𝑡-test to
compare the EDA values immediately before the onset of

Self-report survey results
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Figure 4: Self-report values after the baseline, slowed internet
manipulation, and malware manipulation.

the faux computer virus manipulation and then immediately
after the ‘Blue Screen of Death’ appeared for each subject.
Data for three subjects were discarded due to poor contact
with the skin on the fourth measurement day and substantial
motion artifacts in the data.Therefore, results were computed
for the remaining eight subjects’ data.

We used the NIRS SPM MATLAB suite of tools to
analyze the fNIRS data [55]. We first converted our raw
light intensity data into relative changes of oxygenated (HbO)
concentrations. We then preprocessed all data using a band-
pass filter (between 0.1 and 0.01Hz) to remove noise and
motion artifacts. We used a general linear model (GLM)
to fit our fNIRS data. Because the GLM analysis relies on
the temporal variational pattern of signals, it is robust to
differential path length factor variation, optical scattering,
or poor contact on the head. By incorporating the GLM
with a 𝑃-value calculation, NIRS-SPM not only enables
calculation of activation maps of HbO but also allows
for spatial localization. We used Tsuzuki’s 3D-digitizer-free
method for the virtual registration of NIRS channels onto the
stereotactic brain coordinate system. Essentially, this method
allows us to place a virtual optode holder on the scalp
by registering optodes and channels onto reference brains.
Assuming that the fNIRS probe is reproducibly set across
subjects, the virtual registration can yield as accurate spatial
estimation as the probabilistic registration method. Please
refer to the following paper for further information [56].
Based on Tsuzuki’s virtual anatomical registration findings,
we identified the functional regions of the brain that were
activated during the slowed internet manipulation. The top
of Figure 5 shows that areas with significantly higher HbO
were the Frontopolar area and the Dorsolateral prefrontal
cortex (DLPFC). For day four, the bottom of Figure 5 shows
the area of the brain where HbO significantly increased when
subjects transitioned from the control time (searching for
bikes with no manipulations) to the virus manipulation (i.e.,
high arousal and, presumably, alarm).
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Table 1: 𝑃 values for 𝑡-tests comparing the effects of the manipulations on the dependent variables.

Distrust (↑) Workload (↑) Valence (↓) Arousal (↑) GSR-EDA (↑) fNIRS HbO (↑)
Comparison between baseline and
the slowed Internet manipulation
sessions

0.095 0.001∗ 0.003∗ 0.018∗ 0.002∗ DLPFC, frontopolar
region

Comparison between baseline and
the malware manipulation sessions 0.006∗ 0.004∗ 0.120 0.003∗ 0.49∗

DLPFC, orbitofrontal
cortex, broca’s area,
frontopolar region

Distrust (↑) Workload (↓) Valence (↑) Arousal (↑) GSR-EDA (↑) fNIRS HbO∗

Comparison between slowed
Internet manipulation and malware
manipulation sessions

0.084 0.074 0.105 0.035∗ 0.19 N/A

∗indicates statistical significance. Note that 𝑛 = 11 for all comparisons, except the GSR data, which is noted above.

The brain regions that showed significant activation
during the malware manipulation were the frontopolar area,
DLPFC, orbitofrontal area, and the pars triangularis Broca’s
area. Figure 5 shows the results of our statistical analysis
on the fNIRS data transposed onto a standard brain. These
results are also noted in an abbreviated form in Table 1.

4. Interpretation and Analysis of Hypotheses

Our first set of hypotheses stated the following.

H1a. If unexpected computer-generated stimuli are negative,
but minor, they will cause reactions similar to being frus-
trated and/or annoyed. More specifically, when compared to
a user’s baseline state, unexpectedminor negative stimuli will
be associated with a moderate increase in arousal and a large
decrease in valence, as indicated by the letter “H1a” in Figure 2.

H1b. If unexpected computer-generated stimuli are perceived
as severely negative, or they are attributed to possible mal-
intent by an external agent, they will cause individuals to
feel afraid and/or alarmed.More specifically, when compared
to a user’s baseline state, the presence of these unexpected
and severely negative stimuli will be associated with a large
increase in arousal and only amoderate decrease in valence, as
indicated by the letter “H1b” in Figure 2.

H1 Corollary. The regions identified by H1a and H1b in
Figure 2 can be distinguished noninvasively, with fNIRS
and/or GSR sensors.

The survey data shows an increase in frustration and
arousal and a decrease in valence. Furthermore, the survey
data suggests that a loss in trust was correlated with these
emotional changes (although the change was not statistically
significant; see Table 1). Figure 6 shows the average valence
and arousal reports for days two, three, and four overlaid onto
Russell’s circumplex model. The slow Internet and malware
manipulations had their expected effect on participants, with
the self-report valence and arousal scores for the slow internet
manipulation residing in the region of H1a and the malware
manipulation residing in the region of H1b.

The GSR data are consistent with the arousal survey data,
indicating that subjects’ level of arousal increased during the

frustrating, slowed internet manipulation. This increase in
arousal while frustrated also appears in the previously noted
research on arousal and emotion. Furthermore, the fNIRS
data shows that this frustrating manipulation was accompa-
nied by an increase inDLPFC and frontopolar activation.The
DLPFC is involved in working memory, emotion regulation,
and self-control [57]. The frontopolar and DLPFC findings
are consistent with a wealth of neuroscience research that ties
together negative affect (such as frustration) with a need to
conduct emotion regulation andwith an increase in cognitive
load.

The malware manipulation was designed to elicit alarm
and lower trust. The survey data shows that a significant
increase in self-report frustration and arousal, and a decrease
in self-report valence, are associatedwith themalwaremanip-
ulation. The GSR data are consistent with the arousal survey
data, indicating that subjects’ level of arousal increased during
the alarmful malware manipulation. Additionally, survey
data suggests that a statistically significant loss in trust was
reported after the malware manipulation (again, see Table 1),
indicating that trust was correlatedwith these emotional state
changes.

The fNIRS data shows that the malware manipulation
was accompanied by an increase in brain activation [45] in
DLPFC, pars triangulate Broca’s area, and the orbitofrontal
cortex. Researchers believe that the pars triangulate Broca’s
area is responsible for helping humans to turn subjective
experiences into speech. Research has found that high levels
of arousal (presumably related to alarm if valence is negative)
have a direct effect on Broca’s area [41]. It is possible that
the alarm experienced by our users caused an increase in
activation of Broca’s area while they attempted to find words
to comprehend what was occurring. All 11 subjects did use
the “Call Researcher” button after they saw the “Blue Screen
of Death,” and all 11 subjects reported in their postexperiment
interview that they truly believed a virus had been placed on
their computer by the xtremebestprice.com website. Anec-
dotally, we noted the difficulty in producing speech during
this condition when one subject simply repeated “What?”
again and again to himself in a slow manner during the
virus manipulation. The DLPFC, as mentioned previously,
plays a role in emotion regulation and has been found to
be activated during negative affect situations [45]. Lastly, the
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ΔHbO. (𝑛 = 11). (b) Significant areas of
activation while subjects encountered the computer virus (𝑛 = 11).
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Figure 6: Valence and arousal reports for each session are overlaid
on Russell’s circumplexmodel.We subtracted the baseline (day two)
arousal and valence measures from days two, three, and four to shift
the data so that baseline was at point (0, 0) in Russell’s model.

increase in activation in the orbitofrontal cortexmakes sense,
as activation in that region has been linked to high stress
situations [42, 45, 58].

We also note that there was an increase in EDA during
both manipulations (as compared to baseline), but unfortu-
nately the GSR data was not able to significantly differentiate
between the day four (malware) and day three (slow Internet)
user states. However, the fNIRS was able to distinguish
between the user states in these two conditions. The slow
Internet manipulation was associated with increased DLPFC
and frontopolar activation, while the malware manipulation
was associated with increased activation in Broca’s area, the
DLPFC, the frontopolar region, and the orbitofrontal cortex.

The activation in these specific brain regions was somewhat
expected, as prior research (described in the literature review
section) has tied these regions to emotional states such as
alarm, frustration, and stress.

Our first set of hypotheses were thus supported by our
results, affirming the notion that it is feasible to not only (1)
identify the emotional effects of the computermanipulations,
but also (2) distinguish between minor and major negative
stimuli via subjects’ differential emotional reactions. And,
by using the fNIRS device, this distinction can be made
relatively noninvasively, while users work on their computer
system under normal working conditions.

Our second hypothesis stated that computer users will
experience more cognitive load when interacting with a
malfunctioning computer than they did when working on a
properly functioning machine.

Our postsurvey results and our fNIRS results support
this hypothesis. The NASA-TLX self-report workload scores
showed a significant increase after the slowed internet
manipulation, which was also associated with a reduction
in trust (see Table 1). The NASA-TLX scores also increased
significantly after subjects’ trust was lowered by the mal-
ware manipulation. Furthermore, the fNIRS data during
the slowed Internet manipulation and during the malware
manipulation showed that the frontopolar region, an area
associated with cognitive load, was significantly higher dur-
ing each of these manipulations than compared to baseline
levels. The frontopolar region is involved in much of the
higher order cognitive processing that makes us human, such
as executive processing, memory, and planning. Although
the elusiveness of this region makes it difficult to determine
specific functionality, we can safely assume that the increased
HbO in this region during the slowed internet manipulation
indicates an overall increase in cognitive load. To repeat, our
second hypothesis was supported by our surveys and by the
fNIRS device.
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Table 2: 𝑃 values for 𝑡-tests comparing the effects of the day 2 versus day 3 manipulations on the dependent variables in the study.

Groups Self-report measures Sensor measures
Distrust (↑) Workload (↑) Frustration (↑) Valence (↓) Arousal (↑) GSR-EDA (↑) fNIRS HbO (↑)

Not suspicious 0.038∗ 0.029∗ 0.007∗ 0.026∗ 0.104 0.15 Middle temporal gyrus∗, DLPFC∗

Suspicious no change 0.003∗ 0.008∗ 0.038∗ 0.035∗ 0.012∗ Paracingulate cortex∗
∗indicates statistical significance.

4.1. Exploratory Analysis of Suspicion. Hypotheses 3 and 3a
were hypotheses about the concept of suspicion.

H3. Increases in paracingulate cortex activity will be associ-
ated with increased suspicion in individuals as they conduct
the cognitively demanding process involved in inferring the
intentions of others.

H3a. Suspicion will be accompanied by an increase in physi-
ological indices of arousal.

Given the dearth of research on the construct of suspi-
cion, we conducted some exploratory analyses on this con-
cept. After subjects were debriefed about the true nature of
the study we asked subjects whether or not they had become
suspicious that the researchers were actually responsible for
the manipulations. All subjects reported that they believed
the malware manipulation on the fourth day, was truly a
computer virus that they had stumbled across. Interestingly,
five subjects reported that they felt suspicious of the exper-
imenters during the slowed Internet manipulation on the
third day. One subject described his/her reaction as: “I felt a
little suspicious that the experimenters were messing around
with the computer, but I kept telling myself I was just being
paranoid.” Thus, we post hoc split our sample into subjects
who, at the end of day 3, mentioned “suspicion” of the
experimenters or other agents (𝑛

1
= 5) and those who did

not (𝑛
2
= 6). Note that these are small sample sizes; more

research is needed to further validate these results.
RegardingHypothesis 3 (suspicionwill be associatedwith

increases in paracingulate cortex activity), the participants
who interacted with the frustrating slowed Internet manip-
ulation and reported no associated suspicion had significant
activation in their DLPFC and their middle temporal gyrus.
As noted before, theDLPFC activation suggests an increase in
emotion regulation and cognitive load during this condition.
The middle temporal gyrus subserves language and semantic
memory processing and is connected, through a series of
networks, to the frontopolar region. This cognitive load is
likely directly related to the semantic processing needed
to complete the Internet browsing task. Thus, the fNIRS
indicates that the nonsuspicious subjects simply became
frustrated by the manipulation, and their brain activity
showed this increase in cognitive load and the need for
emotion regulation that is associated with frustration. In
contrast, for the suspicious subjects, the area of activation was
directly above the anterior cingulate cortex (ACC), which
is the frontal part of the cingulate cortex that resembles a
“collar” form around the corpus callosum.The paracingulate
cortex is a subset of the ACC. It is located within the ACC,
closest to the external brain cortex.

Thus, our fNIRS results lend support to our third hypoth-
esis.We also note that our subject poolwas small, and the post
hoc splitting of groups into suspicious and nonsuspicious was
based on exit interviews. We thus consider these findings
tentative, although intriguing.

We also computed summary data for the suspicious and
nonsuspicious groups separately (see Table 2). We looked
at the self-report scores reported after the day two (base-
line trust) session and after the day three (slowed Internet
manipulation) session.We compared the GSR EDAmeasures
for each group immediately before the slowed manipulation
began, and then 100 seconds after the slow internet manipu-
lation began.

All empirical trends were as expected. That is, the slowed
internet manipulation increased cognitive load, frustration,
and arousal and decreased valence for both subgroups.
However, only the suspicious group showed a statistically
significant increase in arousal during the slow Internet
manipulation (both in terms of self-report and GSR mea-
sures), thus supporting Hypothesis 3a.

Lastly, it is worth noting that the construct of trust may
also be correlated with the emotional and cognitive changes
described above. As described previously, one item in the
postsession survey asked subjects to indicate their level of
trust while working through the experiment that day. High
trust was listed on the left side of the scale (high trust = 1)
and high distrust was listed on the far right side of the scale
(distrust = 7). As we expected, participants lost trust after
the third and fourth sessions (after day two, three, and four
Likert survey averages were M = 4.9, 5.5, and 6.6, resp.). We
computed one-tailed, paired comparison 𝑡-tests by using day
two data as a baseline for our comparisons. As reported in
Table 1, participants reported feeling less trusting after the
malware manipulation (day four) than they reported after
the control, day-two session (𝑃 < 0.0065). Loss of trust also
occurred after the slow Internet manipulation (day three)
when compared to the control, day-two session, but this
difference was not statistically significant (𝑃 < 0.0950).These
results suggest a correlation between trust and the dependent
measures reported in this experiment. Future studies should
explore this relationship further, by using a more systematic
manipulation of trust and by employing more robust surveys
from the trust literature tomeasure changes in in the different
facets of trust.

5. Conclusion

One overarching goal in this study was to demonstrate the
feasibility of using fNIRS to objectivelymeasure the cognitive
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and emotional correlates of two computer manipulations in
real time. In particular, when we slowed down participants’
Internet speeds we caused reactions similar to being frus-
trated and/or annoyed. In this scenario, we hypothesized
that, when compared to a user’s baseline state, unexpected
minor negative stimuli would be associated with a moderate
increase in arousal and a large decrease in valence. Our
fNIRS, GSR, and survey data supported this hypothesis.
When we simulated a computer virus and crash on users’
systems, we designed themanipulation to be deemed severely
negative, and to be attributed to possible malintent by an
external agent. In this scenario, we hypothesized that when
compared to a user’s baseline state, the presence of these
unexpected and severely negative stimuli would be associ-
ated with a large increase in arousal and only a moderate
decrease in valence. Again, our fNIRS, GSR, and survey
data supported this hypothesis. We also looked at suspicion
in our datasets in a post hoc manner, with a small subject
pool. While we did find support for the claim that the
Theory ofMind region of the paracingulate cortex is activated
during suspicion, we make those claims with caution. Future
work must take a closer look at the state of suspicion. In
particular, fNIRS could be usedwith experimental paradigms
that specifically manipulate suspicion in order to get a more
reliable measure of that state. The same can be said for
the construct of trust. Results from the trust item in our
postsession surveys suggested that trust is associated with the
emotional and cognitive state changes that we measured, but
there is a need to conduct follow-on studies that manipulate
trust in amore controlled (e.g., counterbalanced) experimen-
tal paradigm.

The results also suggest that fNIRS canmeasure cognitive
activity related to users’ changing cognitive and emotional
states during human-computer interactions. This is quite
promising, as the noninvasive fNIRS device is easy-to-set
up and comfortable, and it has been implemented wirelessly,
showing great promise for future measurements of computer
users’ experiences while they work with computer systems in
real time. The results also indicate that trust and suspicion
are correlated with the cognitive and emotional state changes
of the computer users. Future research should attempt to
disentangle these findings and to look more specifically at
manipulations of trust and suspicion in order to measure
those constructs during human-computer interactions.
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