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Abstract

In this paper we consider the question of whether there exists a hyperelliptic curve of genus g which is
defined over Fq but has no rational points over Fq for various pairs (g,q). As an example of such a result,
we show that if p is a prime such that q = p−1

2 is also prime then there will be pointless hyperelliptic
curves over Fp of every genus g≥ q−1.

1 Introduction and Background
The question of constructing curves of a given genus with a given number of points over a finite field is one
that many mathematicians have worked on. Because of applications in coding theory, most of the energy
has been spent trying to find curves of a fixed genus with as many points as possible – much of this work
is described at the website http://www.manYPoints.org [13], maintained by Gerard van der Geer and
others. Interested readers may wish to consult [1], [2], [4], [6], [7], [8], and [11] among other papers. While
it may lack immediate applications, it is nonetheless an interesting mathematical question to consider how
few points a curve of a given genus might have, and in particular whether there exist curves of a given genus
that do not have any points defined over a fixed finite field. For small genera, this question was considered
in [5] and [9], where the authors proved the following results.

Theorem 1.1. The following conditions on the existence of pointless curves are both necessary and suffi-
cient:

• There exist pointless curves of genus 2 defined over Fq if and only if q < 13.

• There exist pointless curves of genus 3 defined over Fq if and only if q≤ 25,q = 29 or q = 32.

• There exist pointless hyperelliptic curves of genus 3 defined over Fq if and only if q≤ 25.

• There exist pointless curves of genus 4 defined over Fq if and only if q≤ 49.

The results of Theorem 1.1 fix a genus and let the field vary; in this note, we take the complementary
point of view and fix our finite field and consider for which genera there exists a pointless curve. A recent
result of Stichtenoth in [10] proved that for each finite field Fq, there exists a number gq so that for all g≥ gq
there is a pointless curve over Fq of genus g. In this note, we consider the analogous question for hyper-
elliptic curves. In particular, Section 2 gives two types of explicit constructions of pointless hyperelliptic
curves of various genera which give bounds on gq. One of these relies on the value of g mod q and the other
on the value of g mod q−1. Examples of such results are:

Theorem 1.2. Let a be the least residue of g mod p so that a < p−1. There exists a 2p+2-pointed curve
of genus g defined over Fq if g≥ (p−a−1)(q−1). If 0≤ a≤ p−3

2 , then there exists a 2p+2-pointed curve
of genus g if g≥ q−1

2 (p−2a−2).

Theorem 1.3. Let (g+ 1, p−1
2 ) = 1 and g ≥ p−3

2 . Then there is a pointless hyperelliptic curve of genus g
over Fp.
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In particular, we note that if p is a prime such that q = p−1
2 is also prime (ie q is a Sophie Germain

prime) then there will be pointless hyperelliptic curves over Fp of every genus g≥ q−1.
In Section 3, we combine these results as well as some results about fibre products of hyperelliptic

curves to give explicit numerical bounds for when pointless hyperelliptic curves can exist over a specific
finite field. These results show that in general there is a linear bound on q above which one can obtain all
genera. We note that Serre’s bound says that there is a lower bound on the order of

√
q below which we

cannot obtain any pointless hyperelliptic curves. In future work, we hope to explore the gap between these
two bounds.

2 Existence Results
Before we prove our main results, we begin by introducing some notation. Let Fq be the field of odd order
q = pr and let C be a hyperelliptic curve of genus g defined over Fq by the equation y2 = f (x). Let n be
the number of points of C defined over Fq. If we choose a ∈ Fq to be a nonsquare and define C̃ to be the
quadratic twist of C given by y2 = a f (x), then C̃ will be a hyperelliptic curve of genus g with 2q+ 2− n
points defined over Fq. In particular, there will be pointless hyperelliptic curves over Fq if and only if
there are curves with 2q+2 points over Fq. It is often convenient to consider these curves, which have the
maximal number of points allowable for hyperelliptic curves, instead of curves with no points.

As an example of this approach, let p≥ 7 and consider the curve Cg defined by the equation y2 = f (x) =
xq−1 +α where α ∈ Fp is a quadratic residue such that α+1 is also a quadratic residue. We note that such
an α must exist as at least one of the set {2,5,10}must be a residue. This curve is nonsingular, as f ′(x) only
has roots at x = 0 and f (0) 6= 0. Therefore, it is a hyperelliptic curve of genus g = q−3

2 . Moreover, f (0) = α

is a residue and for all x ∈ F∗q we have that f (x) = α+ 1 is also a residue so there are two points lying
over each x ∈ Fq. Finally, because f (x) is monic of even degree there are two points lying over infinity and
therefore Cg has 2q+ 2 points. This implies that C̃g is a pointless hyperelliptic curve of genus g, proving
the following lemma.

Lemma 2.1. Let p≥ 7. Then there exist pointless hyperelliptic curves of genus g = q−3
2 defined over Fq.

Throughout this section, we will construct monic polynomials f (x) of various degrees n which have
no repeated roots and such that f (x) is a quadratic residue for all x ∈ Fq. As in the above discussion,
y2 = f (x) will then define a nonsingular hyperelliptic curve of genus g = n−2

2 over Fq with 2q+ 2 points,
and a quadratic twist by a nonresidue will therefore be a pointless hyperelliptic curve of the same genus.
We note that our constructions all take advantage of the fact that for all x ∈ F∗q we have that xq−1 = 1, and
in particular we will only construct polynomials of degree n≥ q−1. Therefore, we never construct curves
of genus g < q−3

2 .

Lemma 2.2. Assume that g ≡ −1 (mod p) and g > q−3
2 . Then there exist pointless hyperelliptic curves of

genus g defined over Fq.

Proof. Consider the curve Cg defined by the equation

y2 = f (x) = x2g+2− x2g+2−q+1 +1

where 2g+2≥ q. It is clear that for any x ∈ Fq, f (x) = 1 and therefore there will be two points lying over
each x value. Moreover, f (x) is monic of even degree, so there are also two points lying over x = ∞. It
follows that Cg has 2q+2 points over Fq and that the quadratic twist C̃g is pointless. In order to show that
the curves Cg and C̃g have genus g, it suffices to show that they are nonsingular. In particular, we wish to
show that f (x) has no repeated roots over Fq. It follows from our hypothesis that p|2g+ 2 and therefore
that f ′(x) = (q−1)x2g+2−q will have no roots in common with f (x).

A variation on this approach will work more generally, allowing us to give the following proof of
Theorem 1.2.
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Proof. For 0 ≤ a ≤ p− 2 and g ≥ (p− a− 1)(q− 1), set l = −(2a+ 2)+ 2p. In particular, we note that
l ≡ −(2a+ 2) ≡ −(2g+ 2) mod p. Moreover, a simple calculation shows that 2g+ 2 > l(q− 1) > 0.
As in the discussion proving Lemma 2.2, we consider the equation f (x) = x2g+2− x2g+2−l(q−1)+ 1. It is
a straightforward computation to see that f ′(x) = (2g+ 2)x2g+1 and therefore that all roots of f ′(x) are
0. However, f (0) 6= 0, so f (x) and f ′(x) do not share any roots. This implies that the curve defined by
y2 = f (x) is a nonsingular hyperelliptic curve of genus g. Moreover, for each x ∈ Fq it is clear that f (x) = 1
and therefore there are two choices of y which correspond to this x, and the fact that f (x) is monic implies
that there are two points over ∞. Thus, the curve has 2q+2 points.

If a ≤ p−3
2 , then we can improve the bound on g by instead setting l = −(2a+ 2)+ p. This choice

of l will satisfy the requirements that l ≡ −(2g+ 2) mod p and 2g+ 2 > l(q− 1) > 0 as long as g ≥
q−1

2 (p−2a−2). This proves the stated theorem.

In the case where we are working over a prime field, the above result simplifies to the following:

Corollary 2.3. Let a be the least residue of g mod p. Then there exist pointless hyperelliptic curves of genus
g over Fp if g ≥ (p− a)(p− 2). In particular, there will be pointless hyperelliptic curves of every genus
g≥ (p+1)(p−2)

2 .

We get a different type of result by considering the congruence class of g mod q−1 rather than mod q.
In order to do this, let us prove the following theorem:

Theorem 2.4. Let p be a prime number, q be a power of p, and n ≥ q. Define d to be gcd(n,q− 1) and
assume that nd 6≡ (n+1)d mod p. Then the equation f (x) = xn− xn−(q−1)+1 has no multiple roots.

Proof. If n ≡ 0 or −1 mod p then f ′(x) is seen to be a power of x and therefore has no roots in common
with f (x), proving the claim.

For the remaining cases, we proceed by contradiction and assume that γ ∈ Fp is a double root of f (x),
so in particular f (γ) = f ′(γ) = 0. Then f ′(γ) = nγn−1− (n− q+ 1)γn−q = 0. In particular, we have that
nγn−1 = (n−q+1)γn−q. Note that γ = 0 is not a root of f (x), so we must have γq−1 = n−q+1

n .
To proceed, we write n = k(q−1)+ j with 0≤ j < q−1. Using the fact that γq−1 = n−q+1

n , we compute

0 = f (γ) =
(

n−q+1
n

)k

γ
j−

(
n−q+1

n

)k−1

γ
j +1

This allows us to deduce that γ j ∈ Fq, so that (γq−1) j = (γ j)q−1 = 1. Noting that gcd( j,q−1) = gcd(n,q−

1) = d and that (γq−1) j = (γq−1)q−1 = 1, it follows that (γq−1)d = 1. This implies that
(

n−q+1
n

)d
= 1, or

that nd ≡ (n+1)d mod p, giving us a contradiction. The lemma is an immediate consequence.

Looking at the quadratic twist of the curve defined by the equation y2 = xn−xn−(q−1)+1, the following
result is an immediate corollary:

Corollary 2.5. For a given g≥ q−1
2 , set d = gcd(2g+2,q−1). If (2g+2)d 6≡ (2g+3)d (mod p) then there

exists a pointless hyperelliptic curve of genus g defined over Fq.

Example 2.6. As an example of Corollary 2.5, we consider curves over Fq of genus g = q−4. In this case,
2g+ 2 = 2q− 6, so d = gcd(2g+ 2,q− 1) = gcd(q− 1,4) will be equal to 4 (resp. d = 2) if q ≡ 1 (resp.
q≡ 3) (mod 4). In particular, Corollary 2.5 implies that the curve defined by y2 = x2q−6− xq−5 +1 will be
nonsingular except possibly in cases where 54 = 64. This implies the existence of a pointless hyperelliptic
curve of genus q−4 unless p = 11 or p = 61. We note that there does exist a pointless hyperelliptic curve
of genus 7 over F11 as will follow from Theorem 1.3.

A similar argument will show that there exist pointless hyperelliptic curves defined over Fq of genus
g= q−a as long as g≥ q−1

2 and p 6 |((2a−2)2a−4−(2a−3)2a−4). This gives an explicitly computable finite
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set of characteristics away from which we will have pointless hyperelliptic curves of a given genus. This
approach generalizes, and while stating a result in full generality is difficult, we give one example below of
such a result over Fp. Note that 2g+2 and p−1 are both even, so at best we have that (2g+2, p−1) = 2,
which is equivalent to the condition that g+1 and p−1

2 are relatively prime. For notational convenience, we
set p′ = p−1

2 .

Theorem 2.7. Let p be an odd prime and n ≥ p an integer with gcd(n, p− 1) = 2. Then the equation
xn− xn−p+1 +1 has repeated roots over Fp if and only if one of the following cases hold:

• p≡ 3 mod 8 and n≡ 0 (mod 4)

• p≡ 5,7 mod 8 and n≡ 2 (mod 4)

Proof. Assume that γ is a root of f (x). The proof of Theorem 2.4 implies that γ will have multiplicity

greater than one if and only if (γp−1)2 =
(

n−p+1
n

)2
= 1. In particular, this implies that γp−1 ≡ −1 mod p

which in turn implies that γn = p′. Moreover, the fact that γp−1 ≡−1 tells us that γ 6∈ Fp but that α = γ2 is
a quadratic nonresidue in Fp. By our hypothesis, n is even and we consider the cases n≡ 0 and n≡ 2 (mod
4) separately. If n = 4k then we see that α2k ≡ p′, implying that p′ is a quadratic residue mod p which will
happen if and only if p≡ 1 or 3 (mod 8). However, if n is a multiple of 4 then p cannot be by hypothesis, so
we must have p≡ 3 mod 8. Similarly, if n = 4k+2 then α2k+1 ≡ p′ which implies that p′ is a nonresidue,
so p≡ 5 or 7 (mod 8).

To see the converse, we first consider the case where p ≡ 5 or 7 (mod 8) and n = 4k+2. We note that
there will be a unique solution to the equation x2k+1 ≡ p′ mod p because gcd(2k+1, p−1) = 1. Let us call
this solution α and let γ be one of the square roots of α in Fp. Because p′ is a quadratic nonresidue it must
be the case that α is as well. Therefore γn = p′ and γp−1 =−1 which implies that f (γ) = f ′(γ) = 0.

Next we consider the case where p≡ 3 mod 8 and n = 4k. In this case, p′ is a quadratic residue mod p
and there will be two solutions to the equation x2 ≡ p′ (mod p). Because −1 is a nonresidue, exactly one
of these solutions will also be a nonresidue, and we choose β to be this solution. Because gcd(k, p−1) = 1
there will be a unique choice of α ∈ Fp so that αk = β. Finally, we can choose γ to be one of the solutions
to x2 = α in Fp. It follows that γn = p′. Moreover, because β is a nonresidue it follows that α will be as
well so that γp−1 ≡−1. Thus, f (γ) = f ′(γ) = 0.

In either case, we have constructed an element γ which is a root of f (x) with multiplicity higher than
one. The theorem follows.

We now give a proof of Theorem 1.3.

Proof. Assume that g≥ p′ and g+1 is relatively prime to p′. Corollary 2.5 implies that there are pointless
hyperelliptic curves defined over Fp except possibly in the case where (2g+2)2 ≡ (2g+3)2 mod p. Clearly
2g+2 6≡ 2g+3, so it suffices to consider the case where 2g+2 ≡ −(2g+3). It follows from elementary
number theory that we only need to consider the case where 2g+2≡ p′ (mod p).

We now turn to Theorem 1.2, which tells us that if 2g+2 ≡ p′ mod p then we can construct pointless
hyperelliptic curves as long as g > p2−5

4 .

In particular, the only cases not covered by the theorems above are those genera in the range [ p−1
2 , p2−5

4 ]

which are congruent to p2−5
4 mod p. In each of these cases, the equation x2g+2− x2g+2−(p−1)+ 1 has re-

peated roots by Theorem 2.7 but the genus is too small to consider curves of the form x2g+2−x2g+2−`(p−1)+
1 for ` > 1.

While the conditions in Corollary 2.5 are sufficient to prove the existence of a pointless hyperelliptic
curve of a given genus, they are certainly not necessary, and one can use similar methods to get a different
set of sufficient conditions, as one can see in the following theorem.

4



Theorem 2.8. Let n = k(q−1) where k ≥ 2, p 6 |k, and a2kk 6≡ (k−1)k−1 mod p for some a ∈ F∗p. Then the
equation f (x) = xn− xn−q+1 +a2 has no roots of multiplicity greater than one.

Proof. Assume that γ is a root of f (x) of multiplicity greater than one. Then f ′(γ) = 0 and a simple
computation shows that this implies that either γ = 0 or γq−1 = k−1

k ∈ Fq. Clearly f (0) 6= 0 so we must be
in the latter case. We now compute:

0 = f (γ)

= γ
k(q−1)− γ

k−1(q−1)+a2

=

(
k−1

k

)k

−
(

k−1
k

)k−1

+a2

=
a2kk− (k−1)k−1

kk

which implies that a2kk ≡ (k−1)k−1 mod p, giving us a contradiction.

Corollary 2.9. Let Fq be a finite field of characteristic p > 3. There exist pointless hyperelliptic curves of
genus g defined over Fq if g≡−1 (mod q−1

2 ) and g≥ q−2.

Proof. The hypothesis imply that g = kq−k−2
2 for some k ≥ 2 so that 2g+ 2 = k(q− 1). If k is a multiple

of p then g≡−1 mod p, in which case we are covered by Lemma 2.2. For the remainder of this proof, we
assume that p 6 |k.

From Theorem 2.8 it follows that y2 = x2g+2−x2g+2−q+1+1 is a nonsingular curve of genus g with 2q+
2 points if 2g+2 = k(q−1) for some k such that kk 6≡ (k−1)k−1 mod p. It also follows that y2 = x2g+2−
x2g+2−q+1 + 4 is a nonsingular curve with 2q+ 2 points as long as 4kk 6≡ (k− 1)k−1 mod p. Therefore,
one of these two curves will be nonsingular as long as 4kk 6≡ kk, which is guaranteed by the hypotheses.
Considering a quadratic twist by a nonresidue gives a pointless hyperelliptic curve of genus g as desired.

3 Numerical Results
In this section, we construct tables of genera unobtainable using the above theorems for all odd primes
less than 100. For each prime p, we begin by checking, for all genera less than the bound established
by Corollary 2.3, whether the conditions of Theorem 1.2 are satisfied. We thereby obtain a set of genera
unobtainable using that result alone. We further prune this set using the conditions of Theorem 2.7 and 1.3,
as well as Corollaries 2.5 and 2.9. Another result that will be useful in our computations is the following
theorem.

Theorem 3.1. Let C be a pointless hyperelliptic curve of genus g defined by the equation y2 = f (x). Then
the equation y2 = f (x2) defines a pointless hyperelliptic curve of genus 2g+1.

One can prove this theorem in several manners. We give a proof involving fibre products as the technique
will be useful later on.

Proof. The fact that C has no points defined over Fq implies in particular that f (x) has degree 2g+ 2 and
that f (0) 6= 0. In particular, neither 0 nor ∞ is a ramification point of f (x). We wish to consider the
normalization of the fibre product of C with the hyperelliptic cover given by z2 = x which is branched only
at the points x = 0,∞. It follows from results about fibre products of hyperelliptic curves (see [3], [12] for
details and similar constructions) that this curve will have genus 2g+1 and will have no points defined over
Fq. This curve is equivalent to the one defined by y2 = f (x2) after a change of variables.

5



The table in Figure 1 gives a list of genera that our methods are unable to construct (‘missed genera’)
for p≤ 100. As discussed above, our methods can only address those genera which are at least p−3

2 , so we
leave those off of the table. However, this list is otherwise complete.

Note that some of the genera that our methods fail to produce can be produced by other methods such as
those in [5]. Moreover, these numerical results do not take into account how f (x) factors over Fp, as these
computations are beyond the scope of the program used. However, one can prove the following result.

Theorem 3.2. Let C be a pointless hyperelliptic curve of genus g defined by the equation y2 = f (x).

• If f (x) has any factor over Fp that is not given by an irreducible quadratic equation then there exists
a pointless hyperelliptic curve of genus 2g.

• If f (x) has a factor defined by an irreducible quadratic equation over Fp then there exists a pointless
hyperelliptic curve of genus 2g−1.

The proof of Theorem 3.2 is similar to the proof of Theorem 3.1. However, instead of taking a fibre
product with a cover defined by a quadratic equation sharing no roots with f (x) we instead take the fibre
product with a cover defined by a quadratic equation which shares either one or two roots with f (x), whose
existence is guaranteed by the hypothesis. We omit the details of the proof, but conclude with an example.

Example 3.3. Let C be the nonsingular hyperelliptic curve defined over F13 by the equation y2 = f (x) =
x22− x10 + 1. The quadratic twist C̃ of this curve by a quadratic nonresidue is a pointless hyperelliptic
curve as genus g = 10 as discussed in Section 2. Moreover, one can check that over F13 this polynomial
has x3 + 2x2 + 7x+ 10 as a factor. Theorem 3.2 now gives us a way of explicitly computing a pointless
hyperelliptic curve of genus 20 over F13, eliminating another case from the above table.
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p Missed Genera Greater Than (p−5)/2
3 /0

5 /0

7 /0

11 /0

13 8, 20
17 /0

19 14, 32, 38, 50
23 /0

29 48, 62, 118, 132, 146, 174
31 17, 19, 64, 84, 110, 146, 158, 174, 294, 296
37 25, 26, 56, 80, 86, 98, 134, 152, 170, 173, 230, 242, 278, 374, 500
41 34, 44, 54, 94, 189, 214, 334, 374, 394, 454
43 27, 50, 74, 76, 98, 118, 160, 202, 244, 260, 308, 328, 332, 496, 518, 580
47 /0

53 31, 64, 116, 142, 168, 194, 220, 272, 298, 428, 454, 532, 636
59 /0

61 44, 49, 53, 57, 62, 74, 124, 158, 174, 224, 236, 344, 349, 380, 404, 414, 428, 464,
494, 524, 554, 594, 614, 624, 654, 704, 734, 746, 794, 824, 834, 890, 1074, 1160,
1256, 1344, 1526

67 47, 76, 116, 142, 206, 208, 248, 274, 318, 384, 386, 417, 450, 472, 518, 608, 650,
788, 912, 920, 945, 1010, 1052, 1110, 1412

71 48, 62, 64, 97, 194, 258, 272, 324, 374, 426, 434, 468, 482, 510, 517, 545, 604, 724,
762, 904, 930, 965, 1034, 1042, 1144, 1252, 1314, 1420, 1462, 1744, 2024

73 39, 53, 65, 104, 134, 206, 236, 242, 269, 338, 368, 422, 458, 485, 566, 572, 620, 674,
776, 782, 806, 845, 890, 926, 1106, 1112, 1142, 1214, 1241, 1244, 1652, 1682, 1934,
2120

79 50, 90, 220, 224, 266, 374, 376, 480, 482, 524, 532, 688, 698, 792, 844, 848, 870,
948, 956, 998, 1234, 1322, 1390, 1430, 1472, 1858, 1897, 1904, 1946

83 /0

89 47, 57, 67, 76, 98, 208, 230, 340, 384, 582, 681, 692, 714, 769, 934, 1000, 1308,
1385, 1429, 1616, 1660, 1792, 1924, 2056, 2188, 2540, 2672, 2892

97 65, 71, 77, 79, 89, 134, 272, 314, 356, 494, 716, 854, 896, 938, 1076, 1436, 1478,
1520, 1658, 2060, 2102, 2240, 2684, 2822, 3404

Figure 1: Missed Genera For All Primes Less Than 100
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