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A State-Dependent Delay Equation with Negative Feedback and ‘Mildly
Unstable’ Rapidly Oscillating Periodic Solutions

Abstract

We consider state-dependent delay equations of the form x'(t)=f(x(t—d(x(t)))) where d is smooth and fis
smooth, bounded, nonincreasing, and satisfies the negative feedback condition xf(x)x=0. We identify a special
family of such equations each of which has a * rapidly oscillating” periodic solution p. The initial segment p0O
of p is the fixed point of a return map R that is differentiable in an appropriate setting.

‘We show that, although all the periodic solutions p we consider are unstable, the stability can be made
arbitrarily mild in the sense that, given £ >0, we can choose f and d such that the spectral radius of the

derivative of R at p0 is less than 1+€. The spectral radii are computed via a semiconjugacy of R with a finite-
dimensional map.
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A STATE-DEPENDENT DELAY EQUATION WITH NEGATIVE
FEEDBACK AND “MILDLY UNSTABLE” RAPIDLY
OSCILLATING PERIODIC SOLUTIONS

BENJAMIN B. KENNEDY

Department of Mathematics
Gettysburg College
Gettysburg, PA 17325-1484, USA

ABSTRACT. We consider state-dependent delay equations of the form

2'(t) = f(a(t - d(=z(t))))
where d is smooth and f is smooth, bounded, nonincreasing, and satisfies the
negative feedback condition zf(z) < 0 for z # 0. We identify a special family
of such equations each of which has a “rapidly oscillating” periodic solution
p. The initial segment pg of p is the fixed point of a return map R that is
differentiable in an appropriate setting.

We show that, although all the periodic solutions p we consider are unstable,
the stability can be made arbitrarily mild in the sense that, given ¢ > 0, we
can choose f and d such that the spectral radius of the derivative of R at pg
is less than 1 + €. The spectral radii are computed via a semiconjugacy of R
with a finite-dimensional map.

1. Introduction. In this paper we consider the real-valued autonomous state-
dependent delay equation

Z'(t) = f(x(t - d(z(1)))). (1)
We assume that f is smooth and bounded and satisfies the negative feedback condi-
tion zf(x) < 0 for all z # 0; and that d is smooth and bounded, satisfies d(0) = 1,
and assumes values in (0, 1]. We shall also confine ourselves to the case that, if z(t)
is any solution of (1) defined on [—1, 00),

%(t —d(z(t))) > 0 for any t > 0. (2)

Condition (2) allows us to define a nonincreasing oscillation speed for solutions that
agrees with the usual oscillation speed in the constant delay case d(z) = 1. We shall
provide careful definitions of these notions — and, for that matter, of solutions of
(1) — below.

For the general theory of state-dependent delay equations, we refer to the review
article [3]. Results on equations of the form (1) and its generalizations include [15]
(on the solution semiflow in a “C? framework”), [2] (on differentiability properties
of solutions), and [8] and [10] (on existence of periodic solutions).

In this paper we exhibit some “rapidly oscillating” periodic solutions of some very
special versions of (1). More particularly, given any o € (0, 1), we shall present a
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1634 BENJAMIN B. KENNEDY

family of delay functions d,, v € [0,1 — ], and a fixed nonincreasing feedback
function f such that, for each v € [0,1 — @], the equation

'(t) = f(z(t — dy(2(1)))) 3)
has a rapidly oscillating periodic solution p”. We shall show, roughly speaking, that
each p” is unstable but that + can be chosen so that the instability is mild — more
particularly, so that the initial segment p} of p” is the fixed point of a return map
whose derivative at p] has spectral radius (2/(2 — @))2. We shall take f close, in
an appropriate sense, to the step function —sign. For our state space we use the
C! solution manifold described in [15] and [3]. For assessing the stability of our
periodic solutions we apply a semiconjugacy approach presented in [6].

Remark 1. One motivation for this work is simply that results concerning the sta-
bility of periodic solutions of state-dependent delay equations are still few, and the
approach we use here provides a simple way to assess stability in certain (admittedly
highly restricted) cases.

Another motivation for this work is as follows. In the constant-delay case d(z) =
1 and with f strictly decreasing, rapidly oscillating periodic solutions of (1) must
be unstable. (This result was conjectured in [5] and is proven in [11]; see [13] for an
earlier proof with additional assumptions.) On the other hand, in the constant-delay
case and with an instantaneous damping term added — as in (4) below — stable
rapidly oscillating periodic solutions have been exhibited for non-monotonic f in [4]
and [12]. The question of whether (1) (with no damping) can have stable rapidly
oscillating periodic solutions in the constant-delay case with non-monotonic f is still
open [1]. While we emphasize that the periodic solutions we find here are indeed
unstable (and our feedback functions f only nonincreasing, rather than strictly
decreasing), our results here indicate, roughly speaking, how state-dependency in
the delay can mitigate instability. In our view, this finding heightens the interest of
whether some instance or alteration of (1), with monotonic feedback, might admit
stable periodic solutions that could also be reasonably called “rapidly oscillating.”

Remark 2. It appears that one can construct examples similar to the ones we
present here for equations of the form (1) with instantaneous damping added:

Z'(t) = —pa(t) + f(a(t - d(z(t))), u>0. (4)

That is, we can construct “rapidly oscillating” periodic solutions whose instability
is arbitrarily mild. We have not carried through all the details; the & = 0 case we
present here seems to be considerably simpler.

In Section 2 we recall some general theory for equation (1), present the framework
for assessing stability of periodic solutions, and state our main result. As mentioned
above, this result concerns the existence of a family of equations with particular
properties; in Section 3 we prove our main result by exhibiting such a family.

2. General theory and main results. We consider the equation

z'(t) = f(z(t — d(z(1)))) (5)
and assume the following throughout:
(H1): f:R — R is continuously differentiable, bounded with bounded derivative,

and satisfies the negative feedback condition zf(z) < 0 for all z # 0;
(H2): d: R — (0, 1] is continuously differentiable with bounded derivative.
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By a solution of (5) we mean either a continuously differentiable function x :
[—1,00) — R that satisfies (5) for all ¢ > 0 or a continuously differentiable function
z : R — R that satisfies (5) for all £t € R.

Hypotheses (H1) and (H2) are enough to guarantee that we can study equation
(5) in the “C? solution manifold” framework described in [15] and Section 3 of [3].
We now recall the results that we shall need from this framework, and introduce
some notation.

We write C = C[-1, 0] for the Banach space of continuous real-valued functions
on [—1,0], equipped with the sup norm

[8llo = sup |é(s)]-

s€[—1,0]

If z is a continuous real-valued function whose domain includes [t — 1,¢t], we write
x¢ for the member of C given by x¢(s) = z(t + s), s € [-1,0].

We write C! = C'[~1,0] for the Banach space of continuously differentiable
real-valued functions on [—1, 0], equipped with the norm

ol = liéllo + l1¢'llo-

Throughout, we write DGlg] for the derivative of the map G at the point gq.
We write

D={¢eC' : ¢'(0) = f(#(—d(4(0)))) }.
Under our hypotheses, D is a codimension-1 submanifold of C!. We shall endow
D with the metric it inherits as a topological subspace of C!, with derivatives of
functions on D defined via its submanifold structure: if G is a differentiable map

defined on D, the derivative of G at ¢ € D is a bounded linear map on the tangent
space TyD to D at ¢. TyD is defined by

TysD={veC' : ¢/(0) = Dglglv },

where g : C! — R is the function defined by g(¢) = f(¢(—d(¢(0)))).

With the exception of the fact that solutions of (5) are defined for all ¢ > 0
— which is an easy consequence of the boundedness of f — the following is just
a restatement of Theorem 3.2.1 and Proposition 3.3.1 in [3], specialized to our
situation.

Proposition 1 (Solutions of (5)). There is a uniquely defined continuous solution
semiflow F' : Ry x D — D for (5). The maps F(t,-) : D > D are completely con-
tinuous (i.e. map bounded sets to precompact sets) for all t > 1. F is continuously
differentiable on (1,00) x D.

(The complete continuity of the maps F(t,-) for ¢ > 1 hinges on the equiconti-
nuity of F(t, ¢) and its derivative F(t,¢). In [3] this is established via a Lipschitz
estimate, with respect to the sup norm, on the map g(¢) = f(¢(—d(¢4(0)))). We
provide such a Lipschitz estimate in the proof of Lemma 3.9 below.)

If z : [-1,00) = R is a solution of (5), we shall call zo the initial condition of z,
and z the continuation of g as a solution of (5).

Remark 3. Under hypotheses (H1) and (H2), solutions can be defined with initial
conditions in a larger space of Lipschitz functions. Such solutions, though, will
eventually flow into D, so considering the D to be the state space does not sacrifice
any substantial dynamical information about solutions of (5).
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As mentioned in Section 1, we shall focus on instances of (5) where condition (2)
is satisfied:

%(t —d(z(t))) > 0 for any t > 0 and any solution z of (5).

If z is a solution of (5) and ¢ > 0, then

d
9t dlale) =1 - 2 (@) (1)
We therefore arrive at the very simple criterion that (2) is satisfied if

sup |d'(y)|sup | f(y)| < 1, (6)
yER yER

which will be sufficient for our purposes. (See Lemma 1.2 of [8] for a weaker version
of (2) that holds more generally. For more sophisticated conditions guaranteeing
(2) for equations of the form (4), see [7] and [9].)

We now define the “oscillation speed” of a solution. Our definition is similar to
that in [7], and to the usual definitions of oscillation speed in the constant-delay
case.

Definition 2.1. a) Suppose that z is a solution of (§), and that x(2) = 0. We
call z a proper zero if x(z + €) and x(z — €) are of strictly opposite signs for all
sufficiently small ¢ > 0.

b) Given a solution z of (5) and t > 0, we define os(z;), the oscillation speed of
x at t, to be the number of proper zeros of x on the interval (r — d(0), 7), where

7=inf{s >t : sis a proper zero of z },
provided this infimum exists.

The following result is familiar (the ideas are the same as in the constant delay
case).

Lemma 2.2. Suppose that (H1), (H2), and (2) are satisfied, and that x is a solution
of (8). Ift > 0, z; has finilely many zeros, and os(x;) is defined, then os(xz;) is
even. Moreover, in this case the following hold:
o if s > t and os(xzs) is defined, then os(zs) < os(x,) (oscillation speed is
nonincreasing); and
o if s >t and os(xs) is not defined, then (1) > 0 as 7 — c0. O

We now describe how we will assess stability of periodic solutions of (5). We
continue to assume that (H1) and (H2) hold, and we write F : R, x D — D for
the solution semiflow described in Proposition 1. We begin by discussing the return
maps we are interested in; the ideas are familiar. Let us write Dy = {¢ € D
#(0) =0 }. Suppose that p: R — R is a periodic solution of (5), translated so that
p(0) = 0 and p’(0) > 0. Suppose also that p has period dividing 79, with 79 > 1.
Then there is, by the implicit function theorem, a relatively open neighborhood U
of po in Dy and a unique differentiable function 7 : U — (1, 00) such that 7{(pg) = 1o
and

F(r(zo),z0) € Dy for all zp € U.

The map R : U — Dq given by R(xo) = F(7(zo),x0) is called a return map. This
map is differentiable and completely continuous.

It is readily seen that R can in fact be extended to a relatively open neighborhood
about py in D — otherwise put, an open neighborhood about pg of initial conditions
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in D have forward orbits that eventually flow into Dy. Thus we see that the dynamics
of the solution semiflow near p — in particular, whether solutions near p diverge
from p or (up to translation) remain near it — are captured by the dynamics of
the return map R : U C Dy — Dy near pg. We therefore may regard p as stable
if pg is a stable fixed point of R, and unstable otherwise. This is the approach we
take here: in particular, we shall obtain information, for a special class of equations
(5), about the spectrum of the derivative DR[po] of R at pg. (We refer to [16] for
a description, in the constant-delay case, of the intimate connection between the
spectrum of DR[pp] and the so-called Floquet multipliers of p.)

To compute the spectrum of DR[pg] we shall exploit a semiconjugacy between R
and a finite-dimensional map. We shall use the framework presented in [6], which
we now recall in a specialized and condensed form. The basic ideas involved have
been exploited by many authors; see [6] for references and a fuller discussion.

Suppose that B is a Banach space, and that Y C X are subsets of B (equipped
with the subspace topology). Let pg € Y be a point such that, locally about py,
both X and Y have the structure of Banach submanifolds of B, with the tangent
space to Y at pg a subspace of the tangent space to X at pg: Tp,Y C 1), X. Suppose
that U/ C X is a relatively open subset of X that contains the point pg.

Finally, assume that V is a Banach space.

We now impose the following hypotheses.

(I): There is a completely continuous and continuously differentiable map R : U —
X with the features that R(pp) = po and R(U) C Y.
(II): There is a continuous, open, and continuously differentiable map Z : Y — V
with the feature that, given z,y e UNY, Z(z) = Z(y) = R(z) = R(y).
(II1): DZ[po] : Tp,Y — V is surjective, and ker DZ[pg] C ker D R|[po].
(IV): There is a completely continuous, continuously differentiable map p : Z(U N
Y} — V with the feature that p(Z(z)) = Z(R(x)) forallz e UNY.

See the figure below.

The following proposition (and its proof) is a version of various results in Section
2 of [6].
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Proposition 2. Assume that X, Y, U, and V' are as above, and that (1)-(IV) hold.
Then:

o 7w := Z(py) is a fized point of p;

o The nonzero spectrum of DR[po] is equal to the nonzero spectrum of Dpin].

Proof. That p fixes = follows immediately from (IV):

p(m) = p(Z(po)) = Z(R(po)) = Z(po) = 7.

For notational brevity, let us write A = T, X and B = T,,,Y. Since R maps U
into Y, we have DR[py|(A) C B C A. By the chain rule, for all y € B we have
Dp[r|DZ[poly = DZ[po]DRpo]y. Since p and R are completely continuous, the
nonzero spectrum of DR[pg] and the nonzero spectrum of Dp[r] both consist of
eigenvalues.

Suppose that A € o(DR[po]) with A # 0. This means that there is some nonzero
y € A such that DR[po]y = Ay. Since DR[pgly = Ay € B, we in fact have y € B.
Therefore

Dplr|DZpoly = DZpo] DR[poly = DZ[po)\y = ADZ[poly.

DZ|poly # 0 since ker DZ[po) is contained in ker DR[po]. Thus X is an eigenvalue
of Dplr] with eigenvector DZ[pply.

On the other hand, suppose that Dplr]v = Av, v # 0, A # 0. Since DZ[po] is
surjective, there is some y € B such that DZ[pg]y = v. Thus we have

D Zlpo]l\y = ADZ[poly = Av = Dp[r]|v = Dplr|DZpoly = D Z[po] DR[po)y.

This means that DR[poly — Ay € ker DZ|py] C ker DR[py], and so there is some
u € ker DR|[po] such that DR[pgly = Ay + u. Write § = y + u/) and compute:

DRIpoly = DR[poly = Ay + u = Aj.
This completes the proof. O

We are now ready to state our main theorem, which is really just an assertion
of the existence of a certain example. We will give the proof in the next section,
applying the above proposition. The essential point of the theorem is that we can
obtain instances of (5) with periodic solutions p of oscillation speed 2 such that
the spectral radius of DR|[pg|, where R is an appropriately defined return map, is
greater than one but as close to one as we like. In fact, somewhat more is true: we
can achieve spectral radii in a certain range by varying only the delay function d.

Theorem 2.3 (Mildly unstable rapidly oscillating periodic solutions). Let a €
(0,1) be given. Then there is a particular family of equations (5), parameterized by
v €[0,1— a, of the form

'(t) = f(=(t — dy(x(1))))

where f is nonincreasing. These equations all satisfy (H1), (H2), and (2); and for
each v, the following holds: there is a relatively open subset U C Dy and a periodic
solution p7 of oscillation speed 2 such that p] € Dy is the fized point of a return
map R : U — Dy, where DR[p]] has spectral radius

(%)
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In particular, taking v = 1 — « yields a spectral radius of

()

Remark 4. In the next section we shall construct p? explicitly. By the end of the
paper we shall be able to prove, without recourse to the semiconjugacy apparatus
described above, a less precise instability result: namely, that there is an open
neighborhood W about pj in Do such that, given any ¢ > 0, there are initial
conditions zg € W with ||zg — pg|| < € such that R™(xq) ¢ W for some m € N. We
state such a result precisely below (see Proposition 4). By the end of the paper it
will also be easy to recognize, at a heuristic level, the source of the “mildness” of
the instability of p” when + is close to 1. We comment in more detail on this below
(see Remark 8), but do not formulate a rigorous statement along these lines outside
the context of our semiconjugacy framework.

3. Proof of Theorem 2.3. In this section, we choose a particular family of state-
dependent delay equations and, by dint of fairly explicit calculations and using the
apparatus described in Section 2, we show that the family embodies a proof of The-
orem 2.3. The family of equations we consider will all have a common nonincreasing
feedback function f that is close to a step function in a way we now define.

Definition 3.1. Let n > 0 be given. We say that f : R — R is n-steplike if
f(z) = —sign(x) whenever |z| > 7.

We shall take f to be 7-steplike for a suitable choice of 7.

Remark 5. It has long been recognized that feedback functions that are constant —
or almost constant — except on small intervals are very useful in the study of delay
equations, since they make explicit computations tractable for specific illustrative
examples. The above-mentioned [4] and [12], for example, use feedback functions
of this type (with three “nonconstant” intervals instead of one) to exhibit stable
rapidly oscillating periodic solutions for certain constant-delay equations; and an
early result on stability of a periodic solution of a state-dependent delay equation,
with f almost constant outside a small interval, was obtained in [14].

We now describe our family of equations. As in the statement of Theorem 2.3,
we first choose and fix « € (0,1). We now choose 7 € (0,1/6) small enough that

1+a 1
—7 =.
—Tn+3n< 3 (7)
Note that this condition implies that
—Tn+3n< -
1—~ 1+ 97 5 (8)

for all v € [0,1 — o] (since the left-hand side of the above inequality is increasing
with respect to v € [0,1 — a]); this is the condition we shall actually use. There is
an additional smallness condition that we shall impose on 7 later (see (13) and (14)
below); this condition can be expressed in terms of « also.

For each v € [0,1 — o] we consider an equation of the form

'(t) = f(z(t — dy(2(1)))), (9)
where f is 7-steplike with negative feedback, odd, continuously differentiable with
bounded derivative, and nonincreasing. We impose the following hypotheses on d.:
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d, is even and continuously differentiable;

d,(x) <0 for all x > 0, and |d’,(z)| < (v + 1)/2 for all z;

dy(0) = 1, and d, assumes values in (0, 1];

dy(xz) > 11—~z for all z > 0; with d,(z) =1 — vz for all z € [n,1/2].

The function d., should be thought of as being essentially the function z — 1 —«|z|,
smoothed around the origin and flattened far from the origin.

Observe that (H1) and (H2) hold for all equations (9). (2) holds also: for (t —
d(xz(t))) > 1—(1+~)/2 = (1~1)/2 for any solution z of (9) and any t > 0 (recall
(6)):

The oddness of f and the evenness of d, yield the following lemma.

Lemma 3.2. Let zg,—x0 € D have continuations z and y as solutions of (9),
respectively. Then x(t) = —y(¢) forallt > 0. O

The following is our main computational lemma. Recall that we are assuming
that v € [0,1 — a] and that (7) holds.

Lemma 3.3. Suppose that o € Dy, and that z(—d(0)) = z(—-1) < —n. Suppose
that there is a number o € (=1, —1/2] such that, on the interval (~1,0), x assumes

values in [—n, n] precisely on an interval of the form [( —n,{ + 7], and that on this
interval x is given by the formula

z(C+s) =s.

Assume also that the following two conditions are satisfied:

1 2 —
—1 4 Uy, o, (10)
and
>—1+L(1+<)+———7 + (11)
7 14+7 1—7” -

Then the following hold.

x has a first positive zero z, and z — 1 < o;

Z'(t) =1 on [0,3n] and z'(t) = —1 on [z — 37, 2|;

the restriction of = to [0, 2] is completely determined by (;
the map ¢ — z is of the form

2= Q)= T2+ K,

where K(n) — 0 asn — 0.

See the figure below. (The size of 7 is exaggerated in the figure for the sake of
legibility.)
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x(t)

Remark 6. Suppose that z, satisfies the hypotheses of Lemma 3.3, and write y
for the continuation of —zgy as a solution of (9). Then, since y(t) = —x(t) for t > 0
by Lemma 3.2, we see that the first positive zero of y is also given by the formula
z = H({), and that y has constant slope —1 on [0, 37] and constant slope 1 on
[z — 3n, z]. We shall use this fact repeatedly below.

Roughly speaking, (10) describes the minimum distance that ¢ can be from
—1 while (11) describes the maximum distance that ¢ can be from —1 (given o).
Observe that (11) implies in particular that {+7n < —1/2. Condition (7) guarantees
that the hypotheses of Lemma 3.3 are not vacuous, as we now explain. For (8) says
that

2—y 1
1+ —"n+3n< —=,
tr o< 3
which implies that
2 1 2—
L2 (9=
1+ 1—7
Thus there are numbers o € (—1, —1/2] that satisfy
2 ((14+7(2-9) ) 2—1
+n)+—n+un
1+7( l-v )T
and more to the point, given such a o, there is a range of numbers ¢ such that
(1+7)2=-1)
Y

2—7 1
3 —_— ——.
77+77>+1_7'7+71< 5

oc>-—-1+

(+1> 3n+y

1-
(this is (10)) and also such that

2 2—~
>—14+—((+1)+—Tn+
o 1+7(C ) T+

(this is (11)).

Proof. Recall that (¢ — d(z(¢))) > (1 —~)/2 for all ¢ > 0.

Write 7 for the unique positive time satisfying 7 — d(z(7)) = ¢ — . For all
t €10, 7], since z(t — d(z(t))) < —n and f is n-steplike, we have that 2/(t) = 1 and
so z(t) = t.
Claim. 7 € (31,1/2). Proof of claim: imagine that 7 < 3n. Then since d, is
nonincreasing on the positive half line we have that

L+ 1+7)2-7)

T —dy(2(r)) <3n—dy(3n) = -1+ (1 +7)3n < — T
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a contradiction (the last inequality is (10)). Thus we see that 7 > 3n. On the other
hand, if 7 > 1/2 we would have

1 1 1
;- (3) =3

contradicting (11) (recall that (11) implies that ( + n < ¢ < —1/2). This proves
the claim. Since 7 € (3n,1/2), we can use our explicit formula for d on [n,1/2] to
obtain

N2

.<.<—777

14+4¢—-n

T=1l4+yr=(—-n = r=
YT=¢(-n T+

Let us write
T=min{t > 7 : z(t) =3norz(t) =1/2 or t — d(z(t)) = + 7},

and let us write y(t) =t — d(z(¢)) — ¢.
Here is where we use our elaborate hypothesis on the form of z on [( — 7, { + 7).
For all t € [r, 7], we have

z(t —d(z(t))) = z(y(t) + Q) = y(t) and y'(t) =1-d\(z(t)2'(t) = 1 +v2'(t).

Therefore, for ¢ € [1, 7], z(t) and y(t) solve the following ODE:

Let us write (X(¢),Y(t)) for the unique solution of this ODE on [r,00). Let us
further write ¢ > 7 for the unique time that Y (¢) = 0, and T > c for the unique
time that Y(T) = 5. For t € [r,7], we of course have (z(t),y(t)) = (X(t),Y(¥)).
We wish to show that T = T' — that is, that 7 is characterized by the condition
that y(7) = n (as opposed to () = 1/2 or z(F) = 3n). To do this, it suffices to
show that X(t) € (3n,1/2) for all t € [, T], and we now do so.

Note that X is increasing on [7,¢] and decreasing on [c,T]. Since Y'(t) > 1
on [r,¢] and Y'(t) > (1 — v}/2 on [¢,T], we have the bounds ¢ — 7 < 75 and
T —c¢ < 29/(1 — ). The bound }X'(t)| < 1 now yields X(c) < 7+ 7 and X(T) >
T —2n/(1 — ). Using our assumption that { < —1/2, the fact that n € (0,1/6),
and our formula for 7 we obtain

(< 1o (1
—= e/
2 T\ 7"

1
= 1+§—n+n+7n<§+%
1+¢—n 1
—_— <_
14+ +n 2

1
== T+TI<§-
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Thus X (c) < 1/2. On the other hand, applying (10) we get

1+7)(2 -
cop>-14LENE=Y) 17)_( My
T4y  1—~2
_ -1 7
= (—7n> +{17'y+1—7 3n
201 +
— g—n>—1+[(1f77)+(1+7)3]n
2(1
= 1+C-n—(1+,:)n>(1+7)377

= T 2—77 > 3n.
l—y
Thus we have that X(T) > 3n. We conclude that X (t) € (3n,1/2) for all ¢t € (1, T),
that 7' = 7, and that 7 is characterized by the equality y(7) = 7.

Now, observe that the restriction of y to [r, 7] does not depend on ¢ — or, indeed,
on anything about the initial condition z¢ except that it satisfy the hypotheses of
Lemma 3.3: for on [r, 7], y is actually the solution of a one-dimensional ODE with
fixed initial condition y(r) = —n. x(F) — 7, likewise — indeed, the restriction of
z{t) — 7 to [r,7] — does not depend on ¢ either. We conclude that k; := 7 — 7
and ky := z(7) —z(7) are constant — with respect to { — and satisfy the following
bounds (since we actually have that =(t) € (37,1/2) and hence that Y'(¢) > (1~ )
on [¢, 7]):

2
05m§n+%=n1—_~%;
S <kg <.
1—x
Observe that k1, k2 — 0 (uniformly as + ranges over [0,1 — a]) as n — 0.

Let us write t, for the unique time that t.—d(z(t.)) = o. Observe that z’'(t) = —1
for all t € [7,t.] (since z(t—d(x(t))) > n for all such t). Let us imagine that x(¢) > 0
for all t € [7,.]; we shall derive a contradiction to (11). Observe that

z(te) =2(T) = (tx = T) = 27 + K1 + K2 — L.
If z(t.) > 0, then since dy(z(t«)) > 1 — vz(t.) we have
o=t —dy(z(ts)) < la—1+vz(ts)
< (1=t = 1+ 297 + (k1 + Kr2).
Still assuming that z(¢.) > 0, we must have
te KT+ 2(T) =27 + K1 + K2,

whence
o< —1427+ K1 + K.

But our condition on o is that

2 2—n
> -1+ —(1+)+—n+
o 1+7( <) T
2(1 —
—_— 0‘>—1+M+I€2+K1
1+

= 0> —-1427+ Ky + Ky;

a contradiction.
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We conclude that the first positive zero z of x occurs before time t.. We compute
z — T =1z(T) = 7 + k2 and we have the formula

24+2(¢ .
T+ K ) = H(Q)

2=T+K1+(T+kKe) =27+ K1 + kg =

where K(n) = k1+kg— 1—37; It is clear that the restriction of z to [0, 2] is determined
by ¢. This completes the proof. O

We shall henceforth write H for the function ¢ =~ z described above.
Direct computation establishes the following lemma, which will be instrumental
in the construction of our periodic solution of (9).

Lemma 3.4. The equation H(—2z) = z has a unique solution
2 14+~

Z=——
S+ S+7y

K(n). O (12)

We now impose our second size condition on 7. Since K(n) — 0 as n — 0, for
any v € [0,1—¢] and all 5y small enough, Z is approximately equal to 2/(5++). This
observation along with some computation shows that we can choose 7 small enough,
relative to o, such that (for any f satisfying our hypotheses and any v € [0,1 — a])
the following hold.

—-3zZ+6np< -1<—-2z-6n (13)
and
(10) and (11) hold for any { € [-2Z —1,—2Z + 7}, 0 = —1/2. (14)

We assume henceforth that 7 is so small: that is, (7), (13) and (14) hold given any
/ satisfying our hypotheses and any v € [0,1 — a]. Observe in particular that

z>12n and -2z24+3n<-1/2<-z-3n.

(The first inequality on the right comes from multiplying (13) through by 2/3.)
Lemma 3.3 now allows us to give an explicit description of a periodic solution of

(9) with oscillation speed 2. Still with o € (0, 1) fixed, choose and fix v € [0,1 — o]

and assume that our standing hypotheses on (9) hold — in particular, that 7 satisfies

(7), (13) and (14). Let Z be as described above. Now choose yy € Dy satisfying the

following conditions:

yo(s) = s for all s € [—7,0];

yo(s) < —nforall s € (-z+1n,-n);

yo(s)=—-Z—sforallse€ [~z —n —z+n|;

yo(s) >nforallse (-224+1,-z —n);

yo(s) = s+ 2z for all s € [-2Z —n, —2Z +7);

yo(s) <nforall s € [-1,—-2Z — 7).

Let us write y for the continuation of yo as a solution of (9), and let us write
&1 < & < &3 < &y for the first four positive zeros of y. Note that yg satisfies the
hypotheses of Lemma 3.3, with —2% playing the role of ¢ and ¢ = -1/2. Thus
y'(t) =1on [0,7], ¥(t) = =1 on [& — n,&1], and & = H(—2Z) = Z. Moreover,
& —d(0)=2—-1¢€ (-2z2+6n,—z—6n) by (13), so y(z— 1) > n. Thus —y; satisfies
exactly the same conditions that we listed for yo above, and so in particular satisfies
the the hypotheses of Lemma 3.3 too, with the role of ¢ played by —%z — 7 = —2z.
See the figure below.
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y(t)

NI ---

Using the symmetry result of Lemma 3.2, we conclude that £, = 2z and that ys;
satisfies the conditions given for yo. Continuing this way shows that ys; also has
zeros —2Z and —Z on (—1,0) and satisfies the conditions given for yy, and hence
the hypotheses of Lemma 3.3. Therefore, by Lemma 3.3 we see that the restriction
of y to [4z, 5z] will be equal to (a translate of) the restriction of y to [0, Z], and so
on. Continuing this reasoning shows that

Yaz = Y6z =Ygz =+ *
— that is, that y45 is the fixed point of a return map R that “advances solutions
by four zeros.” In particular, we see that (9) has a periodic solution p” of constant
oscillation speed 2 with pj = y43.

{The necessity of “advancing by four zeros” comes from the fact that 4 is the
smallest positive even integer k such that kZ > 1. This condition is required to make
the map R completely continuous — recall Section 2. We also emphasize that y,5 is
not necessarily a segment of a periodic solution: the restriction of yoz to [—1, —2Z]
is just the restriction to [2z — 1, 0] of the initial condition yo, and there is no reason
to expect this restriction to be equal to the restriction of y45 to [-1, —22].)

Remark 7. Essentially the same approach that we have used above can be used to
show that, given any positive even n, (9) has a periodic solution of oscillation speed
n for all n small enough. The spacing Z, between the zeros will be the solution of
the equation H(—nZ,) = Z,, and the periodic solution can be obtained (provided 7
is small enough) by repeatedly applying Lemma 3.3, with ¢ € (—nZ,, —(n — 1)%,),
to an initial condition analogous to yo but with zeros Z, units apart. We do not
present the details here.

For notational simplicity, we write p := p” henceforth. We shall spend most of
the rest of the paper defining the return map R carefully, putting ourselves into
the semiconjugacy framework of Section 2, and showing that DR[pp] has spectral
radius (2/(1 + v))?; this will complete the proof of Theorem 2.3. The ideas will
all be familiar to readers accustomed to dealing with feedback functions that are
similar to step functions.

We collect some facts about p. These follow from the periodicity of p, Lemma
3.2, our conditions on z, and the proof of Lemma 3.3 (particularly that, in the
notation of that lemma, 3n < 7 < 7 < z — 3n; and so p(¢t) has slope +1 on intervals
of radius strictly greater than 3n about each of its zeros, and |p(t)| > 3n away from
those intervals).
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Lemma 3.5. p has constant oscillation speed 2, and the following hold.

e The zeros of p are precisely the numbers kz, k € Z.

e p has slope (—1)* on the intervals [kz — 3n,kZ + 31|, and these intervals of
radius 3n about the points kZ are precisely the intervals for which |p(t)| < 37.

o —3z+3n < —1, so0 [po(s)| < 3n precisely for s on the subset [-2Z — 3n, —2z +

3 U[-Z—3n,—Z+ 30U [-3n,0].

p(t + Z) = —p(t) for all t.

There is a positive number 8 > 0 such that, for allk € Z, |p(t—d(p(t)))} > n+8

forallt € [kZ—3n,kz+3n. O

Notation. We shall henceforth write X = Dy, and take U C X to be a relatively
open ball in X about pg of radius 4.

We now define the somewhat more intricate set Y.

Definition 3.6. Y is the subset of members yy of X satisfying the following addi-
tional requirements:

® |lyo — poll <m;

e yi(s) =1on[-2n,0] and on [—-2Z — 27, —2Z + 27];

o yo(s)=—lon [-Z—2n,—Z+ 27].

We collect some immediate consequences of Definition 3.6.
Lemma 3.7. Every yo € Y has precisely two zeros {_y < (1 on (—1,0), with
[(—2 = (=22)| <n and |(_y — (=2)| <n.
Furthermore,

lyo(s)| <n = sel(2—nC2+nU[G—nC(1+nU[-70
C  [-2z2-2n,-2Z4+29|U[-Z—-2n,—Z + 29| U[-2n,0].

Since —z — 2n > —Z — 3n > —1/2 (this follows from (13)), we see in particular
that, on [-1, —=1/2], |yo(s)| < 5 precisely on the interval [{_s — 1, (2 + 7}, where yo
has constant slope 1. Using the notation introduced in Lemma 3.7, (14) now yields

Lemma 3.8. Any point yo € Y satisfies the hypotheses of Lemma 3.3, with (_, in
the role of ( and 0 =1/2.

X and Y are of course subsets of the Banach space C'[—1,0]; we now show
that X and Y have the local submanifold structure that we need to apply the
semiconjugacy apparatus described in Section 2. In fact, near pg, the submanifold
structures of X and Y are particularly simple: X and Y are locally affine, as we
now explain. Since p(—d(0)) = p(—1) < —n — B, for all zg € X sufficiently close
to po (remember that X has the C' metric) we have that z{(0) = 1. Thus any
sufficiently small open set in X about pg is the intersection of an open set in C?
and the affine space pg + A, where

A={vecC: v(0)=0}.
Similarly, since the members of Y have prescribed slope on certain intervals, any

sufficiently small open set in Y about pg is the intersection of an open set in C*
and the affine space pg + B, where

B={veC': v(s)=0for all s € [-22—2n, —2Z+2n|U[~Zz—27n, —Z+2n]U[-27,0] }.

Thus X and Y have the structure required for the semiconjugacy framework of
Section 2. (Notice that the tangent spaces to X and Y at pg are Ty, X = A and
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T,,Y = B, respectively.) In the notation introduced in Section 2, we shall take V =
R? below, equipped with the usual Euclidean norm. To apply the semiconjugacy
framework, then, we have the required spaces; we need to define the maps R, Z and
p, and to prove properties (I) — (IV).

We begin with the map Z : Y — R?, which we define by the formula (again using
the notation introduced in Lemma 3.7, which we shall use for the rest of the paper)

Z(yo) = (—C-1,—C-2)-

We extend Z to —~Y by defining Z(yo) := Z(—yp) for all yo € -Y.
Z(yo) is given by the following formula: for yo € Y,

Z(yo) = (2 — yo(—%),2Z + yo(—22)).

Z is affine, and so it is clear that Z is continuous, open, and continuously differen-
tiable with DZ[po] : Tp, Y — R? surjective.

We now define the map R, and give its important properties. R is a return map,
defined near pg, that “advances solutions by four zeros”. Any fixed point of R is
a segment of a periodic solution. (Recall that we are viewing f, 1, v, p, and Y as
fixed.)

Lemma 3.9. There is a 6o > 0 such that, for all § € (0,8], the following hold.
Write U for the relatively open ball of radius § in X with center py. Givenyo € U
with continuation y as a solution of (9),

o The furst four positive zeros z1 < z3 < z3 < 24 of y are defined and proper;
o The return map R: U — X defined by
R(?JO) = y24

is continuously differentiable and completely continuous;
e RU)CY;
o Ifin fact yo € UNY, then

Yor ~Yz1s Yzar —Yzgr 004 Ys
all satisfy the hypotheses of Lemma 3.3, with 0 = —1/2 and the role of ¢
played, respectively, by
(-2, (1 — 21, —22, 21 — 23, and 23 — 24.
Proof. For notational simplicity we write d, = d henceforth.

Suppose that z(¢) and y(t) are two solutions of (9). Write b for an upper bound on
|f'|, D for an upper bound on |d'|, and M such that |y'(¢)] < M for all t € [-1, c0).
{We may take D = (14+)/2, and M = max{||yol|, 1}, since |y'(t)| < 1 for allt > 0.)
Write | - ||o for the sup norm. For ¢ > 0, we then have the elementary bounds

|l='(t) — ' (t)]
<If(2(t - d(=(£)))) — fly(t — d(y(t))]
<If(z(t = d(=(t)))) = £y(t = dlx@®))] + |f(y(t — d(=(£)))) — fly(t - d(y($))]
<b[lx(t — d(=(t))) — y(t — d(x(t)] + ly(t — d(2(t))) — y(t — d(y(t)))[]
<bllze — yello + 6M Dy — yello = b(1 + MD)||z¢ — yello-
This Lipschitz bound now allows us to establish, by familiar arguments, the follow-

ing: that given any ¢ > 0, we may choose ¢ such that |jyp — po|| < ¢ implies that
| F(t,y0) — F(t,po)|| < ¢ for all t € [0,4Z + 3]
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Since f and d are smooth, we have the estimate |z”(¢)| < &(D + 1) for all £ > 0.
This implies in particular that p’(¢) has a Lipschitz constant £. We now choose the
€ in the last paragraph to satisfy € < /(2 + £).

In addition, using the estimate (related to the estimate above)

|=(t — d(z(t))) = y(t - d(y(®))] < (1 + M D)z — yello

and recalling from Lemma 3.5 that |p(t — d(p(t))| > n + 8 whenever ¢ is within 35
of a zero of p, we also choose € so small that |y(t — d(y(t))) —p(t — d(p(¥)))| < 8 —
and so y'(t) = p'(t) — for all ¢ in

[0,39] U [z — 31,2+ 3] U[2Z — 3n,2Z + 3n] U [3Z2 — 31,32 + 3n] U [4Z — 31,42 + 37).

On each of these intervals, we also of course have |y(t) — p(t)] < ¢ < n/(2 + £).
Writing z1 < zo < z3 < 2z4 for the first four positive zeros of y, we see that each of
these zeros is well-defined and proper, with |z, —kZz| < 7/(2+¢) for all k € {1, 2,3, 4}.
We also have that ||ygz — przl < n/(2 + £) for all k € {1,2,3,4}. Recalling that
the Lipschitz constant of p is 1 and the Lipschitz constant of p’ is ¢, we have the
C'-norm estimate

Yz — Przll < llywz — pezll + 2k — K2|(E+1) <1+ 1+ n/2+ ) =7

for all k € {1,2,3,4}.

As in the statement of the lemma, we now define the map R : U — X by
R(yo) = y.,- We have just shown that [|R(yo) — pol| < 7.

We now show that R(yo) C Y. Since y(t) has constant slope 1 on [22—3n, 2z +37)],
constant slope —1 on [3Z — 35, 3z + 35|, and constant slope 1 on {4Z — 37, 4z + 47,
translating by a distance of magnitude |z4 — 4Z| < 1 we get that y,, has constant
slope 1 on [-2% — 2n, —2%Z + 27}, constant slope —1 on [—Z — 2n, —Z + 27|, and
constant slope 1 on [-2n,0]. Thus (since we already know that |R(yo) — pol| < 7)
we have that R(yp) € Y, as desired.

The proof of the last part of the lemma is similar. That yo and R(yo) = y.,
satisfy the hypotheses of Lemma 3.3 is of course just Lemma 3.8. For k € {1,2, 3},
a translation argument just like in the last paragraph shows that

e y, has precisely two zeros 5_2 < 6_1 on (-1,0);
e y., has constant slope +1 on each of the intervals [(_; — 7,{_s + 7], [(_1 —
7, C—l + T)], and ["'777 0];
e The above listed intervals are exactly the subintervals of [~1,0] for which
|yz (s)] < m; .
e [(-2~(-22)| <nand (-1 —n>-1/2.
That each of these y,, (or its negative) satisfies the hypotheses of Lemma 3.3 now
follows from (14). The formulas for the quantities playing the role of ¢ are now
obvious.
The smoothness and complete continuity of the map yo — y., = R(yo) follow
from standard arguments, as asserted in Section 2. O

We shall henceforth assume that §, U and R are as in Lemma 3.9.

In the notation of the general semiconjugacy framework described in Section
2, we have established hypothesis (I) and parts of (II) and (III). We now turn to
computing the semiconjugating map p.
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Writing (u,v) for the general point of R?, let us introduce the two-dimensional
affine map

v(2)= (250 = (0 B ()~ (EIEm),

¥ has the unique fixed point (Z, 2Z).
Proposition 3. Let yo € UNY, with § as in Lemma 3.9. Then

Z(R(yo)) = p(Z(30)),
where p = ¥4,

Proof. By this point, the proof is perhaps obvious. Since yp and y,,, k € {1,2,3,4}
(or their negatives) all satisfy the hypotheses of Lemma 3.3 with the role of ¢ as
described in Lemma 3.9, we compute

z1=H(( 2); 22— 21 =H((-1—21); 23— 20=H(~22); 24— 23 = H(z — 23).
Computation now shows that Z(R(yo)) = (24 — 23, 24 — 22) is equal to p(Z(yp)). O

We have verified hypothesis (IV) of the framework described in Section 2.

Suppose that yo € UNY. Lemma 3.3 (together with Lemma 3.9) tells us that
{_2 completely determines the restriction of y to [0, z1], that (_1 — 2; completely
determines the restriction of y to [21, 22], and so on. Since 23 — {_,, though, is
just the second coordinate of W(Z(yo)), we see that Z(yo) completely determines
the restriction of y to [0,z2]. Continuing this reasoning shows us that Z(y) in
fact determines the entire restriction of y to [0,24]. Since z4 > 1, we see that
Z(yo) determines R(yo) — more precisely, if zo,y0 € UNY and Z(y) = Z(z0),
then R(yo) = R(zo). This completes the verification of hypothesis (II} in our
semiconjugacy framework.

Since Z is affine, to say that v € T,,,Y is in the kernel of DZ[py] is to say that
Z(po + hv) = Z(po) for all h real with |h| sufficiently small. It follows from (II)
that R(po + hv) = R(po) for all such h, and so v € ker DR[pp] too. This completes
the verification of hypothesis (III) from Section 2. All necessary hypotheses for the
framework have now been established.

Direct computation yields that the spectral radius of Dp[Z(pg)] is v/2/(1 + 7) g
(2/(1 +v))?. We now apply Proposition 2 to conclude that DR[py] has spectral
radius (2/(1 + v))? also. This completes the proof of Theorem 2.3.

Even without the semiconjugacy framework, we can see that p is unstable in a
sense that we now describe (this is the standard “nonlinear” definition of instability
of a fixed point).

Proposition 4. Given any € > 0, there is a point o € U with ||zo — po|| < € such
that R™(xzq) ¢ U for some m.

Proof. There are points zp € UNY with Z(z¢) # Z(po) and ||zo — po|| < €. The
sequence p™(Z(zo)) is unbounded in R?, for p is affine with spectral radius greater
than 1.

For any N € N such that R*(z) € U for all k € {0,...,N — 1}, by Lemma
3.9 we in fact have that R*(z¢) € UNY for all such k. Repeated application
of Proposition 3 now yields that p"(Z(zo)) = Z(RN(x0)). If we imagine that
RN (xg) € U for all N € N, then, we see that Z(R"™ (x¢)) must be unbounded; but
very crude estimates show that any point in Z(Y') has Euclidean norm no more

than /12 + (1/2)2 = v/5/2. a
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Remark 8. For v close to 1, the linear part of the affine map ¥ is close to

a=(10)

A%y = v for all v € R%. Thus, for v close to 1, the orbit of any point near
Z(po) = (%,2%) under ¥ will be close to a period-three orbit, slowly spiraling away
from Z(py). Thus, for v close to 1 and o € UNY close to py, the continuation x of
xo as a solution of (9) will remain (up to translation) close to p for a large interval of
positive time, with the spacing between the zeros forming an approximate 3-periodic
sequence (this phenonemon is readily observed in numerical approximations). Thus
we see, at a heuristic level, how taking 7 close to 1 makes the instability of p “mild.”
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