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Serotonin, Motivation, and Playfulness in the Juvenile Rat

Abstract
The effects of the selective 5HT1A agonist 8-OH-DPAT were assessed on the play behavior of juvenile rats.
When both rats of the test pair were comparably motivated to play, the only significant effect of 8-OH-DPAT
was for play to be reduced at higher doses. When there was a baseline asymmetry in playful solicitation due to
a differential motivation to play and only one rat of the pair was treated, low doses of 8-OH-DPAT resulted in
a collapse of asymmetry in playful solicitations. It did not matter whether the rat that was treated initially
accounted for more nape contacts or fewer nape contacts, the net effect of 8-OH-DPAT in this model was for
low doses of 8-OH-DPAT to decrease a pre-established asymmetry in play solicitation. It is concluded that
selective stimulation of 5HT1A receptors changes the dynamic of a playful interaction between two
participants that are differentially motivated to play. These results are discussed within a broader framework of
serotonergic involvement in mammalian playfulness.
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Abstract 

 

The effects of the selective 5HT1A agonist 8-OH-DPAT were assessed on the play behavior of 

juvenile rats. When both rats of the test pair were comparably motivated to play, the only 

significant effect of 8-OH-DPAT was for play to be reduced at higher doses. When there was a 

baseline asymmetry in playful solicitation due to a differential motivation to play and only one 

rat of the pair was treated, low doses of 8-OH-DPAT resulted in a collapse of asymmetry in 

playful solicitations.  It did not matter whether the rat that was treated initially accounted for 

more nape contacts or fewer nape contacts, the net effect of 8-OH-DPAT in this model was for 

low doses of 8-OH-DPAT to decrease a pre-established asymmetry in play solicitation.  It is 

concluded that selective stimulation of 5HT1A receptors changes the dynamic of a playful 

interaction between two participants that are differentially motivated to play. These results are 

discussed within a broader framework of serotonergic involvement in mammalian playfulness. 

  

 

Key words:   Play   serotonin 5HT1A  autoreceptors 

  8-OH-DPAT  motivation rat   
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Serotonin, motivation, and playfulness in the juvenile rat 

 

1. Introduction 

 Play is a fundamental neurobehavioral process that is shared widely among the juveniles 

of most mammalian species, several avian and reptilian species, and even among some 

invertebrates (Burghardt, 2005; Fagen, 1981; S.M. Pellis & Pellis, 2009).  Play has been 

particularly well characterized in the rat (Panksepp, 1998; Panksepp, Siviy, & Normansell, 1984; 

S.M. Pellis & Pellis, 2009; Trezza, Baarendse, & Vanderschuren, 2010; Vanderschuren, Niesink, 

& Van Ree, 1997) and shows a distinctive ontogenetic trajectory, appearing in the behavioral 

repertoire shortly after independent locomotion begins, peaking at around 35 days of age and 

then steadily decreasing as puberty approaches (Meaney & Stewart, 1981; Panksepp, 1981; 

Small, 1899).  At its peak, play in the rat accounts for about 3-6% of the daily energy budget and 

about 3% of the time budget (Siviy & Atrens, 1992; Thiels, Alberts, & Cramer, 1990).  There is 

good evidence that a playful phenotype is heritable as robust differences have been reported 

between different strains of rats (Ferguson & Cada, 2004; Siviy, Baliko, & Bowers, 1997; Siviy, 

Crawford, Akopian, & Walsh, 2011; Siviy, Love, DeCicco, Giordano, & Seifert, 2003) and 

between rats that have been selectively bred on other related components such as affective 

vocalizations  (Brunelli et al., 2006) and susceptibility to amygdala kindling (C.J. Reinhart, 

McIntyre, Metz, & Pellis, 2006; C. J. Reinhart, Pellis, & McIntyre, 2004).   

 Play is a highly regulated behavior and, in rats, levels of play are exquisitely sensitive to 

how long it has been since a previous opportunity to play (Panksepp & Beatty, 1980). Rats that 

have been isolated for 4 hours will play more than rats that have not been isolated, while rats that 

have been isolated for 24 hours will play more than rats that have been isolated for 4 hours.  Play 
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is also affectively positive (i.e., it is fun for the participants).  For example, rats will readily learn 

to navigate a maze where an opportunity to play is the reward (Humphreys & Einon, 1981; 

Normansell & Panksepp, 1990)  and will show a clear preference for a context previously 

associated with play (Calcagnetti & Schechter, 1992; Douglas, Varlinskaya, & Spear, 2004; 

Trezza, Damsteegt, & Vanderschuren, 2009).  Rats will also emit short (< 0.5 seconds) bursts of 

high frequency (~50 kHz) vocalizations when playing and when placed in a context where they 

have previously played (Knutson, Burgdorf, & Panksepp, 1998) and these types of vocalizations 

have also been observed in other affectively positive states (Burgdorf, Knutson, & Panksepp, 

2000; Burgdorf, Knutson, Panksepp, & Ikemoto, 2001; Burgdorf et al., 2008; Burgdorf & 

Panksepp, 2001; Knutson, Burgdorf, & Panksepp, 1999; McIntosh & Barfield, 1980).  Taken 

together, these data suggest that play is a stable behavioral phenotype among most mammals and 

likely arises from activity in specific neural circuits that are sensitive to motivational and 

affective processes. 

 At the neurochemical level, several neurotransmitters have emerged as strong candidates 

for modulating play. Among these, a specific role for endogenous opioid and cannabinoid 

systems are particularly prominent.  Endogenous opioids are released in many areas of the brain 

during play (Panksepp & Bishop, 1981; Vanderschuren, Stein, Wiegant, & Van Ree, 1995) while 

low doses of morphine increase play and opioid antagonists decrease play (Niesink & Van Ree, 

1989; Panksepp, Jalowiec, DeEskinazi, & Bishop, 1985; Trezza & Vanderschuren, 2008b; 

Vanderschuren, Niesink, Spruijt, & Van Ree, 1995a, 1995b; Vanderschuren, Spruijt, Hol, 

Niesink, & Van Ree, 1996).  Compounds that prevent the breakdown or reuptake of endogenous 

cannabinoids once released into the synapse also increase play (Trezza & Vanderschuren, 2008a, 

2008b, 2009), suggesting that a subset of cannabinoid synapses are active during play and that 
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prolonging activity in these synapses makes rats more playful.  There is also considerable 

overlap between opioid and cannabinoid involvement in play as increases in play following 

enhanced endocannabinoid signaling or with morphine can be blocked by either opioid and 

cannabinoid CB1 antagonists.   

 Brain monoamines have long been thought to be involved in the modulation of play. 

Indeed, one of the first pharmacological studies using play as a measure showed that low doses 

of psychomotor stimulants such as amphetamine and methylphenidate are very potent in 

reducing play (Beatty, Dodge, Dodge, White, & Panksepp, 1982).  Given the extent to which 

dopamine is well known to be involved in other motivational and affective processes it is not 

surprising to find the imprint of dopamine on play behavior as well. Dopamine utilization 

increases during play bouts (Panksepp, 1993), dopamine antagonists uniformly reduce play 

(Beatty, Costello, & Berry, 1984; Niesink & Van Ree, 1989; Siviy, Fleischhauer, Kerrigan, & 

Kuhlman, 1996), and neonatal 6-OHDA lesions impair the sequencing of behavioral elements 

during play bouts (S.M. Pellis, Casteneda, McKenna, Tran-Nguyen, & Whishaw, 1993). While it 

has been difficult to obtain consistent increases in play with dopamine agonists (Beatty, et al., 

1984; Field & Pellis, 1994; Siviy, et al., 1996) increases in play following alcohol, nicotine, and 

indirect cannabinoid agonists can all be blocked by silent doses of dopamine antagonists (Trezza, 

Baarendse, & Vanderschuren, 2009; Trezza & Vanderschuren, 2008a). These data suggest that 

play is associated with increased release of dopamine (Robinson, Zitzman, Smith, & Spear, 

2011), and it has been suggested that an optimal level of dopamine functioning is necessary for 

play to occur (Trezza, et al., 2010). 

 Both norepinephrine and serotonin have fairly extensive and diffuse projections 

throughout the forebrain and a specific role for norepinephrine was initially indicated from 
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findings that selective alpha-2 noradrenergic antagonists can increase play while alpha-2 agonists 

reduce play (Normansell & Panksepp, 1985a; Siviy, Atrens, & Menendez, 1990; Siviy & Baliko, 

2000; Siviy, Fleischhauer, Kuhlman, & Atrens, 1994).  A specific role for alpha-2 receptors is 

also indicated by the finding that reductions in play following methylphenidate can be reversed 

by a silent dose of the alpha-2 antagonist RX821002 but not by either an apha-1 or beta 

antagonist (Vanderschuren et al., 2008).  Vanderschuren and co-workers (2008) also reported 

that the play-disrupting effects of methylphenidate could be mimicked by the selective 

noradrenergic reuptake inhibitor atomoxetine but not by the selective dopamine reuptake 

inhibitor GBR12909.  These data suggest that increased synaptic availability of NE is 

incompatible with play and this is apparently due to action at post-synaptic alpha-2 receptors. 

 Serotonin is thought to have considerable impact on a wide range of neurobehavioral 

processes including affective regulation (Dayan & Huys, 2009; Hariri & Holmes, 2006), 

establishing and maintaining dominance (Huber, Panksepp, Yue, Delago, & Moore, 2001; 

Raleigh, McGuire, Brammer, Pollack, & Yuwiler, 1991), and defensive behavior (Blanchard, 

Griebel, Rodgers, & Blanchard, 1998; Graeff, 2002), to name just a few, so it is very likely that 

serotonin may also be involved in at least some aspect of play. Indeed, augmenting serotonin 

functioning through acute treatment with either fluoxetine or MDMA (“Ecstasy”) reduces play 

(Homberg, Schiepers, Schoffelmeer, Cuppen, & Vanderschuren, 2007; Knutson, Panksepp, & 

Pruitt, 1996).  Homberg and colleagues (2007) reported less play among serotonin transporter 

knockout rats as well. Although these data would suggest that enhanced serotonergic functioning 

is incompatible with play, a more complex pattern emerges when only one rat of a pair is treated 

and attention is paid to the reciprocal interactions between the two rats of the testing pair.  When 

rats were allowed to establish a dominance relationship such that one rat accounted for more 
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pinning than the other (this being the dominant rat) the effects of either fluoxetine or serotonin 

depletion depended on the status of the rat that was treated.  Augmenting serotonin levels 

through fluoxetine reduced the pinning asymmetry when the dominant rat was treated (Knutson, 

et al., 1996) while depleting serotonin enhanced the pinning asymmetry (Knutson & Panksepp, 

1997).  Interestingly, these effects were largely due to changes in the behavior of the untreated 

partner towards the treated partner. Also, treating the subordinate rat had no effect on the pinning 

asymmetry and playful solicitations were not affected in this set of experiments. These data 

suggest a more subtle role for serotonin in modulating play behavior that may be more sensitive 

to interactive cues between the play partners.   

 In addition to having extensive projection throughout the forebrain, there is also 

considerable diversity in the receptor mechanisms associated with serotonergic functioning. 

There are believed to be at least 14 different receptor subtypes for serotonin (Martin & 

Humphrey, 1994; Millan, Marin, Bockaert, & Mannoury la Cour, 2008) although the 5HT1A 

receptor is the best characterized of these.  The 5HT1A receptor is located at both pre-synaptic 

and post-synaptic sites and many of the behavioral effects associated with stimulation of this 

receptor are generally ascribed to a reduction in 5HT release due to stimulation of somato-

dendritic autoreceptors (Carboni & Di Chiara, 1989; Hjorth et al., 1982) although stimulation of 

post-synaptic 5HT1A receptors may also reduce 5HT cell firing and release as well through an 

indirect feedback pathway (Sharp, Boothman, Raley, & Quérée, 2007).  In either case, the net 

effect of stimulating 5HT1A receptors is a reduction in serotonin neurotransmission. As the 

prototypical agonist for the 5HT1A receptor (Hjorth, et al., 1982), the behavioral effects of 8-OH-

DPAT have been studied most extensively, yet the effects of this compound on play have not 

been well characterized. While the complexity of 5HT1A receptor systems may make it difficult 
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to predict exactly how any given dose of systemically administered 8-OH-DPAT reflects a 

specific change in 5HT functioning (De Vry, 1995),  understanding the effects of stimulating 

5HT1A receptors seems a necessary step in further defining any role for serotonin in play 

behavior. Accordingly, the current study sought to determine the effects of 8-OH-DPAT on play 

in juvenile rats.   

2. Experiment 1 

 Earlier studies from our lab suggested that low autoreceptor-selective doses of 8-OH-

DPAT may increase playfulness in young rats (Siviy, 1998) although these effects were neither 

robust nor easily reproducible. In this first experiment we sought to initially characterize the 

dose-related effects of 8-OH-DPAT on play. Playful interactions between two rats are very 

energetic and dynamic, yet play in the rat can be readily characterized primarily by contacts 

directed towards the nape of the neck and by how rats respond to those contacts. When rats are 

young the most common response to a nape contact is a complete rotation along the longitudinal 

axis such that the rat is on its back with all four paws in the air and the other rat on top in what 

looks like a pinning posture (Panksepp, et al., 1984; S.M Pellis & Pellis, 1987; Siviy, 1998; 

Vanderschuren, et al., 1997).  Due largely to the contagious nature of play (S.M. Pellis & 

McKenna, 1992) it is often difficult to determine if any pharmacological effect is modifying 

solicitation, responsiveness, or both if the rats are similarly treated.  In order to address this 

potential concern, the effects of 8-OH-DPAT were assessed when either both rats were similarly 

treated or when only one rat was treated.   

2.1. Materials and Methods 

2.1.1. Subjects and housing 
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 Male Sprague-Dawley rats (Harlan, Indianapolis, IN) were obtained at approximately 19 

days of age. Upon arrival and unless stated otherwise in the specific procedures, animals were 

housed in groups of four in solid bottom cages (48 X 27 X 20 cm) and periodically handled for a 

few days after arrival in order to acclimate to the laboratory.  Food and water were always freely 

available.  The colony room was maintained at 22
O
 C with a 12/12 hr reversed light/dark cycle 

(lights off at 08:00), with all testing done during the dark phase of the light/dark cycle.  All 

housing and testing was done in compliance with the NIH Guide for Care and Use of Laboratory 

Animals using protocols approved by the Institutional Animal Care and Use Committees at 

Gettysburg College. 

2.1.2. Quantifying play  

 Play behavior was assessed in a clear Plexiglas chamber (40 x 40 x 50 cm) that was 

enclosed within a sound-attenuated wooden chamber illuminated by a single 25W red light bulb. 

The floor of the testing chamber was covered with approximately 3 cm of Aspen pine shavings.  

Play bouts were recorded as digital video files and scored later using behavioral observation 

software (Noldus XT: Noldus Information Technology) by an observer unaware of the treatment 

condition. 

 Rats were initially acclimated to the testing chamber by being placed individually in the 

testing chamber for 5 minutes/day for 2 days prior to testing.  For testing rats were placed in the 

testing chamber and play was quantified by counting the frequency of contacts directed towards 

the nape (nape contacts) and the likelihood that a nape contact resulted in that rat rotating 

completely to a supine position (complete rotation).  Nape contacts were quantified by frequency 

of occurrence, while complete rotations were quantified in probabilistic terms by calculating the 

probability of a complete rotation occurring in response to a nape contact.  These two measures 
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of playfulness have been commonly used in this lab and are also thought to be controlled by 

independent motivational and neural substrates (S.M. Pellis & Pellis, 1991; S.M Pellis & Pellis, 

1987; Siviy, et al., 1997; Siviy & Panksepp, 1987).   

2.1.3. Procedures  

 Eight pairs of rats were used to initially assess the effects of 8-OH-DPAT on play 

behavior when both rats of the pair were similarly treated. Rats were isolated in solid-bottom 

cages (27 cm x 21 cm x 14 cm) 4 hours prior to testing.  Food and water were always available 

during isolation.  For this and all subsequent experiments, four doses of (±)-8-OH-DPAT (0.01, 

0.03, 0.1, 0.3 mg/kg) and vehicle (0.9% physiological saline) were tested and administered 

subcutaneously (SC) in the hip 45 minutes before testing.  Every pair received each of the five 

treatments in a counterbalanced order with at least 48 hours separating each test.  Rats were 

tested in the same pairs (cage-mates) for all treatments. Nape contacts and probability of 

complete rotations reflect values for the pair.  Social investigation was also quantified by the 

relative amount of time spent by either animal sniffing the ano-genital area of their play partner. 

 In order to assess the extent to which 8-OH-DPAT affected overall activity during play 

bouts, an additional eight pairs of rats were used to simultaneously monitor both play and 

locomotor activity. Testing parameters and doses were the same as above.  Locomotor activity 

was monitored by a video-tracking system (Ethovision; Noldus Information Technology) that 

was capable of tracking the movement of both animals at the same time.  In order to facilitate the 

ability of the software to track the rats, there was no bedding in the test chamber.  Play was 

quantified as it occurred (i.e., these sessions were not taped) by counting the frequency of nape 

contacts.  Locomotor activity was quantified by distance (cm) traveled by both of the  rats and by 

average velocity (cm/sec) over the course of the 5 minute session.  
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 An additional 14 pairs of rats were used to assess the effects of 8-OH-DPAT on play 

when only rat of the testing pair was treated. The rat designated to receive 8-OH-DPAT received 

each of the five treatments in a counterbalanced order, and at least 48 hours separated each test. 

For this experiment, rats were tested with a novel untreated partner on each test day in such a 

way that the untreated partner was also paired with a rat receiving a different dose each day. 

Both rats of the test pair were isolated 4 hours before testing as described above.  Nape contacts 

and probability of complete rotations were recorded for each rat of the testing pair (treated and 

untreated). Social investigation was also quantified for each rat of the test pair. 

2.2. Results 

 The effects of 8-OH-DPAT when both rats of the test pair were treated and when tested 

after 4 hours of isolation can be seen in Figure 1.  When these data were submitted to a repeated 

measures Analysis of Variance (ANOVA) there was found to be a significant effect for nape 

contacts, F(4,28) = 35.69, p < .001, and for the probability of a complete rotation, F(4,28) = 

10.66, p < .001.  Nape contacts differed significantly (p < .05, paired comparisons test) from 

vehicle after the two highest doses (0.1, 0.3 mg/kg) while complete rotations differed 

significantly from vehicle only after highest dose (0.3 mg/kg). 8-OH-DPAT also had a 

significant effect on time spent in social investigation, F(4,28) = 9.03, p < .001 (Figure 2). When 

compared to vehicle, social investigation significantly decreased after 0.03 mg/kg but increased 

after 0.3 mg/kg. 

 The effects of 8-OH-DPAT on play and locomotor activity can be seen in Table 1. 8-OH-

DPAT had a significant effect on all 3 measures, Fs(4,28) > 9.10, p < .001.  The highest dose 

significantly reduced nape contacts, distance traveled, and average velocity of movement.  
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 The effects of 8-OH-DPAT when only one rat of a test pair was treated and when both 

rats were isolated for 4 hours prior to testing is shown in Figure 3. These data were submitted to 

a 2 x 5 ANOVA with one between-subjects factor for partner (treated or untreated) and one 

within-subjects factor for the five doses. For nape contacts there was found to be a significant 

effect of dose, F(4,104) = 15.89, p < .001, a marginal effect of partner, F(1,26) = 4.22, p = .05, 

and a significant dose x partner interaction, F(4,104) = 6.47, p < .001.  Separate ANOVAs were 

conducted on the data from the treated and untreated partners and it was found that 8-OH-DPAT 

reduced nape contacts in the treated rats at the two highest doses.  Nape contacts for the 

untreated rat were unaffected by the treatment of the partner.  The only significant effect from 

the analysis of complete rotations was a significant effect of dose, F(4,104) = 6.14, p < .001, with 

the highest dose reducing the likelihood of responding to a nape contact with a complete rotation. 

For social investigation there was found to be a significant partner x dose interaction, F(4,104) = 

3.02, p = .021 (Figure 4) with social investigation increasing in the untreated partner when the 

partner was treated with 0.1 mg/kg of 8-OH-DPAT. 

3. Experiment 2 

 The results from the previous experiment showed that the only consistent effect of 8-OH-

DPAT was for play to be reduced at higher doses.  There was no indication of an increase in play 

at the lower autoreceptor-selective doses and this is pretty consistent with a number of 

preliminary studies done in our lab.  However, given that the effects of fluoxetine and 5HT 

depletion on play have been shown to be dependent on an initial asymmetry in pinning between 

established pairs of rats (Knutson & Panksepp, 1997; Knutson, et al., 1996) it seemed reasonable 

to predict that 8-OH-DPAT may also be sensitive to a pre-existing asymmetry in play.  Rather 

than allowing rats to establish a dominance/subordinate relationship, rats in this experiment 
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played with a new partner on each test day and we sought to establish an asymmetry in play by 

varying the amount of isolation prior to the play bout.  In particular, one rat of a pair was 

chronically isolated for 24 hours while its partner was isolated for only 4 hours prior to testing 

and, as predicted, rats that were isolated for 24 hours accounted for more nape contacts than 

those isolated for 4 hours.  The effects of 8-OH-DPAT were then assessed when either given to 

the rat isolated for 24 hours or to the rat isolated for 4 hours.   

3.1. Procedure 

 Subjects, housing, and testing protocols for play were the same as in Experiment 1. In 

one experiment (n = 8 pairs), the treated rat was isolated for 4 hours prior testing while its 

untreated partner was isolated for 24 hours.  In a separate experiment (n = 8 pairs) the treated rat 

was isolated for 24 hours prior to testing while its untreated partner was isolated for 4 hours. As 

in Experiment 1, all injections were given SC 45 minutes before a 5 minute opportunity to play. 

The rat designated to receive 8-OH-DPAT received each of the five treatments in a 

counterbalanced order, and at least 48 hours separated each test. Rats were tested with a different 

untreated partner on each test day in such a way that the untreated partner was also paired with a 

rat receiving a different dose each day. 

3.2. Results   

 As can be seen in Figures 5 and 6, pairing a rat that has been isolated for 24 hours with 

another rat that has been isolated for 4 hours resulted in an asymmetry of nape contacts, with the 

rat isolated for 24 hours accounting for more play solicitation than the rat isolated for only 4 

hours.  When 8-OH-DPAT was given to the rat that was isolated for only 4 hours (Figure 5), 

there was found to be a significant effect of dose, F(4,56) = 7.97, p < .001, a significant effect of 

partner, F(1,14) = 126.03, p < .001, and a significant dose x partner interaction, F(1,14) = 5.75, p 
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= .001. When nape contacts between untreated and treated partners were compared at each of the 

five doses, it was found that the treated rat had fewer nape contacts after vehicle and after the 

two higher doses of 8-OH-DPAT.  There was no difference between the partners at the two 

lower doses, suggesting that the motivation-induced asymmetry in play solicitation collapsed 

when one of the rats (4 hours isolated) was administered low autoreceptor-selective doses of 8-

OH-DPAT.  Several treated rats exhibited no nape contacts at the higher two doses of 8-OH-

DPAT, making it impractical to compute the probability of a complete rotation for the untreated 

rats in these dyads.  As a result, a full ANOVA was not done for responsiveness.  Instead, the 

data from the vehicle and lower two doses were analyzed with a 2 x 3 ANOVA.  There were no 

significant effects with this analysis. When just the data from the treated rat was analyzed using a 

one-way repeated measures ANOVA, there was found to be a significant effect of dose, F(4,28) 

= 7.56, p < .001, with the highest dose significantly reducing the probability of a complete 

rotation.   

 In order to see if the effect with 8-OH-DPAT was limited to a situation where the treated 

rat had a lower motivation to play, we also treated rats that were isolated for 24 hours and 

allowed them to play with untreated rats that were isolated for only 4 hours (Figure 6).  For nape 

contacts there was a significant effect of dose, F(4,56) = 14.51, p < .001 and a significant dose x 

partner interaction, F(4,56) = 9.71, p < .001. Further analysis of this interaction indicated that, as 

expected, the treated rat solicited more play after vehicle.  However, as with the previous study, 

this difference collapsed after the two lower doses of 8-OH-DPAT. There was also no difference 

in nape contacts between the treated and untreated rat at 0.1 mg/kg but this dose also reduced 

nape contacts when compared to vehicle.  The treated rat solicited less play than the untreated 

partner at the highest dose and this dose also reduced nape contacts compared to vehicle. 
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Responsiveness to nape contacts were largely unaffected by either partner or dose. As with the 

preceding experiment, several treated rats exhibited no nape contacts at the highest dose of 8-

OH-DPAT, making it impractical to compute the probability of a complete rotation for the 

untreated rats in these dyads.  When a 2 X 4 ANOVA was done with the remaining 3 doses and 

vehicle, there was found to be a significant main effect of dose, F(3,42) = 4.19, p = .01, with the 

likelihood of responding with a complete rotation reduced at 0.1 mg/kg.  When the data from the 

treated rats only were submitted to a one-way ANOVA, there was a significant effect of dose, 

F(4,28) = 21.58, p < .001, with the likelihood of responding to a nape contact with a complete 

rotation significantly reduced at 0.1 and 0.3 mg/kg.  

 Social investigation in both the experiments is shown in Figure 7.  When given to a rat 

that was isolated for 4 hours prior to testing (top panel), there was found to be a significant main 

effect of dose, F(4,56) = 3.98, p < .01, a significant main effect of partner, F(1,14) = 93.6, p < 

.001, and a significant dose x partner interaction, F(4,56) = 2.66, p < .05. While 8-OH-DPAT 

had no effect in the treated rats, analysis of the untreated partner showed that the highest dose 

differed from the other 3 doses, but not from the vehicle. When given to a rat that was isolated 

for 24 hours prior to testing (bottom panel), there was a significant effect of dose, F(4,56) = 4.09, 

p < .01, with social investigation increasng after the highest dose. 

4. Discussion 

 Serotonin is pervasive throughout the brain and is known to be involved at some level in 

a wide variety of behaviors.  Just on this basis alone, one would predict at least some role for 

serotonin in the modulation of play as well, although the specificity and direction of that 

modulation could still be open to speculation. While several studies have looked at serotonergic 

involvement in play, most of these have used manipulations that either up-regulate or down-



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

16 

 

regulate global serotonergic tone (Homberg, et al., 2007; Knutson & Panksepp, 1997; Knutson, 

et al., 1996; Taravosh-Lahn, Bastida, & Delville, 2006).  From most of these early studies, it was 

concluded that increased activity in 5HT circuits decreases play and, by extension, that 

decreasing 5HT tone might be expected to facilitate playfulness.  However, no studies have 

yielded significant increases in play following serotonergic down-regulation, although few of 

these studies assessed the effects of selective 5HT agonists and/or antagonists on play in rats.   

 There is an incredible diversity of serotonin receptor subtypes, although the 5HT1A 

receptor is the best characterized of these. 8-OH-DPAT is the prototypical 5HT1A agonist and has 

actions at both pre- and post-synaptic sites. It has been used extensively to study a variety of 

behavioral processes including feeding (Dourish, Hutson, & Curzon, 1985; Hutson, Dourish, & 

Curzon, 1986), aggression (Ferris, Stolberg, & Delville, 1999; Haug, Wallian, & Brain, 1990; 

Muehlenkamp, Lucion, & Vogel, 1995), sexual behavior (Rehman et al., 1999; Schnur, Smith, 

Lee, Mas, & Davidson, 1989) and social dominance (Bonson, Johnson, Fiorella, Rabin, & 

Winter, 1994; Woodall, Domeney, & Kelly, 1996), to name a few.  At low doses 8-OH-DPAT is 

thought to bind preferentially to pre-synaptic auto-receptors, reducing firing of 5HT neurons in 

the raphe nuclei, thus decreasing levels of 5HT in forebrain target areas (Carboni & Di Chiara, 

1989; Hjorth, et al., 1982).  So the behavioral effects of 8-OH-DPAT at low doses are often 

thought to be due to decreases in 5HT activity in forebrain areas, although effects due to 

activation of post-synaptic heteroreceptors cannot be discounted (De Vry, 1995). 

 Our initial interest in looking at the effects of 8-OH-DPAT began with the relatively 

straightforward hypothesis that an acute decrease in 5HT tone would increase play.  As 

mentioned above, it is well established that play can be reliably reduced by acute increases of 

synaptic 5HT (Homberg, et al., 2007; Knutson, et al., 1996) and play among 5HT-transporter 
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knockout rats is much lower than wild-type rats (Homberg, et al., 2007).  Play can also be 

reduced by the relatively non-selective 5HT receptor agonist quipazine, which is reversed by co-

administration of the equally non-selective 5HT antagonist methysergide (Normansell & 

Panksepp, 1985b).  By itself, methysergide only decreased play at higher doses. Doses of 8-OH-

DPAT greater than or equal to 0.1 mg/kg reduced play in the present study as well and this 

would be consistent with the prevailing idea that enhanced activity at 5HT post-synaptic 

receptors reduces playfulness. These high-dose effects were also associated with decreases in 

locomotor activity (both distance traveled and velocity) and increases in social investigation. 

Given that social investigation also increased in untreated partners towards a treated partner 

(Figure 7, top panel) it is likely that the increased sniffing at these higher doses may be the 

beneficiary of lower levels of playful activity being exhibited by the treated rat, perhaps 

increasing the likelihood of other social behaviors occurring, such as sniffing.  This may be 

facilitated even further by a treated rat that is moving slower as well.  

 By using lower doses of 8-OH-DPAT that are known to decrease 5HT release, we 

believed that this would be a useful pharmacological tool for assessing effects of 5HT down-

regulation on play.  When tested in adult rats, low doses of 8-OH-DPAT have also been shown 

to increase social interactions when animals are made anxious, which is consistent with this class 

of compounds being used clinically as anxiolytics  (Higgins, Jones, & Oakley, 1992; Olivier, 

Tulp, & Mos, 1991; Schreiber & DeVry, 1993; Shields & King, 2008).  It was then reasoned that 

low autoreceptor-selective doses of 8-OH-DPAT may be expected to increase play in the rat. 

Initial results from our lab were promising, with doses in the 0.01 – 0.03 mg/kg range having a 

tendency to increase play (Siviy, 1998; Siviy, Boustani, Birkholz, & Pineault, 1998).  However, 

these increases in play were small and difficult to replicate. In our early studies and in the data 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

18 

 

shown in Figure 1, both rats of the pair were treated similarly and in light of the work by 

Knutson and colleagues showing a more complex pattern of pharmacological effects when only 

one rat of the pair is treated (Knutson & Panksepp, 1997; Knutson, et al., 1996) we chose to 

assess the effects of 8-OH-DPAT when only one rat of the testing pair was treated.  When this 

was done in Experiment 1 the results were identical; no effect of 8-OH-DPAT on play was 

observed at low doses although decreases in both measures of play were still observed at higher 

doses.   

 In Experiment 1 both rats of the testing pair were isolated for 4 hours prior to testing so 

the motivation to play was comparable between partners.  This can be readily seen in Figure 2, 

where nape contacts between the untreated and treated partner do not differ after vehicle. In 

Experiment 2 we then sought to determine whether 8-OH-DPAT would have a differential effect 

when an artificial asymmetry in play solicitation was established by varying the motivation to 

play between the partners. As expected, the partner that was isolated for 24 hours accounted for 

more play solicitation (nape contacts) than the partner that was only isolated for 4 hours prior to 

testing.  Low doses of 8-OH-DPAT resulted in a collapse of this asymmetry such that there was 

no significant difference between the treated and untreated partner at 0.01 and 0.03 mg/kg. Most 

importantly, it did not matter whether the rat treated with 8-OH-DPAT was isolated for 24 hours 

prior to testing, thus accounting for more nape contacts after vehicle, or was isolated for 4 hours 

prior to testing and accounting for fewer nape contacts after vehicle.  The net effect was for low 

doses of 8-OH-DPAT to decrease a pre-established asymmetry in play solicitation. Particularly 

interesting about this pattern of response is that the effect does not appear to be due solely to a 

change in behavior by the treated rat.  Rather, there appear to be subtle changes in the behavior 

of both treated and untreated rats that combine to result in a lack of asymmetry.   
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 While nape contacts were responsive to varying levels of motivation, the likelihood of 

responding to those contacts was not.  Rats isolated for 24 hours were no more likely to respond 

to nape contacts with a complete rotation than those isolated for 4 hours.  This is consistent with 

earlier reports showing that play solicitation and playful responsiveness are motivationally 

distinct aspects of play (S.M. Pellis & Pellis, 1991; Siviy, et al., 1997).  At low doses, 8-OH-

DPAT had no effect on responsiveness. Although higher doses reduced the likelihood of 

responding with a complete rotation, these doses also reduced nape contacts and decreased 

overall activity so the behavioral specificity of effects at these doses is questionable. Knutson 

and colleagues (1996) also established an asymmetry in the play of two rats prior to treating one 

rat of the pair with fluoxetine but used pinning as an index for identifying a rat as either the 

dominant or subordinate member of the play dyad.  In particular, the dominant rat was defined as 

the one which accounted for most of the pinning.  In their study, treating the dominant rat with 

fluoxetine resulted in a collapse of the asymmetry in pinning activity such that after a few days 

of treatment the previously subordinate rat was pinning the dominant as often as the dominant 

pinned the subordinate. Interestingly, treating the subordinate had no effect on the pinning 

asymmetry. Furthermore, the collapse of asymmetry was largely due to increased pinning by the 

untreated and previously subordinate rat. These data show that prior social status can modulate 

the effects of fluoxetine on play and it was concluded by these investigators that treating the 

dominant partner of a play dyad with fluoxetine may enhance reciprocation by the subordinate 

partner.  If we evaluate our own findings in this light, it suggests that serotonin may be broadly 

involved in how conspecifics interact with each other during playful encounters.  Animals may 

then be particularly sensitive to serotonergic manipulations when there is some type of stable 

asymmetry between the participants.  If that asymmetry is in the form of play solicitation, such 
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as when one animal is more motivated to play than the other, then nape contacts are 

preferentially affected. On the other hand, if that asymmetry is in the form of responsiveness to 

these contacts, such as might be seen when social status factors into the play bouts, then 

responsiveness may be preferentially affected and the relative social status of the treated rat 

could determine whether any effect is observed.   

 There is already considerable evidence in the literature suggesting a modulatory influence 

of serotonin on how conspecifics interact with one another.  However, much of this literature has 

focused on dominance and aggression. For example, aggression and dominance can be readily 

enhanced in crustaceans by increasing synaptic levels of serotonin (Huber, Orzeszyna, Pokorny, 

& Kravitz, 1997; Huber, et al., 2001) and changes in the dominance status of crustaceans can, in 

turn, alter the effects of serotonergic manipulations on subsequent behaviors (Yeh, Fricke, & 

Edwards, 1996; Yeh, Musolf, & Edwards, 1997).  While increased aggression is consistent with 

increased dominance in a crayfish or lobster, the same cannot always be said for mammals where 

establishment of dominance can be a more nuanced affair.  For example, Raleigh and colleagues 

(Raleigh, et al., 1991) looked at the effects of increasing or decreasing serotonergic tone on 

dominance among vervet monkeys. When the dominant male was removed from the group, thus 

producing instability among the remaining group members, and one of the remaining males was 

treated with either fluoxetine or tryptophan, the treated male showed less aggression towards the 

other males, showed more affiliative behavior towards the females, and acquired dominant 

status.  Conversely, when serotonergic tone was reduced in one of the remaining males this 

resulted in a male that displayed more aggression towards the remaining males and less 

affiliative behavior.  Increased affiliative behaviors in humans have also been reported after 

chronic treatment with serotonin reuptake inhibitors, along with decreased hostility and increased 
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cooperation (Knutson et al., 1998; Tse & Bond, 2002).  Conversely, serotonin depletion in 

healthy humans can decrease cooperation in a prisoner’s dilemma game (Wood, Rilling, Sanfey, 

Bhagwagar, & Rogers, 2006). These data suggest that ambient levels of serotonin can have a 

subtle, but significant and consistent modulatory influence over how conspecifics interact with 

each other in dynamic social situations. 

 Returning to our own data, selective stimulation of 5HT1A receptors with low doses of 8-

OH-DPAT seems to change the dynamic of a playful interaction between two participants that 

are differentially motivated to play.  Play is a contagious behavior in the sense that high levels of 

playfulness by one rat can have a positive impact on the playfulness of another rat (S.M. Pellis & 

McKenna, 1992; Varlinskaya, Spear, & Spear, 1999).  A contagion effect would then need to 

reflect both an increased desire to play by the less playful partner along with willingness by the 

more playful partner to cede to that increased desire.  In the present study, the net effect on 

playfulness of 8-OH-DPAT was essentially the same whether the more playful or less playful 

partner was treated. This suggests that activation of 5HT1A receptors may modulate how juvenile 

rats interpret and/or act on interactive cues that occur during playful encounters, perhaps making 

them more susceptible to a contagion effect.  

 Since 5HT1A receptors are present as both pre-synaptic autoreceptors and post-synaptic 

heteroreceptors, it can’t be easily determined from these experiments if the effects on play reflect 

either decreased or increased serotonin activity.  It has even been argued that because of the 

complexity of the serotonin system in general and the 5HT1A system in particular, it may be 

difficult to predict exact effects associated with specific doses of systemically administered 8-

OH-DPAT or any other 5HT1A agonist for that matter (De Vry, 1995).  With this caveat in mind, 

however, we can still begin with the assumption that the lower doses of 8-OH-DPAT used in this 
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study (0.01 - 0.03 mg/kg) are most likely acting at autoreceptors to reduce firing of serotonin 

neurons in the raphé nuclei, resulting in an acute decrease in forebrain levels of serotonin. When 

these data are then viewed in a broader context of serotonergic functioning we can begin piecing 

together a working hypothesis on how serotonin may be involved in juvenile playfulness.  For 

example, it has recently been posited that increased serotonin neurotransmission may favor the 

expression of those types of social behaviors that are associated with low levels of arousal (Tops, 

Russo, Boksem, & Tucker, 2009).  Since play is a highly arousing activity, this conceptualization 

would be consistent with the hypothesis described earlier that low levels of serotonin would tend 

to facilitate playfulness.  Low levels of serotonin are also known to result in behavioral 

disinhibition and, in this context, it has been suggested that increased serotonin 

neurotransmission leads to motivational processes opposite to those mediated by dopamine 

(Cools, Roberts, & Robbins, 2007). Given that play seems to be associated with increased release 

of dopamine (Robinson, et al., 2011; Trezza, et al., 2010) an acute reduction in serotonin levels 

may then modulate play through subtle interactions with brain dopamine systems.   

 It is hoped that hypotheses such as these can be more vigorously addressed using 

methods to target specific subpopulations of 5HT receptors.  For example, a recent study 

reported a novel means to independently manipulate 5HT1A autoreceptors and heteroreceptors in 

mice (Richardson-Jones et al., 2011), allowing these authors to demonstrate that 5HT1A 

involvement in anxiety is a developmental process involving autoreceptors, but not 

heteroreceptors. As comparable models become more readily available for the rat (Hamra, 2010; 

Tong, Li, Wu, Yan, & Ying, 2010), studies such as these that can target subpopulations of 5HT1A 

receptors in the more social rat may become possible. In the meantime, further studies using 

behavioral models such as those described in this paper and those used by Knutson et al. (1996), 
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when combined with a pharmacological toolbox that includes drugs with varying degrees of 

specificity for autoreceptors and heteroreceptors (de Boer & Koolhaas, 2005),  may yield 

significant insights into the role that serotonin may have in the modulation of juvenile 

playfulness. 
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Figure Captions 

 

Figure 1. The effects of 8-OH-DPAT on nape contacts and the probability of responding to nape 

contacts with a complete rotation in rats that were isolated for 4 hours prior to testing.  Both rats 

of the test pair were treated similarly.  # p <  .05 when compared to 0.0 mg/kg 

 

Figure 2.  The effects of 8-OH-DPAT on social investigation when both rats were treated 

similarly and both were isolated for 4 hours prior to testing. * p < .05 when compared to 0.0 

mg/kg. 

 

Figure 3. The effects of 8-OH-DPAT on nape contacts and the probability of responding to nape 

contacts with a complete rotation when only one rat of the test pair was treated.  Both rats were 

isolated for 4 hours prior to testing. # p < .05 when compared to 0.0 mg/kg; * p < .05 when 

compared to untreated partner at the same dose level 

 

Figure 4. The effects of 8-OH-DPAT on social investigation when only one rat of the test pair 

was treated. Both rats were isolated for 4 hours prior to testing. * p < .05 when compared to 0.0 

mg/kg and when compared to same dose given to treated rat. 

 

Figure 5. The effects of 8-OH-DPAT on nape contacts and the probability of responding to nape 

contacts with a complete rotation when only one rat of the test pair was treated.  The rat treated 

with 8-OH-DPAT was isolated for 4 hours prior to testing while the untreated partner was 
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isolated for 24 hours prior to testing. # p < .05 when compared to 0.0 mg/kg; * p < .05 when 

compared to untreated partner at the same dose level 

 

Figure 6. The effects of 8-OH-DPAT on nape contacts and the probability of responding to nape 

contacts with a complete rotation when only one rat of the test pair was treated.  The rat treated 

with 8-OH-DPAT was isolated for 24 hours prior to testing while the untreated partner was 

isolated for 4 hours prior to testing. # p < .05 when compared to 0.0 mg/kg; * p < .05 when 

compared to untreated partner at the same dose level 

 

Figure 7. The effects of 8-OH-DPAT on social investigation when only one rat of the test pair 

was treated. In the top panel the treated rat was isolated for 4 hours prior to testing while the 

untreated partner was isolated for 24 hours.  In the bottom panel the treated rat was isolated for 

24 hours prior to testing while the untreated partner was isolated for 4 hours prior to testing. 

 

 



Table 1.  Effects of 8-OH-DPAT on nape contacts and locomotor activity 

 

 
8-OH-DPAT (mg/kg) 

 
0.0 0.01 0.03 0.1 0.3 

Nape contacts 16.6 

(2.2) 

22.1 

(4.1) 

17.5 

(2.9) 

12.4 

(3.9) 

2.0* 

(0.7) 

 

Distance traveled 

(cm) 

4698.4 

(274.5) 

4762.1 

(354.2) 

4595.8 

(297.9) 

3912.8 

(412.4) 

2473.5* 

(230.8) 

 

Average velocity 

(cm/sec) 

15.7 

(0.9) 

15.9 

(1.2) 

15.3 

(1.0) 

13.1 

(1.4) 

8.3* 

(0.8) 

 

 

Notes 

numbers in parentheses indicate standard error of the mean 

*p < .05 when compared to 0.0 mg/kg 

Table 1
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