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ABSTRACT

In organized energy markets that use locational pricing, power generators and energy
suppliers procure financial transmission rights (FTRs) to hedge against grid con-
gestion charges, while third-party speculators attempt to capture a return with these
extremely volatile contracts. This paper develops a novel methodology for estimating
the systematic risk of individual FTRs and detecting the presence of abnormal returns
among these financial instruments. The prevalence of congestion paths with abnormal
returns could be used by policy experts as an efficiency measure when assessing the
performance of FTR markets. Being the only organized energy market in the Western
Interconnection, California has implemented a version of FTRs officially known as
congestion revenue rights (CRRs). This paper applies the proposed methodology to
all auctioned CRRs from 2009 to 2015. Our analysis identifies the paths that exhibit
persistent abnormal returns, with the majority of them being positive. We also com-
pare the patterns of risk and abnormal returns between on-peak and off-peak CRRs,
and find no significant differences.
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1 INTRODUCTION

Restructured wholesale electricity markets in the United States serve hundreds of
millions of consumers every day. Consisting of complex links between generators,
energy suppliers, transmission owners, financial intermediaries and system operators,
this market is becoming strained as demand for electricity expands while the underly-
ing infrastructure of the grid ages. Although innovations in technology may allow us
to tap into new energy reserves in the future, and investment in new infrastructure may
help to ease this burden, the grid will still have to facilitate an ever-increasing flow
of energy. The challenge of accommodating interruptible power flows of renewable
energy and connecting distributed energy resources to the grid will be among primary
factors affecting system-wide fluctuations in power flows. As a result, energy suppli-
ers will face ever-increasing exposure to the risks associated with the transmission
grid functionality as well as congestion that, if not managed properly, could lead to
higher costs, lower profits and large losses.

In many power markets, energy is traded at points on the power grid known as
nodes. Each node has an associated price called the locational marginal price (LMP).
This price is the sum of the price of energy, the price of congestion and the price of
transmission losses at a particular location. The price of energy is constant at all nodes
within a given market, so the differences in LMPs at any given point in time are due to
their congestion and loss components. As demand for energy increases at a particular
location, power lines servicing the area approach their rated capacity and, as a result,
the price of congestion at the associated node starts rising. Consequently, this causes
the respective LMP to increase as well. While the transmission losses will vary by
location, generally the largest driver of the variation in LMPs is congestion. This
paper examines the use of a financial instrument known as a financial transmission
right obligation (hereafter FTR) to avoid potentially extreme congestion charges in the
day-ahead (DA) electricity markets. It settles off the differences between DA LMPs.
We particularly focus on California’s markets for FTRs, which are known officially
as congestion revenue rights or simply CRRs.

To better grasp the concept of an FTR, consider the following example. An energy
supplier must transport energy from a generator at point A to consumers located at
point B. The energy supplier is locked into a contract and must supply energy to
point B even if it would mean accepting a loss. A loss could arise due to a difference
in the LMPs resulting from congestion between points A and B. On a really hot day,
consumers at point B would require more power as a result of their increased air
conditioning usage. As the demand for power at point B rises and the flow of energy
reaches the capacity of the transmission lines leading to point B, congestion charges
begin to accumulate. If the demand is high enough, these congestion charges could
be extreme. To hedge against such a scenario, an energy supplier could acquire an
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FTR from point A to point B in a monthly, quarterly or annual auction, and be paid
an amount that would counter these congestion charges as energy is delivered from
point A to point B. That is because the value of an FTR directly depends on the dif-
ference between the respective congestion charges. While these financial instruments
may allow one to hedge against volatile congestion charges, they can also result in
very significant losses. The losses from FTR positions can be significant if the power
flow unexpectedly changes its usual direction between the locations of interest. This
normally happens due to changing physical conditions on the grid (eg, temporarily
down power lines, power plant outages, unexpected weather patterns, etc). Therefore,
a model that properly assesses the risk associated with an FTR and accounts for the
dynamic nature of the grid is needed when deciding on bidding strategies for various
FTR positions.

The objective of this paper is to build an analytical framework for assessing individ-
ual FTRs and evaluating the performance levels of FTR markets. To do this, we build
on the capital asset pricing model (CAPM) approach of Sharpe (1964) and Lintner
(1965).

The proposed methodology is applied to publicly available data on all CRRs
acquired in annual and monthly auctions in the California Independent System Oper-
ator’s (CAISO’s) region.1 Both on-peak and off-peak contracts were included in the
analysis. CAISO oversees a unique market in that it is the only organized whole-
sale energy market in the Western Interconnection, and it does not border any other
regional transmission organization (RTO) or independent system operator (ISO). This
regional isolation means that California’s options to trade electricity competitively
with neighboring states are less developed relative to interconnected regional mar-
kets. Theoretically, this could contribute to higher price volatility. In our study, we
find that persistent CRR profitability appears to be unusually widespread. Interest-
ingly, CAISO’s Department of Market Monitoring has noted that, for many years, the
CRR auction revenues were lower than the payments to the auctioned CRR holders;
it even questioned the rationale for continuing the CRR auctions in their current form
(CAISO 2016).

In Section 2, we review the relevant literature. In Section 3, we build a framework
for evaluating the performance of an FTR/CRR. Section 4 applies our analytical
framework to the existing CRR markets in California. Section 5 reports our empirical
findings. Section 6 concludes the paper.

1 A large number of CRRs are also distributed at no cost to certain market participants such as load
serving entities (LSEs), ie, utilities that provide power to the final consumer. The intention is to
provide means for hedging against unpredictable grid congestion in energy spot markets.
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2 RELATED LITERATURE

Since the proposal of FTR formulation (Hogan 1992) and its early criticism (see, for
example, Oren et al 1995), little research has been conducted to categorize observed
returns in FTR markets. However, academic research has explored other relevant
FTR topics. Initially, researchers were concerned with the potential use of FTRs to
curb or exert market power (Stoft 1999; Bushnell 1999). Joskow and Tirole (2000)
investigated the use of FTRs and physical transmission rights (PTRs) and argued that
both reduce overall welfare by enhancing market power in firms that already control
a large part of the market. Kench (2004) conducted laboratory economic experiments
to compare FTRs with PTRs and concluded that PTRs are better suited to regulating
market power via reallocation of rights. More recently, Henze et al (2012) studied
regulation alternatives for network infrastructure investments in a laboratory setting
where one of the treatments employed long-term FTRs. The authors concluded that
FTRs failed to improve allocative efficiency upon simple price-cap regulation and
caused relatively lower investment.

When ISOs started implementing auction-based markets for FTRs (Ma et al 2002),
the auction design came under intense scrutiny. Studies suggested that FTR auction
markets were inefficient. Even after controlling for risk aversion among bidders,
the unexplained differences between FTR prices and their expected values persisted
(Adamson and Englander 2005). Deng et al (2010) argued that those differences
could be partially explained by the low number of bids in an auction, implying that
frequent reconfiguration auctions or liquid secondary markets were needed to reduce
inefficiencies.

A more recent study by Mount and Ju (2014) proposed an econometric framework
for evaluating the efficiency of a market for FTRs. This framework was applied to
three transmission congestion contracts (TCC), which are FTR equivalents in the
state of New York. The authors’ approach relied on the comparison of the ex ante
expected returns and the paid market prices. They concluded that there was a lack of
evidence for consistent TCC underpricing but acknowledged the limitations of their
study, since they looked at only one TCC auction from summer 2006.

Although the auction-based FTR markets were criticized for being inefficient, their
ability to provide financial services, ie, hedges against potential losses, in restruc-
tured energy markets has been widely acknowledged (Mendez and Rudnick 2004;
Kristiansen 2004; Siddiqui et al 2005). But problems do emerge when the market liq-
uidity is low. Siddiqui et al (2005) reported that TCC markets did not appear efficient
at hedging complex positions, causing excessively high risk premiums paid by TCC
buyers. The authors also note the lack of learning by market participants in using
TCCs.

Journal of Energy Markets www.risk.net/journal
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Sarkar and Khaparde (2008) provided a comprehensive summary of the evolu-
tion of FTRs over time. More recently, Rosellón and Kristiansen (2013) presented a
systematic overview and gathered expert discussions on a wide scope of FTR topics.

A few recent studies (Jha and Wolak 2014; Li et al 2014; Hogan 2016) have focused
on the performance of another financial instrument in wholesale electricity markets,
which is commonly known as convergence bidding or virtual bidding. This also settles
off a difference between LMPs, except that, in this case, one LMP is from the DA
market and one is from the real-time (RT) market. Unlike FTRs, which are auctioned
on separate and purely financial market platforms, the virtual bids are integrated
into physical wholesale markets and have a direct impact on the price formation
of wholesale electricity. The above studies have provided arguments and empirical
evidence suggesting that the presence of convergence bidding improves the efficiency
of DA and RT markets. Jha and Wolak (2014) and Li et al (2014) focused specifically
on virtual bidding in CAISO markets.

Given that FTR markets have been around for quite some time now, it is surprising
that technical approaches to assess highly volatile FTR returns are still largely under-
explored. Following CAISO (2016), which reported that for every dollar paid to CRR
holders only 46 cents were collected in auction revenues, Harvey (2017) used the
comparison of CRR auction revenues and DA market payouts to conclude that most
CRRs are purchased not as hedge instruments but rather as risky financial investments.
This insight adds to our motivation to develop a CAPM-type approach for evaluating
individual CRRs and their risk levels. In addition, Harvey (2017) suggested poten-
tial sources for consistent CRR undervaluation, leaving the question “What qualifies
as an undervalued CRR?” largely unanswered. Our paper focuses on examining the
existing profile of FTR returns in CAISO by suggesting a novel methodology to cat-
egorize them. More specifically, we estimate the systematic risk of individual CRRs
and explicitly identify paths with persistent abnormal returns, which then could be
further scrutinized for isolating specific causes of underpricing as well as overpric-
ing. The prevalence of such paths could be used as another efficiency measure for the
performance of FTR markets.

3 A FINANCIAL TRANSMISSION RIGHT VALUATION MODEL

3.1 Measuring an FTR return

Let us look at an example to better understand how FTRs/CRRs work. Consider two
hypothetical nodes: node A and node B. In Figure 1, if node A has a congestion price
of $10 and node B has a congestion price of $30, then the prevailing flow FTR from
source A to sink B, ie, in the same direction as the energy flow, is worth $20 per
megawatt hour (MWh). If the market clearing price, which represents the cost of
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FIGURE 1 An FTR example.

 

Node A Node B

Congestion price
= $10/MWh

Congestion price
= $30/MWhPrevailing flow FTR = 100MW

Counterflow FTR = 100MW

Energy flow (100MWh)

Prevailing flow FTR credit: 100MWh � .$30=MWh � $10=MWh/ D $2000. Counterflow FTR charge: 100MWh �
.$10=MWh� $30=MWh/ D �$2000.

acquiring an FTR in an auction, is less than $20, the FTR would yield a profit. The
counterflow FTR from source B to sink A, ie, in the opposite direction to the energy
flow, would require the FTR holder to make a $20/MWh congestion payment to the
ISO. For this FTR to make a profit, its holder would need to receive a credit of more
than $20 during the auction, ie, the FTR price would need to be less than�$20. If the
expenses paid out to the ISO are greater than the collected revenue from the ISO, the
FTR holder will experience a loss.

The presence of negative as well as positive FTR market clearing prices creates an
interesting dilemma when attempting to calculate the return of the path. If an FTR
has a positive market clearing price, then the return of a prevailing flow FTR can be
computed as

Ri D
�i

costi
� 100% D

revenuei � costi
costi

� 100%; (3.1)

where �i is an accumulated net profit or loss from holding the FTR over path i ;
revenuei is the associated revenue from congestion (C/�), which originates from the
nodal differences of respective congestion prices; and costi is the expense of acquiring
the FTR in an auction (C/�). Using the above example, if the FTR price was $16,
the return would be equal to 25% .D Œ.30 � 100� 10 � 100/� .16 � 100/�� Œ16 �

100� � 100%/.
For a path with a positive FTR market clearing price, computing returns is straight-

forward. However, when the market clearing price is negative, say, �$25 for the
counterflow FTR example above, then the calculations using (3.1) may be mislead-
ing: the example’s return would add up to�20% .D Œ.10�100�30�100/� .�25�

100/�� Œ�25 � 100� � 100%/, suggesting a negative return, when, in fact, the path
returned a positive profit of $5/MWh. This can be easily resolved if one thinks of the
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absolute value of the FTR cost as a benchmark for measuring returns. The method
for calculating both prevailing flow and counterflow FTR returns is shown in (3.2):

Ri D
�i

jcosti j
� 100% D

revenuei � costi
jcosti j

� 100%: (3.2)

When profit is divided by the absolute value of the FTR’s cost, the rate of return of
a counterflow position is computed with respect to the funds spent by the auctioneer.
Thus, (3.2) computes the return of the counterflow FTR example above to be equal
to 20% .D Œ.10 � 100 � 30 � 100/ � .�25 � 100/�� j � 25 � 100j � 100%/. The
calculation of the rate of return is not altered by this modification for a prevailing flow
position.

3.2 Measuring an abnormal FTR return

The CAPM framework, detailed below, provides grounds for analyzing the returns
of traded financial assets. This approach could be a reasonable starting point for
investigating FTR returns as well. CAPM was first developed by Sharpe (1964) and
Lintner (1965). The model assumes that investors are risk averse and that they choose
mean–variance-efficient portfolios. This means that the individual investor tries to
minimize the return risk given the expected return and attempts to maximize the
expected return given the variance of returns. The original Sharpe–Lintner CAPM
equation can be represented by

E.Ri / D Rf C ˇi ŒE.RMKT/ �Rf �; (3.3)

where the assets are indexed by i D 1; : : : ; N . The model makes two major
assumptions:

(1) there is complete agreement among investors about the joint distribution of the
asset returns from time t � 1 to time t ; and

(2) both borrowing and lending can take place at a risk-free rate.

Note that the model does not require the assets to generate their returns in perfectly
competitive industries. Equation (3.3) simply states that the expected return E.Ri /
on any asset i will be equal to the risk-free interest rate, Rf , plus a risk premium, ˇi ,
relative to the expected excess market return,E.RMKT/�Rf . Beta can be interpreted
as the sensitivity of the asset return to fluctuations in the overall market and therefore
represents the systematic risk inherent in the asset.

Jensen (1968) argued that the Sharpe–Lintner equation could naturally be estimated
using a time series regression. He noted that the original CAPM assumes that an asset’s
excess return, E.Ri / � Rf , can be completely explained by the average value of the
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market’s excess return, E.RMKT/ � Rf . This implies that in a time series regression
an intercept term would have to equal zero for each asset. This intercept term became
known as Jensen’s alpha or ˛i . Equation (3.3) can be transformed into the time series
regression model shown in (3.4):

Rit �Rf t D ˛i C ˇi ŒRMt �Rf t �C �it ; (3.4)

where the assets are indexed by i D 1; : : : ; N and �it represents an error term that
satisfies E.�it / D 0 and is serially independent.

As noted by Jensen, under the Sharpe–Lintner assumptions, the intercept point,
alpha, should equal zero. Thus, a cross-sectional regression should yield an estimate
of the intercept that would not be statistically different from zero. However, early
empirical tests of the model, conducted by Jensen et al (1972), Blume and Friend
(1973) and Fama and French (1992), provided evidence that intercept terms for many
financial assets were statistically greater than zero. The time series regression tests by
Gibbons (1982) and Stambaugh (1982) have provided support for rejecting the theory
that the excess return per unit of beta is the expected return of the market portfolio
minus the risk-free rate. Since then, the nonzero Jensen’s alpha has been interpreted
as the abnormal return of an asset. A positive Jensen’s alpha indicates higher than
expected overall returns of the asset given its individual systematic risk. Alternatively,
negative Jensen’s alphas indicate lower than expected returns of the assets while con-
trolling for their own systematic risk levels. Since we are interested in capturing
the presence of abnormal returns of FTRs, a modified Sharpe–Lintner CAPM equa-
tion, which we name the financial transmission right pricing model (FTRPM), would
provide us with alpha, ˛i , as an indicator for the existence of abnormal returns.

3.3 Estimating the model

The physical nature of the transmission grid creates a challenge for the economet-
ric modeling of FTR returns. Over time, power markets evolve as a result of new
transmission lines being added and old ones being taken down. Other factors such as
temporarily down lines, power plant outages and seasonal weather patterns also have
a dramatic effect on grid conditions. These factors influence congestion patterns on
the grid that can persist for weeks, months and even years. Therefore, when mod-
eling FTR returns, an estimation process must account for conditional nonconstant
variance.

Given these requirements, a type of autoregressive conditional heteroscedastic
(ARCH) process for the estimation of the model’s parameters is advantageous over
the ordinary least squares (OLS) estimation, which assumes constant variance. The
ARCH process was first introduced by Engle (1982) as a means to account for the
nonconstant variance of returns as well as movement between periods of high and
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low volatilities in financial markets. Bollerslev (1986) built on Engle’s work with the
introduction of a generalized version of ARCH known as a generalized autoregressive
conditional heteroscedastic (GARCH) process, which we employ to estimate our time
series regression models.

Since the GARCH process aims to account for conditional nonconstant variance,
the remaining residuals of a well-fitted GARCH model should be independent. The
Brock–Deschert–Scheinkman (BDS) test, described in Brock et al (1996), gives an
indication of the adequacy of the GARCH model by testing the null hypothesis of
independent and identically distributed (iid) standardized residuals. We use BDS tests
with embedding dimensions two through five and a radius of one standard deviation
(using a 99% confidence level) to filter the converged regressions before further
analysis.

3.4 Hypotheses and treatments

3.4.1 Abnormal returns of CRR contracts

In a competitive financial market, extremely high returns should not persist from
month to month if the system is stationary and participants are able to respond to
market signals by adjusting their positions and bidding behavior over time. CRR
paths with unusually large returns should attract more demand in consecutive monthly
auctions. Because CAISO limits the amount of megawatts available on any given path,
participants must outbid each other to win awards. This would cause the clearing
price of a CRR to rise, leading to a decrease in the CRR return. Likewise, CRR
paths with abnormally negative returns should experience lower participation, making
them cheaper to obtain and thus eliminating persistent negative returns. Over time,
persistent gains or losses should diminish. Therefore, in a competitive and well-
functioning market, one would expect that abnormal returns would not be present.

3.4.2 Actual costs versus prompt-month price as a marker for the CRR
cost

Since a market participant could potentially buy a long dated contract on a given path
at a seasonal auction and then sell it back at a monthly auction to other market partic-
ipants, or even back to the ISO itself, we use the actual volume-weighted CRR prices
when measuring the monthly path returns and estimating our FTRPM regressions.
However, one may argue that a more fitting way to capture the market value of a CRR
would be to use the latest available market price, ie, the CRR price from a prompt-
month auction. A seasonal contract, which is acquired a long time before the month
of interest, will be priced with a larger uncertainty in mind. As the month of interest
approaches, conditions that create congestion are easier to predict and, consequently,
to value. Therefore, as a robustness check for our findings, we also conducted the
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same FTRPM estimations by using prompt-month prices rather than the actual costs
for each held CRR.2 We refer to this estimation treatment hereafter as FTRPM-M.
A prompt-month price should reflect not only more available information relative to
an annual auction price but also (potentially) more competition too. Participants who
cannot lock their financial capital for extended periods of time, such as arbitrageurs or
short-term hedgers, may see value in joining a monthly CRR auction. Therefore, one
would expect fewer (if any) CRRs with abnormal returns when using the FTRPM-M
estimation relative to the original FTRPM approach.

3.4.3 Risk of on-peak versus off-peak CRRs

The CRRs accrue value by the hour as congestion prices fluctuate at each node. The
on-peak CRR positions accrue value during on-peak hours, which are from 06:00 to
22:00, Monday to Saturday in the CAISO region. Alternatively, the off-peak CRRs
accrue value during the off-peak hours, ie, 22:00 to 06:00, Monday to Saturday, and
for twenty-four hours on Sundays and public holidays.

Since on-peak hours are during the time of the day when energy demand is highest,
generally, on-peak CRR returns should be more volatile than their off-peak counter-
parts. When energy demand is high, the variance of grid congestion charges is higher
too, since more energy must be transported across the grid increasing the likelihood
of congestion. As the grid approaches its transmission capacity constraints, the con-
gestion prices of LMPs start to diverge. Therefore, on-peak CRR returns should face
more uncertainty than the off-peak positions when many congestion prices are simply
equal to zero. Due to this larger congestion price variance during the On-Peak hours,
we expect the on-peak CRRs to have a wider dispersion of betas relative to their
off-peak counterparts.

4 CALIFORNIA INDEPENDENT SYSTEM OPERATOR’S
CONGESTION REVENUE RIGHT MARKET

The CAISO CRR market is one of the smaller markets for congestion contracts in
the United States and has historically exhibited low auction revenues relative to the
congestion payments made to CRR holders (CAISO 2016).Also, where some markets
have over a hundred participants, CAISO has a consistently smaller participant pool,
though the number has been growing in recent years (Table 1).

To study the patterns of returns in this market, we acquired publicly available data
produced by CAISO that includes information on CRR market clearing prices and
accumulated monthly revenues. Our data for all CRR holdings spans from April 2009

2 In the absence of a prompt-month price marker, the actual costs for holding that CRR during that
month were substituted.
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TABLE 1 The number of market participants that purchased CRRs over time.

Year‚ …„ ƒ
2009 2010 2011 2012 2013 2014 2015

Participants 43 41 47 46 56 57 69

to December 2015, which provides us with eighty-one monthly periods, 2 285 947
CRR contracts and a total of 852 636 monthly observations across 199 866 paths.
1 110 926 of these contracts were awarded at monthly auctions, while 1 175 021 were
awarded at seasonal auctions. We converted these seasonal contracts to individual
monthly positions for the purposes of our study. A total of 1 209 521 of the CRRs
were contracts that covered on-peak hours of the day, while 1 076 426 covered off-
peak hours. In addition, while some contracts were written to benefit holders when
congestion exists in the prevailing direction of electricity flow, 1 088 779 contracts in
our analysis were counterflow contracts. Finally, 1 095 843 contracts across 30 247
paths were not auctioned and were instead given to LSEs to hedge the consumer
against price volatility. Since these particular contracts were not awarded via markets,
they were excluded from our analysis. To estimate the regressions, we further limited
our data set to only those paths where CRR contracts were successfully auctioned for
at least thirty months during the period of the study.

In order to estimate our proposed model, represented by (3.4), we calculate indi-
vidual CRR returns, assume a monthly risk-free rate of return, and calculate market
portfolio returns for each month in the study. For the risk-free rate, Rf , the monthly
return of a one-month constant maturity Treasury bill (T-bill) is used (source: Federal
Reserve Bank of St. Louis). The risk-free rate is subtracted from the individual CRR
returns to obtain the excess CRR returns, which are used as the dependent variable in
the individual CRR regressions.

Equation (4.1) shows the calculation of a CRR return for a given path and month,
ie, a unique combination of source, sink, peak type (off-peak or on-peak) and month.
It follows the general FTRPM framework described above and represents (3.2):

Ri D
revenuei � total MWi �

PM
jD1 costij � held MWij

j
PM
jD1 costij � held MWij j

� 100%; (4.1)

whereRi is the CRRi return for the path i across all market participants who held the
CRR exposure during the relevant month.3 The different market participants (j D

3 If no one held the particular CRR during a certain month, the observation of its monthly return
was substituted with the monthly return of the market portfolio for the purposes of estimating our
time series regressions.
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1; : : : ;M ) have their individual costs (costij ) and held quantities (held MWij ), which
are multiplied individually and then summed to find the total cost of the CRR across
all participants. revenuei is the DA congestion charges ($/MW) that were collected
(or paid out) by the CRR holders for that path-month. total MWi is the sum of held
megawatts across all the market participants, given by (4.2)

total MWi D

MX
jD1

held MWij : (4.2)

One adjustment that was made in calculating CRR return Ri was that if the total
cost of contracts for a given path was found to equal $0.00, we replaced it with $0.01.
As a cost of a penny is usually very small compared with a profit/loss of thousands of
dollars, this alteration maintained the large returns in those instances while preventing
indeterminate values that would have resulted from the division by zero.4

In the spirit of the CAPM theoretical framework, we treat the CRR financial mar-
ket as an isolated economic system and proceed with the calculation of the market
portfolio return (RMKT) for a given month using (4.3):5

RMKT D

NX
iD1

�
Ri �

total MWi

total MWMKT

�
; (4.3)

where total MWi , as above, is the sum of all held megawatts across the market par-
ticipants for a given path and total MWMKT, given by (4.4) below, is the sum of all
held megawatts for a month across every path (i D 1; : : : ; N ):

total MWMKT D

NX
iD1

total MWi : (4.4)

The summary statistics for the returns of CRRs, the market portfolio and a one-
month constant maturity T-bill are presented in Table 2. Table 2 shows the high
kurtosis and large standard deviations of the CRR returns. These numbers point to
significant variance and fat tails in the aggregate distribution of the CRR returns.
That is a result of sudden and large congestion charges that accrue during periods of
constrained grid conditions. The largest positive return of an individual CRR in our
data set is 179 908 576% per month: an extraordinary return for any financial market.
The largest loss observed in our data set, �141 153 700%, is also impressive.

4 As a robustness check for our findings, we also conducted FTRPM estimations without zero-cost
CRR observations. We refer to this estimation treatment as FTRPM-NZ.
5 Note that CAISO does not auction CRR options, though some entities may be allocated free
long-term CRR options to account for particular transmission ownership or contract situations.

Journal of Energy Markets www.risk.net/journal



Risk and abnormal returns in markets for congestion revenue rights 47

TA
B

L
E

2
T

he
su

m
m

ar
y

st
at

is
tic

s
fo

r
th

e
m

on
th

ly
re

tu
rn

s
of

m
ar

ke
tp

or
tfo

lio
,o

ne
-m

on
th

co
ns

ta
nt

m
at

ur
ity

T-
bi

ll
an

d
au

ct
io

ne
d

C
R

R
s.

M
o

n
th

ly
re

tu
rn

(%
/m

o
n

th
)

P
at

h
s

O
b

s
M

ea
n

M
ed

ia
n

M
in

M
ax

S
D

K
u

rt
o

si
s

M
ar

ke
tp

or
tfo

lio
81

35
52

8
10

45
3

�
64

83
4

26
7

17
8

60
96

7
3.

5
O

ne
-m

on
th

co
ns

ta
nt

m
at

ur
ity

T-
bi

ll
81

0.
05

8
0.

04
0

0
0.

18
0

0.
05

2
�

0.
41

0

A
ll

C
R

R
s

19
9

86
6

85
2

63
6

8
35

2
3.

5
�

14
1

15
3

70
0

17
9

90
8

57
6

56
1

94
6

20
65

6
O

n-
pe

ak
10

6
89

3
43

9
41

1
12

68
6
�

4.
2

�
14

1
15

3
70

0
90

19
8

04
4

68
3

57
1

6
89

0
O

ff-
pe

ak
92

97
3

41
3

22
5

3
74

4
16

.5
�

36
98

4
16

5
17

9
90

8
57

6
39

3
26

5
11

0
81

6

30
+

ob
s

C
R

R
s

3
83

4
17

4
19

9
16

58
6
�

77
.9

�
14

1
15

3
70

0
17

9
90

8
57

6
88

4
45

2
15

55
3

O
n-

pe
ak

1
91

1
86

59
7

22
46

0
�

59
.1

�
14

1
15

3
70

0
90

19
8

04
4

1
00

8
93

5
6

33
7

O
ff-

pe
ak

1
92

3
87

60
2

10
77

9
�

91
.5

�
13

67
3

43
6

17
9

90
8

57
6

74
1

08
4

41
23

1

30
C

ob
s

C
R

R
s

(e
xc

es
s

re
tu

rn
)

3
83

4
17

4
19

9
16

58
6
�

77
.9

�
14

1
15

3
70

0
17

9
90

8
57

6
88

4
45

2
15

55
3

M
ar

ke
tp

or
tfo

lio
(e

xc
es

s
re

tu
rn

)
81

35
52

8
10

45
3

�
64

83
4

26
7

17
8

60
96

7
3.

5

S
D

de
no

te
s

st
an

da
rd

de
vi

at
io

n;
ob

s
de

no
te

s
ob

se
rv

at
io

ns
.

www.risk.net/journal Journal of Energy Markets



48 R. Baltaduonis et al

FIGURE 2 A histogram of one-month constant maturity T-bill returns (%/month).
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A histogram of one-month constant maturity T-bill returns is presented in Figure 2,
and a histogram of the excess return of the market portfolio is shown in Figure 3. A
truncated distribution of individual CRR excess returns is depicted in Figure 4. Note
that many CRRs have rates of return equal to 100% or �100% per month. These
represent the contracts that were auctioned but did not experience congestion in a
given month. Therefore, as revenuei is equal to 0, (4.1) will yield Ri D �100% for
prevailing flow paths and Ri D 100% for counterflow paths. In Figure 1, this would
be equivalent to the congestion prices at both nodes being equal.

5 EMPIRICAL RESULTS

Overall, our GARCH regression results achieved a high convergence rate. All in all,
3678 of 3834 FTRPM regressions converged, yielding a convergence rate of 96%. We
then eliminated the paths with estimated regressions that violated error independence,
leaving us with 2829 paths (77% of the converged regressions) for our further analysis.
Table 3 presents the number of paths where the BDS test failed to reject the null
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FIGURE 3 A histogram of market portfolio excess returns (%/month).
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hypothesis of error term independence with embedding dimensions M D 2; : : : ; 5

and a radius of one standard deviation at a 99% confidence level.6

Finding 1

The significance of the market portfolio excess return (RMKT � Rf ) in the FTRPM
regressions is widespread.

The FTRPM estimated 2290 paths with statistically significant (p-value 6 0:1)
beta coefficients for market portfolio excess return, which represents about 81% of
regressions in the analysis. This suggests that, for the majority of paths, the FTRPM
is justified in using RMKT to explain an individual CRR’s return volatility.7 Figure 5

6 Very similarly, the BDS tests failed to reject the null hypothesis of error term independence for
71% of the converged regressions in the FTRPM-M treatment with the convergence rate being
98%. In the FTRPM-NZ treatment, the respective passing rate for the BDS tests and the regression
convergence rate were 96% and 99.5%.
7 The number of regressions with significant (p-value 6 0:1) betas was 1701 paths (64% of analyzed
regressions) in FTRPM-M and 3002 paths (88%) in FTRPM-NZ.
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FIGURE 4 A histogram of all CRR excess returns truncated at�1000 and 1000 (%/month).

0

5

10

15

20

P
er

ce
nt

–1000 –500 0 500 1000

All CRR returns (%/month) [truncated]

TABLE 3 Summary of BDS test results for the FTRPM regressions.

CRRs passing BDS tests
(as % of 3678

BDS tests converged regressions)

M D 2 3215 (87.4%)

M D 3 3166 (86.1%)

M D 4 2986 (81.2%)

M D 5 3059 (83.2%)

M D 2, 3, 4 and 5 2829 (76.9%)

graphs these betas – a measure of the systematic risk of each path – against their
average returns. The data points are visually differentiated according to the statis-
tical significance and sign of their respective alphas. The solid line represents the
security market line, where the intercept is equal to the arithmetic average of the
historical risk-free rates and the slope is determined as the arithmetic average of the
historical excess returns on the market portfolio. It is noteworthy that the majority of
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FIGURE 5 An empirical security market line for the FTRPM estimated CRRs.
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estimated paths have betas that fall within the interval of zero and one, ie, frequently
held CRRs tend to have lower systematic risk than the market portfolio. There are
only three estimated CRR regressions (0.1% of analyzed regressions) with negative
betas that are statistically significant (p-value 6 0:1). The negative betas indicate
that the corresponding CRRs tend to do better when the CRR market as a whole
declines.

Finding 2

The FTRPM identifies paths that exhibit abnormal returns (nonzero alphas), with the
majority of them being positive.

Recall the FTRPM predicts that the alphas in a competitive market should be
zero. The FTRPM regressions identified 1398 paths that had statistically signifi-
cant (p-value 6 0:1) abnormal returns, which represents about 49% of analyzed
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FIGURE 6 A histogram of the estimated FTRPM abnormal returns (%/month).
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regressions.8 Figures 6 and 7 presents the distributions of these abnormal returns esti-
mated with the FTRPM approach. The two figures are identical, except Figure 7 trun-
cates the data for a more granular view. The vast majority of significantly-different-
from-zero alphas are positive. FTRPM estimates 990 paths with positive and 408
paths with negative abnormal returns. The positive skewness of abnormal returns is
also independent of the size (MW) of the auctioned CRR paths.

FTRPM-M treatment reveals similar patterns. The results identify 530 paths with
abnormal returns, which represents about 14% of the converged regressions and 20%

8 The average profit of all analyzed paths exhibiting abnormal returns is $43/MWh (standard devi-
ation $779) versus $50/MWh (standard deviation $813) for zero-alpha paths. If we restrict the
analysis further to only the CRR paths that individually yield on average at least $1/MWh in prof-
its, we end up with 1614 such paths, of which 808 (50%) are identified as paths with abnormal
returns and an average profit of $116/MWh (standard deviation $873), while the average profit of
the respective zero-alpha paths amounts to $128/MWh (standard deviation $912). These statistics
highlight that the CRRs identified as having abnormal returns are not simply an artifact of paths
with negligible profit levels.
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FIGURE 7 A histogram of the estimated FTRPM abnormal returns (%) truncated at
�10 000 and 10 000 (%/month).
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of the analyzed regressions. In this case, 371 of those abnormal returns are positive
while 159 are negative.9 These estimates are further discussed in Finding 3.

Finding 3

Using prompt-month prices rather than actual CRR procurement costs in CRR return
calculations significantly reduces the number of paths with abnormal returns.

A comparison of results from FTRPM and FTRPM-M estimations shows a major
reduction in the percentage of statistically significant alphas from 49.4% to 20.0%.
The statistics from two treatments are summarized in Table 4.

This finding suggests that a large percentage of abnormal returns are the result
of contracts bought far in advance of the relevant month. The high uncertainty and

9 FTRPM-NZ identifies 227 paths with abnormal returns, which correspond to 7% of its analyzed
regressions. A relatively lower number of the identified paths highlights the contribution of the
zero-cost CRRs to the profile of abnormal returns. However, it is noteworthy that removing the
zero-cost CRR observations still does not eliminate paths with abnormal returns.

www.risk.net/journal Journal of Energy Markets



54 R. Baltaduonis et al

TABLE 4 Number of paths with estimated abnormal returns, ie, nonzero alphas.

Converged Analyzed Nonzero % of nonzero
Treatment regressions regressions alphas alphas

FTRPM 3678 2829 1398 49.40%
FTRPM-M 3744 2648 530 20.00%

smaller competition of long-term auctions allow market participants to discount CRR
contracts and collect higher returns.

Finding 4

The above results are not dependent on the CRR peak type, ie, off-peak and on-peak.
For the FTRPM, both on-peak and off-peak paths have abnormal returns that skew

positive: on-peak has 487 paths with positive alphas and 192 paths with negative
alphas, while off-peak has 503 paths with positive alphas and 216 paths with negative
alphas. A total of 257 paths (22.5% of 1141 unique paths with nonzero alphas) exhibit
abnormal returns in both the off-peak and on-peak versions of their contracts.

Similarly, results for both on-peak and off-peak CRRs skew positive in the FTRPM-
M treatment. It estimates 172 paths with positive alphas and 73 with negative alphas
among on-peak contracts, while regressions on off-peak contracts point to 199 paths
with positive alphas and 86 with negative alphas.

The patterns of the FTRPM estimated betas for on-peak versus off-peak CRRs also
appear to be similar: 95% of on-peak betas fall within the interval of zero and one,
compared with 96% of off-peak betas. Figure 8 contrasts the distributions of off-peak
and on-peak betas on a more granular scale.10

6 CONCLUSION

Given the multibillion-dollar FTR markets as well as their function providing hedging
options and scarcity signals regarding grid resources, it is important to ensure efficient
operation of these markets. Having tools to assess the performance of FTR markets is
key to effective surveillance and advancement of these markets. This paper develops
such a tool and then applies it to CAISO markets by examining the return patterns of
almost 3000 CRR paths.

The main finding of this project is the existence of abnormal returns in the
CAISO CRR markets and the consistent skew of those returns in the positive direction

10 The estimated FTRPM-NZ profiles of abnormal returns and betas for on-peak versus off-peak
paths appear to be similar as well (see Appendix A online).
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FIGURE 8 Histograms of the FTRPM beta estimates for (a) off-peak and (b) on-peak
CRRs (truncated at �1 and 2).
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for both off-peak and on-peak contracts. This finding complements a recent report
(CAISO 2016) that presented widespread and persistent underpricing of CRRs. The
estimated inefficiencies of CRR markets beg for further studies to uncover their causes
and gain insights on potential fixes.

In addition, the widespread statistical significance of the market portfolio excess
return throughout our empirical treatments confirms that the theoretical CAPM frame-
work has substance in suggesting that the return of a CRR has a systematic relation
to the return of the market portfolio. The analysis also suggests that the risk profile
of the estimated CRRs is very similar during both off-peak and on-peak periods.

Validation and testing of the proposed analytical framework with the data from
other FTR markets would be a useful direction for future research, which could yield
valuable market design prescriptions for improving efficiency, competitiveness and
transparency in these markets.
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