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Dysfunctional play and dopamine physiology in the Fischer 344 rat

Abstract
Juvenile Fischer 344 rats are known to be less playful than other inbred strains, although the neurobiological
substrate(s) responsible for this phenotype is uncertain. In the present study, Fischer 344 rats were compared
to the commonly used outbred Sprague-Dawley strain on several behavioral and physiological parameters in
order to ascertain whether the lack of play may be related to compromised activity of brain dopamine (DA)
systems. As expected, Fischer 344 rats were far less playful than Sprague-Dawley rats, with Fischer 344 rats
less likely to initiate playful contacts with a playful partner and less likely to respond playfully to these
contacts. We also found that Fischer 344 rats showed less of a startle response and greater pre-pulse inhibition
(PPI), especially at higher prepulse intensities. The increase in PPI seen in the Fischer 344 rat could be due to
reduced DA modulation of sensorimotor gating and neurochemical measures were consistent with Fischer
344 rats releasing less DA than Sprague-Dawley rats. Fast scan cyclic voltammetry (FSCV) revealed Fischer
344 rats had less evoked DA release in dorsal and ventral striatal brain slices and high-performance liquid
chromatography revealed Fischer 344 rats to have less DA turnover in the striatum and prefrontal cortex. We
also found DA-dependent forms of cortical plasticity were deficient in the striatum and prefrontal cortex of
the Fischer 344 rat. Taken together, these data indicate that deficits in play and enhanced PPI of Fischer 344
rats may be due to reduced DA modulation of corticostriatal and mesolimbic/mesocortical circuits critical to
the execution of these behaviors.
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Abstract 

 

Juvenile Fischer 344 rats are known to be less playful than other inbred strains, although 

the neurobiological substrate(s) responsible for this phenotype is uncertain.  In the 

present study, Fischer 344 rats were compared to the commonly used outbred Sprague-

Dawley strain on several behavioral and physiological parameters in order to ascertain 

whether the lack of play may be related to compromised activity of brain dopamine (DA) 

systems. As expected, Fischer 344 rats were far less playful than Sprague-Dawley rats, 

with Fischer 344 rats less likely to initiate playful contacts with a playful partner and less 

likely to respond playfully to these contacts. We also found that Fischer 344 rats showed 

less of a startle response and greater pre-pulse inhibition (PPI), especially at higher pre-

pulse intensities. The increase in PPI seen in the Fischer 344 rat could be due to reduced 

DA modulation of sensorimotor gating and neurochemical measures were consistent with 

Fischer 344 rats releasing less DA than Sprague-Dawley rats. Fast scan cyclic 

voltammetry (FSCV) revealed Fischer 344 rats had less evoked DA release in dorsal and 

ventral striatal brain slices and high-performance liquid chromatography revealed Fischer 

344 rats to have less DA turnover in the striatum and prefrontal cortex. We also found 

DA-dependent forms of cortical plasticity were deficient in the striatum and prefrontal 

cortex of the Fischer 344 rat. Taken together, these data indicate that deficits in play and 

enhanced PPI of Fischer 344 rats may be due to reduced DA modulation of corticostriatal 

and mesolimbic/mesocortical circuits critical to the execution of these behaviors. 
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Dysfunctional play and dopamine physiology in the Fischer 344 rat 

 

1. Introduction 

 The developmental period between weaning and puberty (i.e., early childhood 

through early adolescence in humans) is a behaviorally rich and dynamic age during 

which the young of many mammalian species behave in ways that can be quite distinct 

from what is seen either before weaning or after puberty [1].  One particularly interesting 

behavior pattern that stands out as relatively unique for this age is play behavior.  Play in 

some form occurs in the young of most mammalian species and has also been observed in 

other species (e.g., birds, reptiles, invertebrates) as well [2-4].  Although adults will 

sometimes engage in playful behaviors, play is much less common once puberty has been 

reached [5, 6] and does not always follow the same “rules” as those observed by younger 

animals [7-9]. The exact function of play still remains elusive, yet there is general 

consensus that removing the opportunity to play can have a number of consequences on 

later behavior and social functioning [10-13].  

 The presence or absence of play in an otherwise playful species can be a useful 

indicator for the overall health and psychological well-being of an animal. For example, 

play can be systematically reduced in the lab by hunger [14-16], fear [17, 18], or other 

types of stressors [19, 20].  Since play is commonly thought to be an adaptive behavior 

associated with healthy social and emotional development [2, 4, 21, 22], the relative lack 

of play in an otherwise playful species could also suggest an underlying pathology.  

Identifying relevant neural substrates of play behavior could then shed significant light on 
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the etiology and neural correlates of a range of childhood psychiatric disorders in which 

social play is altered, such as autism and ADHD. 

One approach towards identifying neural substrates of play would be to take 

advantage of known strain differences in playfulness and determine whether these 

behavioral differences are also reflected by systematic differences in potentially relevant 

neural systems. For example, brain monoamine systems are thought to be important in 

modulating levels of playfulness [4, 17, 23-25] and the functioning of monoaminergic 

systems can be greatly influenced by genetic background [26-29].  The Fischer 344 

(Fischer) rat has been shown to play less than either the inbred Buffalo or Lewis strains 

and a cross-fostering study suggested that these differences are likely due to a heritable 

component [30, 31].  Fischer rats also differ from other strains on several dimensions of 

monoaminergic functioning [32-36].  The Fischer rat may then be a particularly useful 

strain to help identify relevant monoaminergic involvement in play behavior. 

Given the fundamental characteristics of play behavior (e.g., energetic, pleasurable, 

highly motivated), there are many reasons to suppose that brain dopamine (DA) systems 

may be particularly important for play.  However, direct evidence of a specific role for 

dopamine in the modulation of playfulness is lacking. DA utilization increases during 

play [37], DA antagonists uniformly reduce play [38-40], and neonatal 6-OHDA lesions 

impair the sequencing of behavioral elements during a play bout [41].  Increases in play 

following acute administration of ethanol, nicotine, or compounds that enhance 

endocannabinoid activity can all be reliably blocked by doses of DA antagonists that 

have no effect by themselves [42, 43].  These data suggest that at least some aspects of 

play behavior may be accompanied by increased DAergic activity and that compromising 
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DAergic functioning is incompatible with rough-and-tumble activity.  However, this 

conclusion must be tempered since selective DAergic agonists tend to have mixed effects 

on play.  Low doses of apomorphine increase play [38, 44], although this effect has not 

been very robust and other investigators have only observed decreases in play with 

apomorphine and other selective DA agonists [39, 40, 45].  Using a strain of rat such as 

the Fischer with known differences in dopaminergic physiology and functioning, could 

help bring clarity to our understanding of how dopamine is involved in play behavior. 

A role for mesolimbic dopamine circuitry in motivation, reward, and emotions is 

well established [46-49] and there is considerable evidence for mesolimbic involvement 

in modulating social behavior as well. For example, mesolimbic dopamine circuitry is 

thought to have a pivotal role in pair bonding among prairie voles [50, 51] as well as in 

social cognition among humans [52].  In rats, mesolimbic dopamine also seems to be 

critical for the production of 50 kHz ultrasonic vocalizations [53], which are emitted by 

rats during a variety of affectively positive social behaviors, including play [54, 55]. 

Dopamine may then influence social behavior in young rats through its action on 

mesolimbic circuitry.   

Dopamine may also influence social behavior through its modulation of cortical 

synapses and how subcortical circuitry, particularly within the striatum, is influenced 

through this modulation [51, 52, 56]. Dopamine has been shown to play a key role in 

modulating the strength of cortical synapses, both acutely during simultaneous activity 

and chronically through processes such as long-term depression (LTD) and long-term 

potentiation (LTP) [57-61].  The majority of the research examining dopamine release 

and its modulation of cortical synapses in the rat has been performed in Sprague-Dawley 
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rats, the outbred strain from which Fischer rats were derived [58, 59, 62-65]. Thus, to 

gain an understanding about the unique features of the Fischer rat’s dopamine physiology 

it was important to compare outcomes with the research standards developed in the 

Sprague-Dawley rat and in this study see how these differences in DA physiology might 

contribute to play deficits observed through comparisons between Fischer and Sprague-

Dawley rats. Indeed, the Sprague-Dawley rat may serve as a better behavioral control as 

well, as it does not suffer from the impulsive behavior and vulnerability to drug addiction 

reported to occur in the Lewis rat strain [66]. We observed clear strain differences in play 

behavior and found that Fischer rats showed a number of associated differences in 

dopamine physiology which translated into differences in dopamine modulation of 

cortical synapses.   

2. Experiment 1 

 Fischer rats have been shown to be less playful than either the inbred Buffalo 

strain [30] or the inbred Lewis strain [31].  Although play in both Buffalo and Lewis 

strains appears to be comparable to that observed in juveniles of the outbred Sprague-

Dawley strain a direct comparison between these two strains has not yet been reported.  

In this experiment we compared the play behavior of juvenile Fischer rats to that of 

Sprague-Dawley rats.   

 In order to compare these two strains on another behavioral measure that may 

reflect DAergic differences, acoustic startle response and pre-pulse inhibition (PPI) was 

also assessed in these rats.  When a weak auditory stimulus that is 5-15 dB above 

background noise (pre-pulse) is delivered shortly (100-500 msec) before a loud stimulus 

(pulse) the startle response to that pulse is attenuated.  PPI has been shown to be quite 
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sensitive to disruption by DAergic manipulations [67] and a number of robust strain 

differences have been reported for baseline PPI and the extent to which DAergic agonists 

disrupt PPI [68-70].  Indeed, strain differences in PPI may largely reflect differences in 

DAergic mechanisms [69].  However, few studies have assessed strain differences in PPI 

among prepubescent rats.   

2.1. Methods 

2.1.1. Subjects and housing 

 Male Sprague-Dawley (n = 28) and Fischer-344 (n = 28) rats were obtained from 

Harlan Sprague-Dawley at approximately 25 days of age.  Additional same-age Sprague-

Dawley rats were also obtained to serve as target animals for the play experiment. 

Animals were housed in groups of four in solid bottom cages (48 X 27 X 20 cm) and 

periodically handled for a few days after arrival in order to acclimate to the laboratory.  

Food and water were always freely available.  The colony room was maintained at 22
O
 C 

with a 12/12 hr reversed light/dark cycle (lights off at 08:00), with all testing done during 

the dark phase of the light/dark cycle.  All housing and testing was done in compliance 

with the NIH Guide for Care and Use of Laboratory Animals using protocols approved 

by the Institutional Animal Care and Use Committees at Gettysburg College. 

2.1.2. Play behavior 

 Play behavior was assessed in a clear Plexiglas chamber (40 x 40 x 50 cm) that 

was enclosed within a sound-attenuated wooden chamber illuminated by a single 25W 

red light bulb. The floor of the testing chamber was covered with approximately 3 cm of 

Aspen pine shavings.  Play bouts were recorded as digital video files and scored later 
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using behavioral observation software (Noldus XT: Noldus Information Technology) by 

an observer unaware of the strain of the animal. 

 One week after arrival in the laboratory all of the rats were acclimated to the 

testing chamber by being placed individually in the testing chamber for 5 minutes.  On 

the following day rats were again placed in the testing chamber for 5 minutes but with 

another rat of the same strain.  On the following day all of the rats were isolated for 4 

hours before being given a 5 minute opportunity to play with a novel Sprague-Dawley rat 

that had also been acclimated and isolated in the same manner.  Play was quantified by 

counting the frequency of contacts directed by the test rat towards the nape of the target 

Sprague-Dawley rat (nape contacts) and the likelihood that a nape contact directed by the 

target Sprague-Dawley rat to the test rat resulted in a response.  A coding scheme similar 

to that detailed by Pellis and colleagues [71, 72] and used previously in this lab to 

quantify play between Fischer and Lewis rats [31] was used. If the contacted rat 

successfully withdrew its nape from the other rat, a response was scored and categorized 

as one of the following types of responses.  A complete rotation was scored if the rat 

rotated completely to a supine position.  A partial rotation was scored if the rat began to 

rotate along its longitudinal axis but kept the hind paws on the ground. An evasion was 

scored if the rat rapidly moved away from contact but did not rotate.  Nape contacts were 

quantified by frequency of occurrence, while the different responses were quantified in 

probabilistic terms by calculating the probability of a particular response occurring in 

response to a nape contact.   

2.1.3. Acoustic startle response and pre-pulse inhibition 
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 One week after testing for play behavior rats were tested for acoustic startle 

response and pre-pulse inhibition of that response.  A commercially available system 

(SR-Lab; San Diego Instruments) with four chambers was used.  Rats were placed 

individually in a clear acrylic cylindrical chamber (adjusted length = 14 cm; inner 

diameter = 9 cm) that was situated in a sound-attenuated isolation cabinet.  The inside of 

each cabinet was illuminated during testing and air circulated by a fan.  Background 

white noise was set at 65 dB during testing.  A single session of 54 trials was used to 

assess baseline startle, habituation, and pre-pulse inhibition. Each session began with a 5 

minute acclimation period followed by the 54 trials with a variable inter-trial interval 

having an average of 17 seconds.  Pulses consisted of a 40 msec burst of a 110 dB pulse 

of white noise, with the startle response recorded over a period of 100 msec beginning at 

the onset of the pulse.  Startle response was quantified in arbitrary units that reflected the 

magnitude of output by an accelerometer attached to the base of the chamber.  Three 

different pre-pulse intensities were used: 5, 10, 15 dB above background.  Each pre-pulse 

was 20 msec in duration and occurred 100 msec before the onset of the 110 dB pulse.   

 The first 5 trials of the session were pulse-only trials; the first trial was discarded 

and the next 4 trials, when compared to the last 4 trials of the session, were used to assess 

habituation across the testing session.  An additional 15 pulse-only trials and 10 trials for 

each of the three pre-pulse intensities were interspersed in a pseudo-random order 

between the pulse-only trials used to assess habituation.  

2.2. Results 

2.2.1. Play behavior 
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 As expected, Fischer rats were less playful than Sprague-Dawley rats (Figure 1).  

Fischer rats directed significantly fewer nape contacts towards the target rats than did 

Sprague-Dawley rats, t(54) = 3.41, p < .002.  Fischer rats were also less likely to respond 

to nape contacts than were Sprague-Dawley rats, t(54) = 7.32, p < .001.  The likelihood 

of each of the three responses can be seen in Figure 1C. Fischer rats were less likely to 

respond with a complete rotation, t(54) = 7.36, p < .001, or with an evasion, t(54) = 3.18, 

p = .002.  There was no difference between the 2 strains in responding to a nape contact 

with a partial rotation. 

2.2.2. Acoustic startle response and pre-pulse inhibition 

 The extent to which habituation of the startle response occurred over the session 

(Figure 2) was assessed using a 2 x 2 repeated measures Analysis of Variance (ANOVA).  

There was a significant difference between the strains, F(1,54) = 12.64, p < .002, with 

Fischer  rats having less of a startle response than Sprague-Dawley rats. There was 

habituation of the startle response as indicated by a significant effect of time, F(1,54) = 

20.55, p < .001. The lack of a significant interaction between time and strain indicates 

that habituation was comparable in the two strains. 

 Fischer rats continued to exhibit less of a startle response on those trials used to 

assess pre-pulse inhibition, t(54) = 3.66, p < .001 (Figure 3).  Pre-pulse inhibition (% 

inhibition) was assessed with a 2 x 3 repeated measures ANOVA. There were significant 

main effects of both pre-pulse intensity, F(2,108) = 68.43, p < .001, and strain, F(1,54) = 

8.62, p < .01.  These main effects were tempered by a significant pre-pulse x strain 

interaction, F(2,108) = 6.87, p < .005.  Further analysis of this interaction indicated that 

while the two strains did not differ at the lowest intensity pre-pulse (5 dB above 
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background), Fischer rats exhibited more inhibition at the two higher pre-pulse intensities 

(10 and 15 dB above background).  In order to determine whether the effect of strain on 

pre-pulse inhibition was being influenced by baseline startle differences, these data were 

analyzed using baseline startle as a covariate.  When this was done, all of the above-

mentioned significant differences remained. 

3. Experiment 2 

 While any exact role for dopamine in play behavior is far from certain at this 

point, there is ample evidence to suggest that an optimal level of dopamine functioning is 

required for play to occur [73]. The dorsal and ventral striatum [74] and frontal cortex 

[75-77] may also be recruited during play behavior and the activity of glutamatergic 

synapses are modulated by dopamine in these structures [58, 78, 79].  In order to 

determine whether deficits in dopamine physiology might be associated with the reduced 

play behavior seen in Fischer rats, we compared Fischer and Sprague-Dawley rats for 

dopamine content and release as well as dopamine-modulated cortical plasticity.  

3.1. Subjects and housing 

 Male Sprague-Dawley and Fischer rats were obtained from Charles River and 

housed at either the California State University at San Bernardino (HPLC experiment) or 

the University of Southern California (voltammetry and electrophysiology experiments) 

under comparable conditions in colony rooms that were maintained at 22
O
 C with a 12/12 

hr light/dark cycle (lights on at 06:00).  All housing and testing was done in compliance 

with the NIH Guide for Care and Use of Laboratory Animals using protocols approved 

by the Institutional Animal Care and Use Committee at the University of Southern 

California and California State University at San Bernardino. 
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3.2. Methods 

3.2.1. High performance liquid chromatography (HPLC) analysis of striatal DA and 

DOPAC 

 Rats were approximately 38 days old when decapitated and had their striata 

removed. Following the procedure of Crawford et al. (2000), frozen striatal sections were 

sonicated in 10 volumes of 0.1 N HClO4 and then centrifuged at 20,000g for 20 min at 

4°C.  The supernatant was then filtered through a 0.22 mm centrifugation unit for 5 min 

at 2,000g at 4°C. Twenty microliters of the resulting extracts were assayed for DA 

content using HPLC (ESA, Chelmsford, MA; 582 pump with a MD-150 column) with 

electrochemical detection (ESA, Coulochem II EC detector).  The mobile phase consisted 

of 75 mM NaH2PO4, 1.4 mM 1-octane sulfonic acid (OSA), 10 mM EDTA, and 10% 

acetonitrile at a pH of 3.1 (MD-TM Mobile Phase, ESA) and was pumped at a rate of 0.5 

ml/min.  

3.2.2. Brain slice preparation 

One-month and two-month old rats were anesthetized with halothane and decapitated. 

Brains were removed and placed in cooled (1-4
o
 C), modified-oxygenated artificial 

cerebrospinal fluid (aCSF). In the modified aCSF, some of the sodium was replaced with 

sucrose to reduce tissue excitability during brain slice cutting (sucrose 124 mM, NaCl 62 

mM). This solution maintained the osmotic balance found in normal aCSF. Normal aCSF 

contained (concentrations in mM) NaCl 124, MgSO4 1.3, KCl 3.0, NaH2PO4 1.25, 

NaHCO3 26, CaCl2 2.4, glucose 10.0, equilibrated with a 95% O2 - 5% CO2 mixture to 

obtain a pH value of 7.3 - 7.4. 
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 Hemi-coronal striatal slices were cut at a thickness of 400 µm using a 

Vibratome1000 (Vibratome Co., St. Louis, MO). The slices were immediately placed in 

an oxygenated aCSF solution and were slowly brought to room temperature (23
o
 C). 

Single slices were transferred to a recording chamber (Haas ramp style gas interface 

chamber), and bathed continuously with the oxygenated aCSF solution maintained at a 

temperature of 32
o
 C.  

3.2.3. Fast scan cyclic voltammetry (FSCV) quantification of striatal DA release 

Disc carbon fiber electrodes (CFE) were made from 7 mm unsized carbon fibers 

(Goodfellow Corporation, Devon, PA) by electrophoretic anodic deposition of paint 

(ALA Scientific Instruments, Inc., Westbury, NY) (Schulte and Chow, 1996). 

Extracellular DA was monitored at the carbon fiber microelectrode every 100 msec by 

applying a triangular waveform (-0.4 to +1.0 Volt vs. Ag/AgCl, 300 Volt/second). 

Currents were recorded with a modified VA-10X Voltammetric and Amperometric 

Amplifier (NPI Electronic, Tamm, Germany). Data acquisitions were controlled by 

Clampex 7.0 software (Axon Instruments, Foster City, CA). Electrical stimulation of the 

brain slice surface across a twisted, bipolar, nichrome electrode was used to evoke DA 

release. Single constant current pulses of 250 µA and 0.1 msec duration were obtained by 

using an A360R Constant Current Stimulus Isolator (WPI, Sarasota, FL) and a Master-8 

pulse generator (A.M.P.I., Jerusalem, Israel). Stimulus intervals between pulses were not 

less than 5 min. The CFE’s were inserted 75 to 100 µm into brain slices at a position 100 

to 200 µm from the stimulating electrode pair (Miles et al., 2002).  Dorsal striatal slices 

were sampled for DA at 5 sites, which represented medial to lateral and dorsal to ventral 

dimensions [80, 81]. A separate set of experiments sampled the dorsal striatum, the 
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nucleus accumbens core (Acb core) and the nucleus accumbens shell (Acb shell) in the 

same brain slice. At least three recordings of evoked DA release were made within each 

site of the slice. The maximum DA release values were then taken to estimate the evoked 

DA release per each site. The total DA release per slice was calculated as the average 

from these sites in each brain slice. Changes in extracellular DA were determined by 

monitoring the current over a 200 mV window at the peak oxidation potential for DA (for 

review, see [82]). Subtracting the current obtained before stimulation from the current 

obtained in the presence of DA created background-subtracted cyclic voltammograms. 

Electrodes were calibrated with 5 µM DA solutions in aCSF following each experiment 

to convert the oxidation current to DA concentration. Previous work has demonstrated 

that this method causes action potential mediated DA release that is TTX sensitive [81-

83].   

3.2.4. Extracellular stimulation, intracellular recording, and field potential 

recording 

 Extracellular stimulation:  Bipolar insulated twisted tungsten wire (50 µm 

diameter) stimulating electrodes were used for delivering single, paired and tetanizing 

extracellular stimuli to excitatory corticostriatal and prefrontal cortex synapses. In 

intracellular recordings test stimuli (0.1 ms pulse duration) were delivered as paired 

stimuli with inter-stimulus intervals of 50 ms at 0.05 Hz . Tetanic stimulation protocols 

followed those previously published for studies on corticostriatal long-term depression 

(LTD) [80] and prefrontal cortex long-term potentiation (LTP) [78]. The corticostriatal 

tetanus consisted of four trains of stimuli separated by 10 sec. Each train lasted 1 sec and 

was delivered at a frequency of 100 Hz. The tetanus stimulation intensity was set to equal 
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the threshold for orthodromic induction of action potentials. The intensity used to sample 

excitatory postsynaptic potentials (EPSPs) was then set to half the intensity of the 

orthodromic threshold. The orthodromic threshold and the threshold for first detection of 

corticostriatal EPSPs were determined by performing an input-output relationship 

between stimulation intensity and EPSP amplitude. The prefrontal cortex tetanus 

consisted of 5 0.5 sec trains of 300-Hz (0.05-ms pulse duration) delivered in 3-min 

intervals [78]. 

 Striatal neuron intracellular recording:  Intracellular recording was used to 

examine dorsomedial corticostriatal synaptic plasticity, since excitatory corticostriatal 

synapses are not laminar nor are cellular populations uniform.  Intracellular records were 

obtained with glass microelectrodes pulled by a Flaming-Brown P-87 pipette puller. 

Electrodes filled with 2 M potassium acetate had resistance values ranging from 100 to 

160 M . Intracellular electrodes contained 2% biocytin (SIGMA, St. Louis, MO) in 

some experiments to verify the cell type based upon morphology. Intracellular signals 

were amplified with an Axoclamp 2A amplifier, digitized with a Digidata 1200 and 

stored on disk using pCLAMP software (Molecular Devices, Foster City, CA). 

Established electrophysiological criteria for striatal medium spiny neurons were used for 

including cells in this study, which included resting membrane potentials greater than –80 

mV, a stable input resistance > 20 M , A-current delayed firing in response to 

suprathreshold depolarizing injections of current and non-adapting firing of action 

potentials in response to stronger injections of depolarizing current injections (Akopian et 

al, 2000; Calabresi et al, 1992). These characteristics were determined for each cell at the 

beginning of each experiment using 500 msec long injections of current. 
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 Field potential recordings from medial prefrontal cortex (mPFC) pyramidal cell 

layer:  Extracellular recording was obtained by a glass electrode filled with 2 M NaCl 

placed on layer V of the medial prefrontal cortex, where the basal dendrites and cell 

bodies of pyramidal neurons are located [78]. Stimuli (0.05 ms pulse duration) were 

delivered at 0.033 Hz by a bipolar electrode placed on layer II–III of the prefrontal 

cortex, where the input fibers are located.  

 Electrophysiological analysis of intracellular and extracellular EPSPs:  The peak 

amplitude of EPSPs were measured with respect to the potential measured just prior to 

the stimulus artifact off-line using Clampfit 10 analysis software (Molecular Devices, 

Foster City, CA). Another method of measuring EPSPs is to measure the ascending slope 

of the response, but previous work from our laboratory and others has shown identical 

outcomes for measurement of response amplitude and response ascending slope [84, 85].   

 Synaptic responses recorded with intracellular sharp electrodes were sampled at 

(0.05 Hz) and the average of 3 samples (1 min) was plotted for each min of the 

experiment. Each control pretetanus 3-sample time point (see above) was normalized to 

the average value obtained over the entire 10-min baseline-recording period. Cells were 

included in the study if they 1) maintained stability in EPSP amplitude over the entire 10-

min baseline-recording period (  5% of the original EPSP amplitude) and 2) they 

maintained stable responses to current injection, including their pattern of action potential 

discharge generated by depolarizing injections of current. Posttetanic changes in response 

amplitude were calculated by expressing the amplitude of each one-min average as a 

percentage of the average response amplitude generated during the 10 min baseline-

sampling period in each cell. In extracellular recordings form mPFC, initial slope (1 ms 
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window) of extracellular field potentials was calculated for each response and values 

were plotted as percentage of the baseline. 

 Response descriptive statistics (i.e. mean ± s.e.m) were calculated for short term 

(3 min posttetanus both for intra and extracellular recordings) and long-term posttetanic 

samples (average of last 5 min recording of 30 min and 60 min postetanic periods for 

intra- and extracellular postsynaptic potentials, respectively).  Differences in tetanus-

induced plasticity were determined through repeated measures analysis of variance 

(ANOVA) performed across the entire post-tetanus sampling period. Post-hoc 

comparisons were also performed between each group at 3-4 min posttetanus (posttetanic 

plasticity) and at 16-20 min posttetanus (LTD, corticostriatal) and 25-30 minutes 

posttetanus (LTP, prefrontal cortex) using post hoc Student t-tests.  

3.3. Results 

3.3.1. HPLC analysis of strain differences in Dopamine (DA) and its metabolites 

(DOPAC & HVA) 

 Striata of 1-month-old Fischer rats showed higher dopamine levels (6.566 ± 0.186 

ng/mg wet weight tissue; n=7) than Sprague-Dawley rats (5.895 ± 0.170, n=7), 

t(12)=2.67,  p=0.021. No strain differences were seen with dopamine metabolites.  

DOPAC levels in Fischer rats were 1.355 ± 0.0891 (n=7) and 1.344 ± 0.0518 (n=7) for 

Sprague-Dawley rats. HVA levels in Fischer rats were 0.318 ± 0.0356 (n=7) and 0.3625 

± 0.0109 (n=7) for Sprague-Dawley rats. However, striatal dopamine turnover as 

measured by the ratio of metabolites to dopamine levels was greater in Sprague-Dawley 

rats (0.2896 ± 0.0066; n=7) than in Fischer rats (0.2539 ± 0.0141; n=7), t(12)=-2.297 

p=0.04 (Figure 4).  
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 Strain-based comparison of dopamine neurochemistry in the frontal cortex 

revealed similar trends of greater DA content and reduced DA turnover in Fischer rats 

compared to Sprague-Dawley rats.  DA content of Fischer rat frontal cortex was 153.245 

± 16.343 (pg/mg wet weight tissue, n=7) and 77.513 ± 9.694 pg/mg (n=7) in frontal 

cortex of Sprague-Dawley rats, t(11)=4.128, p=0.002. DA metabolites were also different 

between strains. DOPAC was 200.439 ± 9.360 pg/mg in Fischer rats and 154.626 ± 

15.469 pg/mg in Sprague-Dawley rats (n=7), t(11)=2.534, p=0.034 and HVA was 77.538 

± 5.082 pg/mg in Fischer rats and 57.852 ± 6.917 pg/mg in Sprague-Dawley rats, 

t(10)=2.120, p=0.060. Dopamine turnover (DOPAC+HVA/DA) was greater in Sprague-

Dawley (2.8748 ± .179) than it was in Fischer rats (2.0141 ± .126), t(10) =3.596, p=0.005 

(Figure 4). 

3.3.2. Fast scan cyclic voltammetry (FSCV) analysis of strain differences in DA 

release 

 DA release was evaluated across dorsal-ventral and medial-lateral dimensions of 

the striatum in one set of experiments (Figure 5) and, in a second set of experiments, the 

dorsal striatum (site 3), the Acb core and the Acb shell were evaluated for strain 

differences in DA release. FSCV revealed that Sprague-Dawley rats (n=11 at 1 month, 

n=16 at 2 months) had greater evoked DA release than Fischer rats (n=10 at 1 month and 

2 months) across all dimensions of the striatum at both 1 and 2 months postnatal. 

Comparison between strains across all 5 striatal sampling sites revealed less DA release 

in Fischer than Sprague-Dawley rats at one month post natal, F(1,19) = 4.434,  p < .05,  

and 2 months postnatal,  F(1,24) = 11.45, p < .003.  Post-hoc comparison of individual 

sites in one-month-old rats revealed strain differences at central site 1 (p<0.03) (see inset 
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diagram, Figure 5) and trends seen at dorsal site 3 (p<0.09) and ventrolateral site 5 

(p<0.06). Post-hoc comparison of individual sites in two-month-old rats revealed strain 

differences at all sampling sites (see inset diagram, Figure 5) (site 1 p<0.03; site 2 

p<0.01; site 3 p<0.003; site 4 p<0.003; site 5 p<0.002). 

 The second set of experiments examined DA release at dorsal striatal (site 3), Acb 

core and Acb shell regions and in those slices where release was able to be measured in 

all 3 regions we found a trend for decreased DA in Fischer slices across all three regions 

in one-month old rats, F(1,11) = 2.509,  p < .15 (Fischer n=6, SD n=8). For those slices in 

which release could only be measured in dorsal striatum and Acb core, Fischer rats had 

less DA release than Sprague-Dawley rats,  F(1,17) = 7.394,  p < .015 (Fischer n=11, SD 

n= 8). T-tests performed at each site revealed Fischer rats released less DA than Sprague-

Dawley rats in the dorsal striatum (p<0.035, Fischer n=11, SD=8), confirming the results 

in Figure 5a, in the Acb core (p<0.046, Fischer n=11, SD=8), but not in the Acb shell 

region (p=0.9, Fischer n=6, SD=8).    

3.3.3. Dopamine dependent cortical synaptic plasticity 

The effect of rat strain was studied for two dopamine-dependent forms of cortical 

synaptic plasticity; D2 receptor-dependent LTD evoked at corticostriatal synapses [58, 

79] and D1 receptor-dependent LTP produced by layer II-III fibers synapsing with layer 

5 neurons [78].  Sprague-Dawley showed increased expression of corticostriatal LTD 

across the entire 20-min post-tetanus sampling period, F(1,27) = 7.88, p<0.01 (Figure 

6A).  Post-hoc analysis of post-tetanic plasticity (average 0-3 min post-tetanus plasticity) 

revealed a significant (p = .0168) difference between Sprague-Dawley (81.76 ± 7.98%) 

and Fischer rats (113.76 ± 9.65%). Long-term plasticity (average 15-20 min post-tetanus) 
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also differed significantly (p = .0003) between Sprague-Dawley (64.80+4.97%) and 

Fischer rats (102.88+7.60%).   

Sprague-Dawley also showed increased expression of prefrontal cortex, D1 

receptor-dependent LTP across the entire 20-min posttetanus sampling period, F(1,13) = 

12.2, p<0.004 (Sprague-Dawley n=5; Fischer n=10) (Figure 6B).  Post-hoc analysis of 

posttetanic plasticity (average 0-3 min posttetanus plasticity) also revealed a difference 

(Sprague-Dawley 134.92+6.27%, n=5; Fischer 113.14+3.66%, n=10; p=0.0200), as did 

long-term plasticity (average 15-20 min post-tetanus) (Sprague-Dawley 115.06+3.25%, 

n=5; Fischer 95.25+3.92%, n=10; p=0.0019).  

4. Discussion 

  Play is so ubiquitous among mammals in general and rodents in particular that 

identification of a strain of rat that plays substantially less than other strains may provide 

valuable insight into both the genetics and neurobiological mechanisms behind this 

complex social behavior.  The Fischer rat has been previously shown to be less playful 

than either inbred Lewis or Buffalo rats [30, 31] and the present data extends these 

findings by showing that Fischer rats also play less than the outbred Sprague-Dawley 

strain.   

 As with our earlier work, both play solicitation and overall responsiveness to 

playful nape contacts were dampened in the Fischer rats, indicating an overall decrease in 

playfulness in this strain rather than a deficit in one particular component of play. When 

responsiveness to nape contacts was analyzed in more detail, Fischer rats were found to 

be particularly impaired in responding to nape contacts with a complete rotation.  Fischer 

rats were also less likely to respond to nape contacts by evading these contacts but did not 
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differ from Sprague-Dawley rats in the likelihood of responding with a partial rotation.  

The lack of a strain difference in partial rotations with a robust difference in complete 

rotations is consistent with what we observed when comparing Fischer rats to Lewis rats 

[31] and suggests that this pattern of responding is a robust behavioral phenotype of the 

Fischer rat.   

 Pellis and his colleagues have compared the play of juveniles to that of young 

adults and characterized age-related shifts in how male rats respond to playful 

solicitations as they mature [7, 86].  As juveniles, male rats are most likely to respond to 

playful solicitations by rotating completely onto their back.  As rats mature, they are less 

likely to respond with complete rotations while more likely to respond with partial 

rotations.  Given the pattern of responsiveness noted in Fischer rats when compared to 

Sprague-Dawley rats (i.e., fewer complete rotations with no change in partial rotations) 

combined with less solicitation of play, one possible interpretation of these data is that 

Fischer rats are more similar to adult rats in how they play and this may reflect an early 

maturation of this strain.  Fischer rats in the present study were tested at approximately 

35 days of age and an almost identical pattern of responding was observed in our earlier 

study when rats were tested at 28 days [31], suggesting that this pattern of responding is 

robust and stable across development rather than reflecting early maturation.  However, a 

more comprehensive analysis of these strain differences across a wider range of ages is 

clearly needed. 

 Fischer rats differ from other strains on several dimensions of monoaminergic 

functioning, including differences in dopaminergic functioning [32-36]. In order to 

expand our behavioral comparison between juvenile Fischer and Sprague-Dawley on a 
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measure known to be sensitive to dopaminergic functioning, we also assessed pre-pulse 

inhibition (PPI) of the acoustic startle response in these two strains. When compared to 

Sprague-Dawley rats, Fischer rats had less of a startle response and enhanced PPI.  The 

attenuated startle response observed in our hands with young rats is consistent with 

previous research in adult rats [70, 87-89] and suggests that this phenotypic difference 

represents a stable trait across development.  In direct contrast to the robust strain 

difference in PPI observed in the present study, only minimal strain differences in PPI 

have been reported previously [69, 70].  Several possibilities can be suggested to explain 

the relatively robust differences in this study compared to previous studies.  First, pre-

pubertal rats were used in this study while earlier studies used adult rats. Since 

dopaminergic systems are in flux during this age period [1, 90] age-related fluctuations in 

sensitivity of dopaminergic systems prior to puberty may yield more robust strain 

differences at this age. Baseline PPI at the lowest pre-pulse intensity (+5 dB) in the 

present study was also fairly low (approximately 35% inhibition) compared to other 

studies, perhaps allowing more room for an enhancement to be observed when comparing 

the two strains.   

 In Experiment 2 we sought to quantify any differences in DA physiology between 

young Fischer and Sprague-Dawley rats.  The data indicates that Fischer rats may have 

deficits in handling and delivery of vesicular dopamine, but not in all DA terminal 

regions.  FSCV demonstrated that Fischer rats released significantly less DA than 

Sprague-Dawley rats across five sampling locations in the dorsal striatum and in the Acb 

core but not in the Acb shell. The lack of a strain difference in dopamine release in the 

Acb shell is particularly interesting and suggests that delivery of DA in this region is 
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similar between the two strains.  The Acb core has many similarities to dorsal striatum, 

with both regions involved in orchestrating specific behavior patterns, while the Acb 

shell seems to be more unique in terms of inputs, outputs, physiology and function [91-

93].   Particularly interesting with regards to the current study is that the ACb shell is 

thought to have direct control of DA release in other parts of the striatum (e.g., dorsal 

striatum and ACb core) and that this modulation may help invigorate motivationally 

relevant behaviors [93].  For Fischer rats, an uneven distribution of DA release in the 

various compartments of the dorsal and ventral striatum may result in an inability of these 

rats to fully engage in the fluid motor sequences seen in play. 

 Although DA release among Fischer rats was consistently lower in dorsal striatum 

and Acb core, dopamine content was higher in Fischer than in Sprague-Dawley rats for 

both cortical and striatal samples.  However, dopamine turn-over was less in Fischer than 

in Sprague-Dawley rats and this would be consistent with impaired vesicular release. 

Higher dopamine content associated with reduced dopamine release could be due to a 

strain-dependent disruption in dopamine transport into vesicles. Cytoplasmic dopamine 

accumulation is proposed to occur when vesicular dopamine transport is blocked [94] and 

this would presumably result in less vesicular release of dopamine.   

 Less vesicular release of dopamine in Fischer rats would be consistent with 

studies using in vivo microdialysis showing decreased dopamine release in the nucleus 

accumbens of Fischer rats compared to Lewis rats following nicotine [95] and 

amphetamine [32].  Since amphetamine is thought to release dopamine into the synapse 

by both vesicular and non-vesicular means [96] less release of dopamine in Fischer rats 

could be somewhat problematic from this perspective.  For example, if Fischer rats have 
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an accumulation of cytoplasmic dopamine then one might expect amphetamine to yield 

more dopamine release in Fischer rats. However, Cadoni & di Chiara [32] found that 

while Fischer rats had less dopamine release in the ACb core at all doses of amphetamine 

tested, a different pattern emerged with dialysis probes in the ACb shell.  A low dose of 

amphetamine (0.25 mg/kg) resulted in less release of dopamine in Fischer rats while a 

higher dose (1.0 mg/kg) yielded more release in this strain.  An intermediate dose (0.5 

mg/kg) yielded no strain difference in release for this brain region.  These findings 

suggest a complex pattern of regional and dose-related differences in how amphetamine 

can affect dopamine release between strains of rats, a complexity that appears to be 

reflected in our findings as well (Figure 5).   

 An important physiological consequence of Fischer rats having less synaptic 

dopamine would be that cortical synaptic behavior would also be expected to be altered. 

Cortical synaptic function in the prefrontal cortex and the dorsal striatum is modulated by 

dopamine and we found evidence of deficiencies in dopamine-dependent forms of 

synaptic plasticity in both structures in Fischer rats.  LTP at excitatory synapses in the 

prefrontal cortex is enabled by D1 dopamine receptor activation in Sprague-Dawly rats 

[59, 60, 78].  We found that Sprague-Dawley rats expressed LTP using the paradigm 

outlined by Huang et al [78], although the same paradigm did not induce LTP in Fischer 

rats (Figure 6).  Corticostriatal synapses in the dorsal striatum express a D2 dopamine-

dependent form of corticostriatal LTD in Sprague-Dawley rats [58, 61]. Confirming these 

studies, we found that young Sprague-Dawley rats expressed DA-dependent LTD. 

However, Fischer rats were, again, deficient in this DA-dependent form of cortical 

plasticity (Figure 6). This finding confirms earlier work from our laboratory showing 
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young Fischer rats do not express corticostriatal LTD in vitro [97]. These findings in 

combination with the deficits in dopamine release we observed in Fischer rats indicates 

that insufficient dopamine release may underlie abnormalities in long-term plasticity seen 

with cortical synapses in Fischer rats and may contribute to the behavioral phenotype for 

this strain as well.  

 Less release of dopamine in Fischer rats is also consistent with our finding that 

rats of this strain exhibited more pre-pulse inhibition (PPI) than Sprague-Dawley rats.  

PPI is a form of sensorimotor gating that is consistently attenuated by indirect and direct 

dopamine agonists [67, 98-101] and that can also be enhanced by dopamine antagonists 

[102, 103].  It is especially noteworthy that enhanced PPI among Fischer rats was only 

apparent when the pre-pulse was at 10 and 15 dB above background, since this is the 

range suggested to be more indicative of dopamine function than what is seen with 5 dB 

above background [103]. This suggests that the enhanced PPI observed among Fischer 

rats in the present study may be a behavioral reflection of impaired dopamine release in 

this strain. 

 The deficits in handling and release of dopamine in Fischer rats may also be 

partly involved in the relative lack of play in this strain. Although a role for dopamine in 

modulating play behavior is far from clear, there is still abundant evidence for 

dopaminergic involvement.  Dopamine utilization increases during play bouts [37], 

dopamine antagonists uniformly reduce play [38-40], and neonatal 6-OHDA lesions 

impair the sequencing of behavioral elements during play bouts [41]. While it has been 

difficult to obtain consistent increases in play with dopamine agonists [38, 40, 104], 

dopamine antagonists block the increases in play following alcohol, nicotine, and indirect 
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cannabinoid agonists [105, 106].  Taken together, these data suggest that play is 

associated with increased release of dopamine and that an optimal level of dopamine 

functioning is necessary for play to occur [73]. With impairments in the ability to release 

and utilize synaptic dopamine, Fischer rats may be unable to readily execute the 

behavioral patterns needed for active engagement in rough-and-tumble activities. 

 Due to the robust behavioral differences and unique dopamine physiology 

observed in Fischer rats, this strain may be particularly useful for systematic studies 

addressing the genetic and neurobiological substrates underlying complex social 

behaviors, such as play.  Considerable insight into the genetic foundations for other 

neurobehavioral processes have been made through the use of transgenic and knock-out 

mouse models [107], although the relative lack of play in the mouse limits their use for 

studying the dynamics of reciprocal social interactions commonly seen during behaviors 

such as play. While mice exhibit a rudimentary type of social play [108-110] they do not 

show the same type of reciprocal give-and-take seen during play bouts of rats and any 

other mammals, including human children. The Fischer rat may then be a useful addition 

to our genetic arsenal.   

The Fischer rat may also be useful for gaining insight into certain aspects of 

neurodevelopmental disorders that may be marked by impaired playfulness and deficits 

in DA functioning.  For example, attention deficit/hyperactivity disorder (ADHD) is 

thought to be associated with dampened DA functioning [111-114], although the strength 

of this association has recently been questioned [115].  Few studies have systematically 

quantified play in ADHD children and only a handful of those studies have looked at 

children not on medication at the time of testing [116, 117], although children with 
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ADHD engaged in less social play than non-ADHD peers in both of these studies.  

ADHD children on medication have also been reported to score lower on the Test of 

Playfulness [118] and engage in less social play when compared to a non-ADHD 

comparison group [119]. However, it is not clear in these latter studies if the deficits in 

play are symptomatic of the disorder in these children or are a consequence of their 

treatment, especially given the extent to which psychomotor stimulants can reduce play 

in rats [38, 44, 120]. While it is unlikely that any particular strain of rat, including the 

Fischer strain, can model all aspects of a multifaceted disorder such as ADHD, this strain 

may still be quite useful for better understanding aspects of those disorders where normal 

playful interactions are impaired and in identifying the neurobiological substrate(s) 

associated with that specific impairment. 
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Figure captions 

Figure 1.  Mean (± SEM) nape contacts (Panel A) and the overall probability of 

responding to a nape contact (Panel B) in Sprague-Dawley (n=28) and Fischer 344 

(n=28) rats.  Rats were isolated for 4 hours prior to a 5 minute opportunity to play with a 

novel and playful Sprague-Dawley partner. Fischer 344 rats directed significantly fewer 

nape contacts to the partner and were less likely to respond to a nape contact by the 

playful partner with a complete rotation.  Panel C breaks down the probability of 

responding to a nape contact with either complete rotation, partial rotation, or evasion.   

 

Figure 2. Mean (± SEM) startle response amplitude in Sprague-Dawley and Fischer 344 

rats at the beginning (Block 1) and the end (Block 2) of the test session used for assessing 

PPI in these rats.  Habituation between Blocks 1 and 2 occurred in both strains. The 

startle response in Fischer 344 was significantly less than that of Sprague-Dawley rats 

and this was consistent across blocks. 

 

Figure 3.  Mean (± SEM) startle response amplitude (left panel) and pre-pulse inhibition 

(right panel) in Sprague-Dawley and Fischer 344 rats.  Startle response amplitude was 

significantly lower in Fischer 344 rats.  Pre-pulse inhibition was enhanced in Fischer 344 

rats but only when the pre-pulse was either 10 or 15 dB above the 65 dB background. 

 

Figure 4. Fischer 344 rats show elevated DA content and reduced DA turnover in the 

striatum and prefrontal cortex. Panels A & B show increased DA levels (Mean + SEM) 

observed in 1 month old male Fischer 344 rats compared to Sprague-Dawley rats for the 
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striatum (A) and the prefrontal cortex (B). Note the difference in DA content scales for 

striatal versus frontal cortex tissue. Panels C & D show reduced DA turnover levels 

(Mean + SEM) in 1 month old male Fischer 344 versus Sprague-Dawley rats in the 

striatum and the frontal cortex.  (Fischer 344 n=7; Sprague-Dawley n=7) 

 

Figure 5.  Fischer 344 rats release less striatal DA than Sprague-Dawley rats. A & B: 

Maximum DA release evoked by a single 0.1 msec, 250 µA intrastriatal stimulus is 

plotted for 5 striatal sites recorded by FSCV from each coronal brain slice (see inset 

model of striatum). Strain differences were observed in DA release across all five 

anatomical sites in 1 and 2 month old rats. C: Maximum DA release evoked by a single 

0.1 msec, 250 µA intrastriatal stimulus is plotted for the dorsal striatum (site 3) and the 

nucleus accumbens core and shell regions (Acb core and Acb shell in inset model). P 

values under each site reflect outcomes from site-specific post hoc t-tests.  Inset shows 

example voltogram and recording sites in a coronal brain slice. 

 

Figure 6. Juvenile Fischer 344 rats show reduced DA-dependent forms of cortical 

synaptic plasticity. Panel A shows corticostriatal long-term depression (LTD). 

Intracellular recordings revealed Fischer 344 rats expressed reduced corticostriatal LTD 

compared to Sprague-Dawley rats. Strain differences were observed in the tetanus 

induced change in EPSP amplitude across the entire post-tetatus sampling period. In 

panel B Fischer 344 rats show reduced prefrontal cortex long-term potentiation (LTP). 

Field potential recordings taken from layer 5 in the prefrontal cortex revealed Fischer 344 
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rats expressed reduced intracortical LTP. Strain differences were observed in the tetanus 

induced change in EPSP ampalitude across the entire post-tetanus sampling period. 
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