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Exercise Intensity as a Determinant of Exercise Induced Hypoalgesia

Abstract
The purpose of this study was to examine pain perception during and following two separate 30-min bouts of
exercise above and below the Lactate Threshold (LT). Pain Threshold (PT) and Pain Intensity (PI) were
monitored during (15 and 30 min) and after exercise (15 and 30 min into recovery) using a Cold Pressor Test
(CPT) and Visual Analog Scale (VAS) for pain of the non-dominant hand. Significant differences in PT
scores were found both during and after exercise conditions. Post hoc analysis revealed significant differences
in PT scores at 30 min of exercise (P=0.024, P=0.02) and 15 min of recovery (P=0.03, P=0.01) for exercise
conditions above and below LT, respectively. No differences (P=0.05) in PT scores were found at any time
point between exercise conditions. No differences were found in PI scores at any time point within each trial
(P=0.05) as well as between exercise conditions (p=0.05). Based upon these data, the effects of moderate
exercise on PT appear to be similar at exercise intensities just above and below LT. This may indicate that the
requisite intensity needed to ellicit Exercise-Induced Hypoalgesia may be lower than previously reported.
Because a hypoalgesic effect was not observed in either condition until 30 min of exercise had been
completed, total exercise time may be an important factor in the augmentation of pain perception under these
conditions.

Keywords
Pain Perception, Lactate Threshold, Exercise Induced Hypoalgesia

Disciplines
Exercise Science | Other Medicine and Health Sciences | Sports Sciences

This article is available at The Cupola: Scholarship at Gettysburg College: https://cupola.gettysburg.edu/healthfac/33

https://cupola.gettysburg.edu/healthfac/33?utm_source=cupola.gettysburg.edu%2Fhealthfac%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages


  
 

134

Journal of Exercise Physiologyonline 

 
 

Volume 14 Number 4 August 2011 
 

 

Editor-in-Chief 
Tommy Boone, PhD, MBA 
Review Board 
Todd Astorino, PhD 
Julien Baker, PhD 
Steve Brock, PhD 
Lance Dalleck, PhD 
Eric Goulet, PhD 
Robert Gotshall, PhD 
Alexander Hutchison, PhD 
M. Knight-Maloney, PhD 
Len Kravitz, PhD 
James Laskin, PhD 
Yit Aun Lim, PhD 
Lonnie Lowery, PhD 
Derek Marks, PhD 
Cristine Mermier, PhD 
Robert Robergs, PhD 
Chantal Vella, PhD 
Dale Wagner, PhD 
Frank Wyatt, PhD 
Ben Zhou, PhD 
 
 
 
  
Official Research Journal 
of the American Society of 

Exercise Physiologists 
 

ISSN 1097-9751 
 

Editor-in-Chief 
Tommy Boone, PhD, MBA 
Review Board 
Todd Astorino, PhD 
Julien Baker, PhD 
Steve Brock, PhD 
Lance Dalleck, PhD 
Eric Goulet, PhD 
Robert Gotshall, PhD 
Alexander Hutchison, PhD 
M. Knight-Maloney, PhD 
James Laskin, PhD 
Yit Aun Lim, PhD 
Lonnie Lowery, PhD 
Derek Marks, PhD 
Cristine Mermier, PhD 
Robert Robergs, PhD 
Chantal Vella, PhD 
Dale Wagner, PhD 
Frank Wyatt, PhD 
Ben Zhou, PhD 
 
  
Official Research Journal of 

the American Society of 
Exercise Physiologists  

 
ISSN 1097-9751 

 

 
 
 
 
 
 

 
JEPonline 

 
Exercise Intensity as a Determinant of Exercise Induced 
Hypoalgesia 
 
Karen Y. Wonders1, Daniel G. Drury2 
 
1Wright State University, Department of Health, Physical Education 
and Recreation, Dayton, OH 45435 USA  2Gettysburg College, 
Department of Health Sciences, Gettysburg PA 17325 USA 
 

ABSTRACT 
 
Wonders KY, Drury DG. Exercise Intensity as a Determinant of 
Exercise Induced Hypoalgesia. JEPonline 2011;14(4):134-144.  The 
purpose of this study was to examine pain perception during and 
following two separate 30-min bouts of exercise above and below the 
Lactate Threshold (LT). Pain Threshold (PT) and Pain Intensity (PI) 
were monitored during (15 and 30 min) and after exercise (15 and 30 
min into recovery) using a Cold Pressor Test (CPT) and Visual Analog 
Scale (VAS) for pain of the non-dominant hand. Significant differences 
in PT scores were found both during and after exercise conditions. 
Post hoc analysis revealed significant differences in PT scores at 30 
min of exercise (P=0.024, P=0.02) and 15 min of recovery (P=0.03, 
P=0.01) for exercise conditions above and below LT, respectively. No 
differences (P=0.05) in PT scores were found at any time point 
between exercise conditions.  No differences were found in PI scores 
at any time point within each trial (P=0.05) as well as between 
exercise conditions (p=0.05). Based upon these data, the effects of 
moderate exercise on PT appear to be similar at exercise intensities 
just above and below LT. This may indicate that the requisite intensity 
needed to ellicit Exercise-Induced Hypoalgesia may be lower than 
previously reported. Because a hypoalgesic effect was not observed 
in either condition until 30 min of exercise had been completed, total 
exercise time may be an important factor in the augmentation of pain 
perception under these conditions. 
  
Key Words: Pain Perception, Lactate Threshold, Exercise Induced 
Hypoalgesia 
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INTRODUCTION 
 
A number of investigators have raised the idea that various forms of exercise can result in a reduced 
sensitivity to painful stimuli.  This phenomenon is referred to as Exercise-Induced Hypoalgesia (EIH), 
and has been observed repeatedly using a variety of noxious stimuli, including electrical, thermal, 
pressure, and ischemic (1,24,23,20,29,33).  This effect appears to be most reliable following relatively 
high intensity exercise (23,24,27).   
 
While the modulation of pain during and following exercise is well documented in the literature, its 
underlying physiological mechanisms have yet to be elucidated.  Much attention has been focused on 
a possible physiological link between pain augmentation and exercise.  More specifically, ph 
changes, hypoxia, and lactic acid accumulation have all been identified as important modulators of 
pain (19).  During moderate to high intensity exercise, lactic acid is continually produced and 
eliminated in working cells.  As the intensity of exercise increases, the production of lactic acid begins 
to exceed the rate of its elimination, thereby causing lactic acid to accumulate inside and around the 
active cells.  Eventually, enough lactic acid accumulates inside a tissue so that it surpasses the cell’s 
holding capacity, causing lactic acid to spill out of the cell into the bloodstream (termed “onset of 
blood lactic acid” or OBLA).  Once high levels of lactic acid have accumulated in the tissue, lactic acid 
dissociates a hydrogen ion, which can stimulate pain receptors in the brain and produce an 
uncomfortable sensation in the working muscles. From a practical perspective, one’s OBLA is an 
early indicator of a switch in metabolism from aerobic to anaerobic. From a pain perspective, this 
change in metabolism may be an important factor in understanding how and when EIH occurs.  
 
Since OBLA and EIH are both typically observed-during relatively high intensity of exercise, it seems 
plausible to suggest that the metabolic byproducts associated with anaerobic energy production (ph 
change and lactic acid accumulation) may somehow be related to the temporary change in pain 
perception observed during and after exercise. Therefore, the purpose of this investigation was to 
examine Pain Threshold (PT) and Pain Intensity (PI) during and following two metabolically different 
bouts of exercise. One exercise was performed at an intensity corresponding to a heart rate 10% 
above and the other 10% below the heart rate (HR) corresponding to the OBLA. 
 

METHODS 
Subjects 
A total of 27 normotensive healthy males were included in this study. Exclusion criteria included acute 
or chronic pain of any kind and the use of psychoactive drugs, analgesics, or medications affecting 
the cardiovascular system. Subjects were asked to refrain from caffeine, nicotine, alcohol, and 
strenuous exercise for at least 4 hr before their arrival at the laboratory.  All methods were approved 
by the Wright State University Institutional Review Board prior to data collection and compliance to 
the exclusion criteria was self reported with a health history questionnaire.  The estimated sample 
size required to detect significant differences using PT and PI and their interaction was calculated 
based on an alpha level of P=0.05, a power level of 0.80, and a moderate effect size (4).  Through a 
power analysis it was estimated that approximately 26 to 28 subjects would be needed to detect 
significant differences.   
 
Pain Threshold Assessment  
Pain Threshold (PT) was measured using the Cold Pressor Test (CPT) (10,40).  The apparatus for 
the cold pressor consisted of a container filled with ice and water that was maintained between 1°C 
and 3°C.  The use of a water circulator (Micro-Mark 83345) prevented the water from warming near 
the subject’s hand.  In order to control for possible variations in skin temperature, subjects placed 
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their non-dominant hand and forearm in a water bath of 37°C for 3 min prior to testing.  At the onset of 
the test, subjects were instructed to submerge their non-dominant hand to a marked line at the level 
of the styloid process of the ulna and to remain still. Subjects were asked to indicate when the 
sensations in their hand first became painful. The time (sec) it took each subject to first feel painful 
sensations in their hands was recorded and served as their PT score.  A maximum time limit of 5 min 
was imposed, though subjects were not informed of this limit prior to testing.   
 
Pain Intensity Assessment 
In an effort to assess the intensity of the perceived pain, a Visual Analog Scale (VAS) was used (3).  
A 10-cm line was presented to each subject at the conclusion of the CPT in order to quantify the Pain 
Intensity (PI).  The subject was asked to draw a line somewhere on the line with the left hand side of 
the line corresponding with no pain and the right end of the line indicating the greatest pain ever felt 
by the subject. Scores were obtained by measuring the distance from the left side of the line and 
were recorded in millimeters (mm). 
 
Data Collection Procedure 
Subjects reported to the laboratory on four separate occasions within a 10-day period with each 
session being completed at approximately the same time of day. On day one, basic anthropometric 
measurements (height, weight, and body composition) were collected and, then, the subject was then 
prepped for a12-lead electrocardiogram using standard procedures.  
 
Baseline Condition 
After being prepped, the subject sat quietly for 10 min to promote a resting physiological state.  At the 
conclusion of the rest period, nocioceptive variables (PT and PI) and HR were obtained as baseline 
measurements. The subject remained seated for a total of 60 min. The Dependent Variables (PT and 
PI) were measured at 15, 30, 45, and 60 min.  
 
Workload Determination Visit   
During the second visit, each subject was prepped for continuous electrocardiogram measurement 
using the methods described above.  After being prepped, each subject sat quietly for approximately 
10 min and then a resting HR was recorded.  Next, each subject completed a peak treadmill exercise 
test using the Bruce protocol (2) to estimate maximal VO2. Heart rate and Rate of Perceived Exertion 
(RPE) Scores were monitored at each stage of the protocol. In addition, blood lactate levels were 
obtained at the end of each stage and were used to determine the stage corresponding to the onset 
of blood lactic acid (OBLA). Lactate analysis was completed using a finger stick portable lactate 
analyzer (Accutrend). OBLA was defined when blood lactate concentrations reached 4 mmol/L 
(15,25) and the HR corresponding with this level was used to determine exercise workloads. 
 
Once each subject’s OBLA was identified, two workloads were estimated based upon the HR and 
stage where OBLA was observed. The two exercise conditions were determined by subtracting or 
adding beats onto the OBLA HR. Therefore, the Below (BLW)-OBLA was determined as follows: 
(OBLA HR) – (10% OBLA HR) = BLW-OBLA HR. The Above (ABV) OBLA HR was calculated in a 
similar manner by adding the same number of beats instead of subtracting. During the exercise trials 
the treadmill speed was adjusted so that the subject would maintain a steady state HR (±3 beats) at 
these pre-determined HRs. 
 
Exercise Visits   
During the third and fourth visits, the subject exercised for 30 min at each of the workloads described 
above, with the order of these visits being randomized.  During each visit, the cold pressor test was 
administered at baseline, during exercise (at the 15th and 30th min), and during recovery (at the 15th 
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and 30th min).  Pain Threshold and PI were calculated based upon the duration of time (in sec) 
before the onset of pain and the quantity of the pain once it was experienced (VAS score).   
 
Data Analysis 
Descriptive statistics have been computed as means and standard deviations. A two-factor repeated-
measures ANOVA using within subjects main effect was used to determine if exercise intensity 
significantly altered nocioceptive variables. A standard repeated measures ANOVA was used to 
compare pain scores to one another during the baseline trial. In the presence of significant 
differences, a Tukey post hoc was preformed. A significance level of P=0.05 was used for all 
statistical analyses. 
 

RESULTS 
Anthropometric and Exercise Pre-test Data 
Table 1 presents the subject anthropometric characteristics, maximal HR scores as well as the 
respective VO2 predictions scores.  On average, subjects reached OBLA during stage 4 of the graded 
exercise test and at a corresponding VO2 of approximately 73% of their estimated VO2 peak (Figure 
1). However, the workloads for ABV-OBLA and BLW-OBLA were individualized according to the 
specific stage and corresponding 
HR each subject reached at the 
OBLA. Therefore, the two different 
exercise bouts corresponded to HRs 
maintained at approximately 63% 
(BLW-OBLA) and 83% (ABV-OBLA) 
of each subject’s OBLA HR. Table 2 
presents the HR response to each 
workload as well as the responses 
that corresponded to OBLA. 
 
 

Figure 1.  Lactate Curve.  Values are M +SE  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                 Rest                2.74                  4.02                   5.47                  6.76                  8.05 
                                                                                   Speed (km/h)  
 
 
 
 
 

Table 1. Subject Characteristics. Values are M ±SE. 
Age (yrs) 21.8 ± 0.2 
Percent body fat (%) 14.04 ± 5.24 
Height (in)   71.8 + 2.57 
Weight (lbs)      171 ± 13.72 
BMI (kg/m2) 23.06 ± 1.41 
Max HR (beats·min-1)  186 ± 8.2 
Estimated VO2max (mL·kg-1·min-1)   47.5 ± 4.62 
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Table 2. Mean Heart Rate Scores. 
   BLW-OBLA ABV-OBLA 
Baseline HR 82 ± 5.1 83 ± 6.8 
15 min Exercise HR        144 ± 6.8             157 ± 7.9 
30 min Exercise HR        152 ± 5.9             164 ± 7.4 
15 min Recovery HR 76 ± 7.4  83 ± 7.1 
30 min Recovery HR 69 ± 6.6  82 ± 5.5 

 
 
Baseline Trial Pain Assessment 
In an effort to establish that multiple CPT assessments separated by 15 min did not influence the 
temporal summation of subsequent trials, a non-exercising trial was incorporated into the design of 
the study. A repeated measures ANOVA revealed no differences among the time points for either PT 
or PI. More specifically, the PT values were F=1.195, P=0.25 and the PI values were F=1.030 
P=0.34.  These values can be found in Figure 2. 
 
 

Figure 2.  Pain Threshold during resting Cold Pressor Tests.  
Values are M ± SE.    

 
 
 
Exercise Induced Hypoalgesia 
Significant differences (P=0.001) were found among the ABV-OBLA scores as compared to baseline 
values. Significant differences (P=0.001) were also found among BLW-OBLA scores in comparison to 
baseline values.  Post Hoc analysis revealed that mean PT scores were significantly higher at 30 min 
into exercise as well as 15 min into recovery for the ABV-OBLA (P=0.024 and P=0.03, respectively) 
and BLW-OBLA (P=0.02 and P=0.01, respectively) trials. Data specific to each time point can be 
found in Table 3.       
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Table 3.  Time to Cold Pain Threshold during exercise.  P-values are vs. baseline values for 
Above and Below OBLA.  Values are M ± SE.   
 Baseline 
  During Exercise                   Post Exercise 
 0 min 15 min 30 min 15 min 30 min 

ABV-OBLA 13.6 ± 2.2   21.68 ± 2.5   34.91 ± 3.4   31.33 ± 3.3  19.4  ±  3.1 
p-value    P = 0.41 P = 0.24 P = 0.03 P = 0.22 

BLW-OBLA 12.8 ± 1.8  19.34 ± 2.2   29.91 ± 3.2   30.65 ± 2.7 19.21 ± 3.4 

p-value   P = 0.30 P = 0.02 P = 0.01 P = 0.44 
 
 
Exercise Pain Tolerance Comparisons   
No significant differences were found when comparing mean PT scores between exercise trials at 
each time point. Mean and Standard Error PT scores used for comparison at each time point can be 
found in Table 3. 
 
Exercise Pain Intensity Comparisons 
No significant differences were found when 
comparing mean PI scores between exercise trials 
at each time point. Mean and Standard Deviation 
PI scores used for comparison at each time point 
can be found in Table 4. 
 
 
DISCUSSION 
 
The purpose of this investigation was to examine 
variations in pain perception during and following 
two bouts of exercise that were 10% above and 
10% below the HR corresponding to the HR of 
OBLA.  The primary finding was that both bouts of 
exercise produced a similar hypoalgesic effect 
following 30 min of exercise.  This hypoalgesic 
effect persisted for approximately 15 min into 
recovery. Pain perception was not significantly 
different between the two exercise trials at any time point.  Thus, based upon these data, we can 
conclude that the threshold for the augmentation of pain perception appears to be below the 
theoretical anaerobic threshold as indicated by OBLA. Furthermore, total accumulated exercise time 
appears to be an important factor in the modulation of pain. 
 
The interaction between exercise duration and intensity are believed to both influence the onset of 
hypoalgesia during and following exercise (26).  However, the minimal requisite intensity and duration 
of exercise needed to produce EIH is still unclear.  A number of investigators have studied a variety of 
exercise protocols in this area. The protocols range from incremental increases in workloads (7, 
20,21) to static prescribed workloads (27,13,14), to self-selected exercise intensities (18,38).  

Table 4. Visual Pain Ratings. Values are  
M ± SE. 
 

  Time point Visual Pain Scale 
Resting   2.3 ± 0.2 
A-OBLA 0    2 ± 0.1 
  15 1.9 ± 0.3 
  30 2.3 ± 0.1 
  15 2.1 ± 0.1 
  30    2 ± 0.4 
B-OBLA 0    2 ± 0.2 
  15 2.1 ± 0.3 
  30 2.6 ± 0.1 
  15 2.2 ± 0.3 
  30    2 ± 0.2 
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Although results from these studies are variable, they indicate that EIH occurs most consistently 
following relatively high-intensity exercise. Specifically, exercise intensities between 60% and 85% of 
VO2 max appear to produce a hypoalgesic response (14,27,38). In the present investigation, the 
average workloads employed corresponded to approximately 63% and 83% of the HR associated 
with OBLA.  Thus, both the ABV-OBLA and BLW-OBLA workloads appear to have been sufficient to 
induce EIH. These findings are in conflict with the work by Drury and associates (8). In their  
investigation, significant differences were found when comparing the degree of EIH experienced at 
different workloads within the same submaximal exercise bout. However, the present investigation 
differs in that we incorporated two separate bouts of exercise at different intensities allowing the 
subjects to reach a cardiovascular steady state before assessing pain. Furthermore, pain was 
assessed using a consistent cold stimulus while Drury et al. (8) used a ramping electrodiagnostic pain 
stimulus.  
 
In addition to the variety of exercise intensities used in the literature, there have also been a number 
of studies that have examined the effect of exercise duration on EIH.  One investigation by Hoffman 
and associates (16) suggested that the minimal duration of exercise necessary to invoke hypoalgesia 
was 10 min.  However, it appears as though longer durations of exercise are associated with further 
increases in pain thresholds (26).  This is evidenced by several other investigations, including the 
present study, which have reported reductions in pain threshold following 30 min of exercise 
(24,34,27).  Therefore, it is reasonable to think that total exercise time is likely an important factor in 
the augmentation of pain perception.     
 
The mechanisms responsible for EIH are poorly understood.  Exposure to a painful stimulus has been 
shown to result in a reduced sensitivity to a subsequent presentation of noxious stimuli; a 
phenomenon known as stress-induced analgesia (39).  Naturally-occurring muscle pain has been 
studied extensively in numerous exercise-related topics, including the influence of pain on exercise 
performance (6); the relationship between pain and effort during exercise (17); the influence of 
demographic, social, and genetic factors on pain perceptions during exercise (5); and the effect of 
pharmacological manipulations on pain and exertion during exercise (32).  While the findings from 
these and other studies are highly variable, the pain experienced during exercise appears to be a 
function of the force and frequency of muscle contraction.  Specifically, muscle pain thresholds during 
exercise appear to occur around 50% of maximal exercise intensity (5,6).   
 
Another physiological factor that has received some attention in the literature is the connection 
between blood pressure and pain perception. An interaction between pain modulation and the 
cardiovascular system has been previously reported (36). The baroreflex system is an important 
regulatory mechanism in the short-term control of blood pressure, and it is known to alter central 
nervous activity by exerting an inhibitory influence on parts of the brain (11,30).  This inhibitory effect 
has been attributed to a decrease in pain sensitivity in humans, making the baroreflex system an 
important modulator of nocioception (9,12,31,36,37). In a previous investigation, we reported a 
negative correlation between baroreceptor stimulation and the intensity of experienced pain following 
an orthostatic-induced challenge (41). Exercise has also been shown to elicit systemic pressure 
changes in the study of pain perception (28,35).   
 
 
CONCLUSIONS 
 
Based upon our interpretation of these data, it appears that the OBLA and the corresponding 
changes in metabolism associated with this phenomenon do not directly impact EIH. Since we 
observed EIH both above and below the OBLA after 30 min of exercise, it appears that the 
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accumulation of exercise induced circulating opioids may be responsible for these changes in pain 
perception. Although beyond the scope of the current investigation, future investigations should 
consider monitoring opioids in an effort to determine the intensity and duration of exercise needed for 
pain augmentation.  
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