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Abstract
Ranking is an important mathematical process in a variety of contexts such as information retrieval, sports and
business. Sports ranking methods can be applied both in and beyond the context of athletics. In both settings,
once the concept of a game has been defined, teams (or individuals) accumulate wins, losses, and ties, which
are then factored into the ranking computation. Many settings involve an unequal number of games between
competitors. This paper demonstrates how to adapt two sports rankings methods, the Colley and Massey
ranking methods, to settings where an unequal number of games are played between the teams. In such
settings, the standard derivations of the methods can produce nonsensical rankings. This paper introduces the
idea of including a super-user into the rankings and considers the effect of this fictitious player on the ratings.
We apply such techniques to rank batters and pitchers in Major League baseball, professional tennis players,
and participants in a free online social game. The ideas introduced in this paper can further the scope that such
methods are applied and the depth of insight they offer.
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Reducing the Effects of Unequal Number of Games on Rankings
Timothy P. Chartier,1 John Harris,2 Kevin R. Hutson,2

Amy N. Langville,3 Daniel Martin, and Charles D. Wessell4

Abstract. Ranking is an important mathematical process in a variety of contexts such as information
retrieval, sports and business. Sports ranking methods can be applied both in and beyond the context of
athletics. In both settings, once the concept of a game has been defined, teams (or individuals) accumulate
wins, losses, and ties, which are then factored into the ranking computation. Many settings involve an unequal
number of games between competitors. This paper demonstrates how to adapt two sports rankings methods,
the Colley and Massey ranking methods, to settings where an unequal number of games are played between
the teams. In such settings, the standard derivations of the methods can produce nonsensical rankings. This
paper introduces the idea of including a super-user into the rankings and considers the effect of this fictitious
player on the ratings. We apply such techniques to rank batters and pitchers in Major League baseball,
professional tennis players, and participants in a free online social game. The ideas introduced in this paper
can further the scope that such methods are applied and the depth of insight they offer.

1. Introduction. Ranking is an important mathematical process that informs decision-makers, whether they be
consumers finding webpages returned from queries to search engines, the Major League Baseball (MLB) determining
who will play in its playoffs, the Bowl Championship Series (BCS) selecting college football teams for the holiday bowl
games, or the Association of Tennis Professionals (ATP) deciding on tournament invitations and seeding. Underneath
such rankings are mathematical algorithms. Google uses variations of the classic PageRank algorithm, MLB leans on
winning percentage, the BCS aggregates rankings obtained from human opinion and mathematical calculation, and the
ATP awards ranking points in a way that rewards players who compete in a lot of tournaments in addition to playing
well in them. This paper will demonstrate one way to adapt two specific sports ranking methods to settings in which
teams or individuals play an unequal number of games.

Figure 1: A player by player matrix of the
2011 ATP Tour where aij contains a 1 if
player i played player j and 0 otherwise.
In the color-coded matrix above, nonzero
elements are colored blue.

What contexts arise where teams play unequal numbers of games? Most
team sports design seasons with relative uniformity in the number of games
played. For example, a season of NCAA Football Bowl Subdivision games
is typically 12 to 14 games. Contrast this with the 2011 ATP Tour season
which featured 304 players competing in 2566 completed matches.5 Figure
1 displays a graph of the player by player matrix of the 2011 ATP Tour. In
this matrix the players are listed in order of their ATP ranks (at the end of
2011) and entry aij equals the number of times player i played player j. In
the figure, nonzero elements (nz) are colored blue. As we see, players differ
widely in the number of matches played.
Weaker players, for example, will compete less (and therefore have fewer
blue pixels in their row) as they either do not qualify for many top-level
tournaments without a special invitation from the tournament organizers,
or when they do qualify, they are often defeated in the first round. Under
these circumstances, 73 of the 304 competitors on the 2011 ATP Tour played
only one match while the median number of matches per player was 6. This
inherent disparity in the number of matches directly impacts the Colley and
Massey ranking of professional tennis players.
To demonstrate this effect consider Jose Acasuso who in 2011 was nearing
the end of a solid, if unspectacular, professional tennis career. The Argentine
had an ATP ranking as high as 20th in 2006, but in the first few months of
2011 his rank had fallen into the 200s, and he was competing in tournaments on the second-tier Challenger Tour or
trying to qualify for major tournaments he would have been invited to just a few years earlier. The one exception came
in February, when the local organizers of the Buenos Aires ATP tournament awarded him a wild card entry. Acasuso,
playing in his home country and on his favorite surface (clay), defeated Alexandr Dolgopolov and Pablo Cuevas in the
first two rounds before losing in the quarterfinals to Nicolas Almagro. All three of his opponents were good players,
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ranked 29th, 64th, and 13th by the ATP’s ranking system at the time of the tournament. Those were Acasuso’s only ATP
tournament matches of the year.
Both the Colley and Massey methods are designed to consider the strength of the opposition when calculating a player
or team rank, and Acasuso’s three matches provide a “perfect storm” for both algorithms. By winning twice as many
matches as he lost (2-1) against solid opposition, Acasuso ended the year ranked 33rd by Colley and 14th by Massey.
This dynamic is not new. In fact, it is often quite common in the statistics that we use to rank athletes. Let us now
consider MLB. Also in 2011, Joey Gathright made only one plate appearance for the Boston Red Sox. He made the most
of it with a walk, a stolen base, and an eventual scored run. While Gathright was clearly proficient with his one plate
appearance; it is difficult, if not impossible, to claim he was the best batter in the major leagues during 2011. Likewise,
pitcher Jarrod Parker had a 0.00 earned run average during the 2011 season for the Arizona Diamondbacks. While this
is impressive, he only faced 22 batters to achieve this ERA. There are likely dozens of major league pitchers who faced
22 batters in a row without allowing an earned run to cross the plate. Parker had an ERA below any Cy Young award
winning pitcher. Yet, this ERA statistic, which is often used to compare pitchers, is not as meaningful in this case.
Neither example (Parker nor Gathright) gives sufficient information in which to judge whether or not either athlete can
sustain his performance. Most would agree that a batting average of 0.350 is more impressive if it can be maintained
over 400 at-bats than over 40 at-bats. In fact, Rule 10.22 of the MLB Charter [1] states “The individual batting, slugging
or on-base percentage champion shall be the player with the highest batting average, slugging percentage or on-base
percentage, as the case may be, provided the player is credited with as many or more total appearances at the plate in
league championship games as the number of games scheduled for each club in his club’s league that season, multiplied
by 3.1 in the case of a Major League player.” If 162 games are scheduled in a given year, to win one to these batting titles
a player would need 162 · 3.1 = 502 plate appearances. If no such cut-off is made for the Colley method Joey Gathright
is ranked as the top batter and Jarrod Parker as the second-best pitcher in 2011.
This paper introduces adaptations to the Colley and Massey methods that aid in contexts where players play unequal
numbers of games. Section 2 reviews the derivation of both the Colley and Massey methods and demonstrates how
playing a small number of games can be an advantage. Section 3 introduces the idea of including a super-user into
the rankings. Section 4 applies the adaptation of the Colley and Massey methods to ranking batters and pitchers in
Major League Baseball. Sections 5 and 6 look at the effect of the super-user and how to choose the minimum cutoff at
which point the super-user is not included for a player’s ranking. Section 7 applies the super-user method to professional
tennis. Finally, in Section 8 we look at the need for such methods in applications beyond sports. The concluding remarks
summarize the method and its implications.

2. Ranking with the Colley and Massey Methods. This paper will focus on adapting two common sports ranking
methods - the Colley method and Massey method. Both rely on linear systems to create their ratings. Both methods
are also used by the Bowl Championship Series to aid in its rankings of NCAA FBS teams.
The Colley Method modifies winning percentage to create a linear system

Cr = b, (5)

which produces a rating for each team. For a full description and derivation of the Colley Method, see [12]. The linear
system can be formed by the following definition of the rating ri of team i

ri =
1 + (wi − li)/2 +

∑
j∈Oi

rj

2 + ti
, (6)

where wi (li) represents the number of winning (losing) interactions for team i, ti represents the total number of games
involving team i, and Oi represents the set of opponents of team i. Loosely interpreted, this formula computes a team’s
rating as its winning percentage plus the average rating of its opponents. Equation (6) gives a row-wise description of
the linear system in (5), where r is the vector of team ratings, b = [bi] is a vector such that bi = 1 + 1

2 (wi − li) and
C = T −A, where T = [tij ] is a diagonal matrix in which the diagonal entries tii = 2 + ti and A is a matrix in which the
(j, k)th entry is the number of times that the j and kth teams play. Solving this system of equations provides a rating
for each team encoded in the ratings vector r. This rating can be sorted to provide a ranking (or relative standing) for
each team.
Another ranking approach, the Massey Method, is similar to the Colley Method in that it sets up a system of linear
equations whose solution provides a rating for players. This linear system

Mr = p, (7)

is derived from the assumption that the teams’ ratings will describe the point differential in their competitions. For



Page 17 of 48 Spring 2014: IMAGE 52

example, if teams i and j compete with team i winning by pij points, then

ri − rj = pij .

However, this system is usually inconsistent and the method of least squares is employed to find a “best fit” solution. For
a full derivation of the Massey Method, see [12]. Similar to the Colley Method, a team’s rating in the Massey Method can
be loosely interpreted as equal to the team’s average point differential plus the average of the team’s opponents’ ratings.
Again, solving this system of equations gives a rating vector that can be sorted to provide a ranking of participants.

3. Limiting the Effects of Unequal Numbers of Games. One common solution to this problem of disparate
numbers of games is to simply drop athletes (or teams or items) with fewer than some minimum number of games. For
example, the FIDE chess federation has required that players have at least 30 matches before being rated. While the
minimum cutoffs are usually carefully chosen for the particular application, this approach is a bit arbitrary. Further, a
ranking can be sensitive to the chosen cutoff. That is, a cutoff of 20, as opposed to 30, may produce quite a different
ranking. Further, excluding players from rankings in this manner diminishes their contributions and reduces the visibility
of the player. We seek to penalize these players without excluding them.
In this paper, we propose an alternative to the minimum cutoff approach for dealing with the disparate number of games
issue for the Colley and Massey Methods. Our approach utilizes a super-user, a dummy team (athlete or item) that
plays and beats every actual team that it plays. We force teams to lose to the super-user in every case, rather than
a combination of wins and losses, in order to penalize teams that are perhaps artificially inflated in rank due to good
performance in only a few games. Teams below the minimum cutoff face the super-user multiple times so that, with
the addition of these artificial games, there is much more parity in the number of games that teams play. Because the
super-user’s ranking is artificially generated and has no practical meaning, it is removed from consideration so that each
actual team’s rank is incremented accordingly.

4. Ranking Baseball Players. In order to test the super-user idea in a scenario with a multitude of unequal numbers
of games, we apply it to ranking pitchers and batters in the MLB. Note that the point of this exercise is not to find the
best way to rank pitchers and batters but rather to explore the effects of adding a super-user to the Colley and Massey
ranking methods. The Colley method can be used to rank individual players, pitchers and batters, in a similar way that
it is used to rank teams. We formulate the interactions of batters and pitchers as a multi-edge bipartite (two-mode)
network disregarding the interactions that National League Pitchers have with one another. This approach is similar
to the mutually-antagonistic network formulation in Saavedra, et al. [14]. Bipartite networks are formulated using two
disjoint sets of nodes, P (pitchers) and B (batters), and an edge connects a node x in P with a node y in B for each
instance for which batter y had a plate appearance against pitcher x during the season. This network can be encoded
in the Colley Matrix C where element Cij equals the negative of the number of times pitcher i faced batter j during
the season. Each batter-pitcher interaction results in either a hit, a walk, or an out. We ignore interactions that involve
runners getting thrown out stealing to end innings, sacrifices, or that result in hit-by-pitches, and we strictly look at
interactions that result in a hit, walk, or out. If the result is a hit or a walk, the hitter is awarded a “win” in that
interaction and the pitcher a “loss.” If the result is an out, the pitcher is given a “win” and the batter a “loss.” From
this, we can form the appropriate b vector, and the Colley Method, as described in the introduction, can be used to
rank pitchers and batters. In using the Massey Method, the notion of a point differential pij in the interaction between
pitcher i and batter j needs some explanation. There may be several ways to assign points to a pitcher-batter interaction.
Here, we use the Bill James-defined RUE value [11], or runs to end of inning, to define a score for each possible plate
appearance. The possible events and their corresponding score value are: generic out (0.240), strikeout (0.207), walk
(0.845), single(1.025), double (1.132), triple (1.616), and home run (1.942). The batter receives the corresponding score
for each walk, single, double, triple, and home run that he achieves or otherwise, he receives a score of 0. The pitcher
receives a score of 0 if the batter gets a hit or a walk. Otherwise, for the pitcher, we calculate the average number of runs
per inning for each year (2002-2011), call this value E and subtract the plate appearance outcome value (either 0.240
for an out or 0.207 for a strikeout) from the value E. The value of E varies from year to year. In 2011, E = 0.478. So,
if a pitcher wins an interaction with a strikeout, he is given a value of E − 0.027 = 0.478 − 0.207 = 0.271. In this way
the pitcher gets a score indicating how many runs were “saved” from the interaction. Using these values we define the
values pij for the Massey Method.
As noted above, the number of plate appearances (or innings pitched) for baseball batters (or pitchers) can vary to a
great degree, which can cause the Colley and Massey results to be skewed. For example, pinch hitters are usually called
upon in later innings, if at all, to perform in certain situations. Players get injured or are called up from or sent down
to the minors. Some teams assign catchers to only certain pitchers, and thus those play only when his assigned pitcher
starts the game or he is called to pinch hit. Pitching rotations fluctuate throughout the year and relief pitchers have
quite a bit of variability as to when they get into the game. All of these issues contribute to some players getting more
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Without super-user With super-user
Rank Batter OBP Interactions Rank Batter OBP Interactions
1 Joey Gathright 1.00 1 1 Miguel Cabrera 0.448 680
2 Esteban German 0.462 12 2 Jose Bautista 0.447 645
3 Gil Velazquez 0.429 6 3 Mike Napoli 0.414 427
4 Logan Schafer 0.500 4 4 Adrian Gonzalez 0.410 704
5 Antoan Richardson 0.5 4 5 Joey Votto 0.416 709
6 Russ Canzler 0.400 4 6 Lance Berkman 0.412 580
7 Miguel Cabrera 0.448 680 7 David Ortiz 0.398 603
8 Jose Bautista 0.447 645 8 Prince Fielder 0.415 676
9 Chris Parmelee 0.443 88 9 Matt Kemp 0.399 676
10 Mike Napoli 0.414 427 10 Dustin Pedroia 0.387 721
11 Adrian Gonzalez 0.410 704 11 Alex Avila 0.389 537
12 Jesus Montero 0.406 68 12 Paul Konerko 0.388 620
13 Joey Votto 0.416 709 13 Todd Helton 0.385 480
14 Cedric Hunter 0.400 5 14 Michael Young 0.380 678
15 Lance Berkman 0.412 580 15 Ryan Braun 0.397 621
16 David Ortiz 0.398 603 16 Jose Reyes 0.384 580
17 Alejandro De Aza 0.400 169 17 Victor Martinez 0.380 586
18 Leonys Martin 0.375 8 18 Carlos Beltran 0.385 591
19 Yonder Alonso 0.398 98 19 Jacoby Ellsbury 0.376 712
20 Hector Gomez 0.429 7 20 Nick Swisher 0.374 621
21 Prince Fielder 0.415 676 21 Alex Gordon 0.376 678
22 Matt Kemp 0.399 676 22 Matt Holliday 0.388 506
23 Dustin Pedroia 0.387 721 23 Chase Headley 0.374 433
24 Alex Avila 0.398 537 24 Casey Kotchman 0.378 548
25 Cole Gillespie 0.429 7 25 Yunel Escobar 0.369 574

Table 1: Top 25 Colley batters with and without super-user.

plate appearances or innings pitched
than others. To alleviate this,
we set up two super-user nodes,
the SuperBatter node and the Su-
perPitcher node. If a batter has
x < 300 plate appearances during
the year, he is forced to lose to the
SuperPitcher 300− x times. Here
the cutoff of 300 was chosen to be
roughly the mean/median num-
bers of plate appearances for bat-
ters. In 2011, the mean was 274
and the median was 291. Later,
we let this vary. Likewise, if a
pitcher has y < 400 batter interac-
tions during the year, he is forced
to lose to the SuperBatter 400− y
number of times. In each inter-
action with the SuperPitcher, the
batter loses the interaction with
an out, and the SuperPitcher is
credited with E − 0.240 points.
In each interaction with the Su-
perBatter, the SuperBatter wins
the interaction with a single and
is credited 1.025 points. These outcomes can change as the user sees fit though. Tables 1 and 2 show the Colley rankings
of batters and pitchers both using and not using the super-user nodes for the 2011 season.

Without super-user With super-user
Rank Pitcher OBPA Interactions Rank Pitcher OBPA Interactions
1 Justin Verlander 0.238 964 1 Justin Verlander 0.238 964
2 Jarrod Parker 0.227 20 2 Jered Weaver 0.257 913
3 Stephen Strasburg 0.193 85 3 Dan Haren 0.256 932
4 Jered Weaver 0.257 913 4 Josh Beckett 0.258 746
5 Dan Haren 0.256 932 5 Josh Tomlin 0.269 656
6 Josh Beckett 0.258 746 6 Josh Collmenter 0.266 609
7 Josh Tomlin 0.269 656 7 Guillermo Moscoso 0.266 521
8 Chris Young 0.242 96 8 Ian Kennedy 0.268 877
9 Josh Johnson 0.252 238 9 James Shields 0.267 968
10 Guillermo Moscoso 0.266 521 10 Clayton Kershaw 0.250 913
11 Josh Collmenter 0.266 609 11 Doug Fister 0.263 853
12 Ian Kennedy 0.268 877 12 Michael Pineda 0.270 685
13 Clayton Kershaw 0.250 913 13 Jeremy Hellickson 0.282 767
14 James Shields 0.267 968 14 David Price 0.278 899
15 Doug Fister 0.263 853 15 Alexi Ogando 0.277 680
16 Michael Pineda 0.270 685 16 Brandon McCarthy 0.280 677
17 Randall Delgado 0.293 146 17 Tommy Hanson 0.281 535
18 Luis Mendoza 0.267 57 18 Johnny Cueto 0.269 612
19 David Price 0.278 899 19 Tim Hudson 0.277 867
20 Alexi Ogando 0.277 680 20 Scott Baker 0.288 542
21 Jeremy Hellickson 0.282 767 21 Ricky Romero 0.279 897
22 Brandon McCarthy 0.280 677 22 Cole Hamels 0.251 848
23 Tommy Hanson 0.281 535 23 Brandon Beachy 0.289 578
24 Johnny Cueto 0.269 612 24 Daniel Hudson 0.290 911
25 Tim Hudson 0.277 867 25 Gavin Floyd 0.282 775

Table 2: Top 25 Colley pitchers with and without super-user.

An alternative way of dealing with
this issue, which we refer to as
the Minimum-Game Method, is
to allow every batter and pitcher
to contribute to the network and
to the ratings of each player, but
only rank those pitchers achieving
at least 400 plate appearances and
those batters achieving at least
300 plate appearances. It should
be noted that the results from
this method are similar to the re-
sults using the super-user method.
In fact, the first major discrep-
ancy between these two Colley
methods occurs at rank 40 in
the Super-User Method, where Je-
sus Guzman appears despite hav-
ing only 271 plate appearances.
In 2011, Guzman appeared in 76
games, mostly as a pinch hitter.
Thus we see that the Super-User
Method ranks pinch hitters, play-
ers who suffered lengthy injuries,
and catchers who alternate with
pitchers, while the Minimum-Game Method does not. Pitchers Josh Johnson (Super-User Colley Rank 40) and Stephen
Strasburg (Super-User Colly Rank 109) were having banner years until season-ending injuries. The Super-User Method
allows these contributions to be noted whereas the Minimum-Game Method does not.
These discrepancies also occur with the Massey Method. Tables 3 and 4 show the Massey rankings, the Massey Minimum
Plate Appearance (dentoed minPA), and the Massey Super-User Rankings (denoted SU) for batters and pitchers in 2011.
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Rank Massey Massey (MinPA) Massey (SU)
1 Joey Gathright Jose Bautista Jose Bautista
2 Esteban German Mike Napoli Mike Napoli
3 Cole Gillespie Miguel Cabrera Miguel Cabrera
4 Russ Canzler Matt Kemp Matt Kemp
5 Jesus Montero Adrian Gonzalez Adrian Gonzalez
6 Jose Bautista Alex Avila Alex Avila
7 Mike Napoli Joey Votto Daivd Ortiz
8 Chris Parmelee David Ortiz Joey Votto
9 Miguel Cabrera Curtis Granderson Curtis Granderson
10 Jason Giambi Giancarlo Stanton Lance Berkman

Table 3: Top 10 Massey batters with the three methods.

Rank Massey Massey (MinPA) Massey (SU)
1 Brad Peacock Matt Cain Matt Cain
2 Stephen Strasburg Guillermo Moscoso Guillermo Moscoso
3 Luis Mendoza Roy Halladay Roy Halladay
4 Jarrod Parker Jordan Zimmerman Jordan Zimmerman
5 Matt Cain Justin Verlander Justin Verlander
6 Josh Johnson Doug Fister Doug Fister
7 Chien-Ming Wang Cole Hamels Cole Hamels
8 Guillermo Moscoso Ryan Vogelsong Kyle Lohse
9 Roy Halladay Kyle Lohse Ryan Vogelsong
10 Chris Young Cliff Lee Cliff Lee

Table 4: Top 10 Massey pitchers with the three methods.

Note that the Minimum Plate Appearance approach and the super-user approach have very similar rankings with only a
few transpositions of players. As with the Colley Method, we see that batters and pitchers who made the most of their
limited game exposure show up high in the rankings.

Rank Super-User Min Plate Appearances
20 Andruw Jones Mark Reynolds
21 Alejandro De Aza Carlos Beltran
22 Mark Reynolds Justin Upton
23 Paul Konerko Troy Tulowitzki
24 Carlos Gonzalez Wilson Betemit
25 Carlos Beltran Josh Hamilton
26 Justin Upton Hunter Pence
27 Wilson Betemit Matt Holliday
28 Troy Tulowitzki Josh Willingham
29 Allen Craig Carlos Pena
30 Josh Hamilton Pablo Sandoval
31 Matt Holliday Ryan Howard
32 Hunter Pence Dustin Pedroia
33 Carlos Pena Todd Helton
34 Chris Parmelee Nick Swisher
35 Josh Willingham Mike Carp
36 Pablo Sandoval Lucas Duda
37 Ike Davis Kevin Youkilis
38 Ryan Howard Robinson Cano
39 Jesus Montero Matthew Joyce
40 Dustin Pedroia Corey Hart

Table 5: Snapshot of Massey Super-User and
MinPA Rankings.

Table 5 gives a snapshot of the Massey Super-User and Massey Min-
imum Plate Appearance Methods from rank 20 to 40. The boldfaced
names are those players who appear in the Massey Super-User rankings
but not in the Massey Minimum Plate Appearance rankings. There
are a couple of items to note. From Table 3 we see that Chris Parmelee
is ranked 8th in the overall Massey rankings. He had 88 plate appear-
ances in 2011 and a batting average of 0.355 and was called up from
the minors during the season. The super-user penalty that Parmelee
incurred drops him in the rankings to 34, but he remains in the rank-
ings. Alejandro De Aza is 15th in the overall Massey Rankings but only
drops 6 places to 21st in the Massey Super-User Rankings. In 2011, De
Aza appeared in only 54 games with 179 plate appearances and batted
0.329. He was an outfielder who rotated with other outfielders during
the year and was used as a pinch hitter. Like Parmelee, he incurs a
super-user penalty, but it is not quite as severe since he has more than
twice the plate appearances as Parmelee. Finally, Allen Craig, who
was instrumental in the St. Louis Cardinals winning the World Series
in 2011, shows up at 29 in the Massey Super-User Rankings while not
appearing at all in the Massey Minimum Plate Appearance method.
In 2011, Craig had 219 plate appearances with a batting average of
0.315. He was used mostly as a utility player by the Cardinals and
played 6 different positions for them throughout the season. Ike Davis

was having a good year until injury struck, and Jesus Montero was a rotating designated hitter throughout the year. Con-
tributions from these players are noted in the super-user approach but are omitted from the minimum plate appearance
approach.

5. Effect of Playing the Super-User. One potential issue that could arise in the Super-User Method is whether
players who are closer to the minimum cutoff appear higher in the rankings despite a poorer performance relative to
other players. Could this be why players like Chris Parmelee and Alejandro De Aza moved in the rankings when a
super-user node is added to produce Tables 1 and 5? To aid in answering this question, consider Figures 2 (a) and (b)
of plots compiled of players from the 2009-2011 major league baseball seasons that failed to meet minimum cutoff for
interactions. The number of interactions against the super-user is plotted against the overall rank change from ranking
with and without the super-user nodes. The output from the statistical software package JMP is shown in the figures. In
both pitchers and batters, the deviation in rank has a low correlation (r = 0.1182 for batters and r = 0.2238 for pitchers)
with the number of interactions these players have against their corresponding super-user, and thus the variation in rank
deviations is primarily due to other factors. This suggests that performance in the Super-User Method has more to do
with where players are ranked than the number of plate appearances.

6. Choosing the Minimum Cutoff. How does one choose the minimum cutoff for games played by the super-user?
Further, how sensitive is the method to such choices? Are there patterns to the perturbations seen in the rankings as
evidenced by the super-user? To aid in answering these questions, let’s continue our study of Major League Baseball. To
simplify our discussion, we will concentrate solely on the ranking of batters.
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(a) 2009-2011 Batters below cutoff (b) 2009-2011 Pitchers below cutoff

Figure 2: Number of super-user interactions against rank change for batters (a) and pitchers (b).

(a) (b) (c)

Figure 3: Heat map showing decreases (light
red indicates a slight decrease and dark red,
a large decrease) and increases (blue) in
player’s ranks as the minimum cutoff in-
creases where (a), (b), and (c) are the upper
third, middle third, and bottom third of the
rankings.

The sensitivity of rankings to changing parameters associated with these
linear algebra based ranking systems has been studied in the literature.
Notably, the famous PageRank method for ranking webpages results in
a linear system with a scalar parameter known as the teleportation con-
stant [8, 12]. The sensitivity of PageRank to changes in this parameter
is studied in two main ways: (1) through an analysis of the derivative
of the ranking with respect to this parameter [2, 7] and (2) with com-
putational studies that vary the parameter over its domain [2, 8, 9, 10].
Because the Colley and Massey super-user ranking system also result in a
linear system with one scalar parameter, namely the number of times the
batter/pitcher faces their respective super-users, we consider similar sen-
sitivity analysis. However, the first approach, a derivative analysis, will
not work for the super-user application because the parameter changes
depending on the number of plate appearances of each player and is not
the same for each player. Thus, we apply the second type of traditional
sensitivity analysis to our problem and run computational studies varying
our cutoff parameter over its domain.
Figure 3 shows rank variations of batters as the minimum cutoff varies
from 0 to 700 incrementing by 50. We use 700 since the maximum num-
ber of plate appearances was 721 in 2011. Figure 3 is a heat map show-
ing decreases (light red indicates a slight decrease and dark red, a large
decrease) and increases (blue) in players’ ranks as the minimum cutoff
increases. Note that Figure 3 (a), (b), and (c) are the upper third, middle
third, and bottom third of the rankings, respectively. The first column in
(a), (b), and (c) shows the ranks of the players when the minimum cutoff
is 0 and the last column, when the cutoff is 700. Each row in the map
corresponds to an individual player and his rank changes.
Three patterns are apparent in Figure 3.

• Red dominates toward the top of the heat map (Figure 3(a)). Players with few plate appearances see an immediate
penalty (severe drop in rank indicated by dark red) when the minimum is raised above their number of plate
appearances. This is working as intended as these players had undeservedly high rankings due to good performances
in just a few games and now with our method must face the dominant super-user multiple times.

• Conversely, blue dominates the bottom of the heat map (Figure 3(c)). This indicates that low-ranked players receive
some increase in rank as the parameter increases, i.e., as they play more games against the dominant undefeated
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super-user. Of course, these low-ranked players lose each time they face the super-user, so their subsequent increase
in rank seems contradictory. However, this increase in rank is a result of the “strength of schedule” influence in the
ranking method. Because the super-user is the #1 team, these low-ranked players receive a boost by playing the
dominant team so many times.

• The middle section of the heat map (Figure 3(b)) is very interesting, showing a triangular section of decrease in red
with a symmetric triangular section of increase in blue. This section justifies setting the minimum cutoff parameter
somewhere between 300 and 500. In this range, players have a slight decrease in rank, followed by a stable rank
period, followed by a slight increase in rank. Within this range, the penalty movement down is balanced by the
strength of schedule movement up.

Finding the best minimum cutoff is difficult since the problem does not lend itself to the aforementioned derivative-based
approach and must be analyzed by empirical means. Further, there may be several different objectives governing the
quality of the rankings produced by the methods. Who is to say which objective ranks batters and pitchers best? For
these reasons we choose to empirically find the cutoff that minimizes the squared differences in current ranking and
previous ranking as the minimum cutoff is incrementally increased. For each of the deviations in the minimum cutoff we
can calculate a squared deviation in ranks (or ratings) that occurs for batters. As the minimum cutoff is varied from 0
to 700 (this time by 5), the minimum squared deviation in rank occurs at a cutoff of 425. Note that this value is larger
than the 300 that we prescribed but smaller than the 502 that MLB prescribes.
One can also vary how the super-user is applied. In some scenarios it might be deemed more fair for every team to play
the super-user a fixed number of times (rather than ensuring everyone has a minimum number of games). If we apply this
so-called uniform game method to MLB, the effects are similar to the method of minimum plate appearances. We see an
immediate drop in the rankings of players with few, but successful plate appearances in both methods. In the uniform
games method, these players drop into the middle third of the rankings. In the super-user method, the immediate drop
is more severe, sending these players into the bottom fourth of the rankings. What is significantly different between the
two applications of the super-user is that in the uniform games application those players with few, but unsuccessful plate
appearances also jump into the middle third of the rankings whereas in the minimum plate appearance method these
players stay near the bottom of the rankings. This difference is due to the fact that the super-user plays everyone (instead
of just those with few attempts) and has thus garnered a better rating for playing a tougher strength of schedule.

7. Ranking Tennis Players. As mentioned earlier, there is a great disparity between the number of matches played
by the very best professional tennis players and those players whose ability puts them on the border between the ATP
Tour tournaments and lesser competitions on the Challenger Tour and Futures Series.

Player W L Colley Colley (SU) Massey Massey (SU) Avg. Change
Acasuso, J. 2 1 33 96 14 110 79.5
Gonzalez, M. 3 11 224 288 193 281 76.0
De Bakker, T. 2 11 240 294 197 294 75.5

Ramirez-Hidalgo, R. 5 15 239 296 198 290 74.5
Brands, D. 4 11 202 268 195 258 64.5
Delbonis, F. 3 2 47 95 20 99 63.5
Serra, F. 3 12 257 297 217 300 61.5

Van Der Merwe, I. 3 1 51 102 53 123 60.5
Bozoljac, I. 1 1 101 137 71 148 56.5
Cervenak, P. 2 1 81 121 82 154 56.0

Table 6: The ten players whose rankings declined the most after introduction of the
super-user. Based on largest average rank decline over both the Colley and Massey
methods.

Unlike the ranking of baseball play-
ers, the tennis ranking problem can-
not be modeled as a bipartite net-
work. Another difference is that in
tennis the super-user does not end
up as the #1 player in either the Col-
ley or Massey rankings. Evidently,
in tennis the top players are so domi-
nant, that the super-user’s 2560 wins
and 0 losses compiled almost exclu-
sively against sub-par competition
was only good enough for 10th place
in the Colley rankings and 22nd in
the Massey rankings. As the mini-
mum cutoff is increased, however, the super-user’s ranking increases as it is allowed to play competition with higher
ratings and thus improve the average ratings of its opponents. For instance, as the minimum cutoff is increased to 40, the
super-user’s Colley ranking is 5th. Once the minimum cutoff is increased to 80, the super-user is playing the top-ranked
players and is ranked 2nd. The super-user takes the top spot in the Colley ranking when the minimum cutoff is 95.
Nevertheless, the issue of players who played comparatively few matches being ranked higher than expected still arises.
Though these unjustly high rankings are not as dramatic as they are in the baseball example, where players with only
two or three matches appear at the very top of the rankings. In addition to Jose Acasuso, Federico Del Bonis, Izak Van
Der Merwe, Ilija Bozoljac, and Pavol Cervenak, players unknown to all but the most serious tennis fans, were all able to
achieve a top 100 ranking from Colley and Massey by playing in five or fewer matches and winning at least as many as
they lost. Table 6 shows the decline of these players after implementation of a super-user approach with a cut-off value
of 17. (The mean number of matches played per player on the 2011 ATP tour was 16.88.)
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Since the Massey method requires a margin of victory for each match and tennis’s scoring system does not provide an
obvious one, the formula

Margin of Victory = 5 + 5(Sets Won Differential) + Games Won Differential

was used with the Massey algorithm. This formula assures that each match winner has a positive margin of victory. The
winner of a five-set match by the closest score possible (0-6,0-6,7-6,7-6,7-6), gets a margin of victory equal to one. For
2011, the mean margin of victory so defined was 19.21, so the value of 19 was used as the margin of victory in each of
the super-user’s matches.6

Player W L Colley Colley (SU) Massey Massey (SU) Avg. Change
Vinciguerra, A. 0 1 287 260 299 246 40.0

Haas, T. 7 11 141 105 132 89 39.5
Paire, B. 5 10 157 123 159 115 39.0
Falla, A. 7 14 153 116 139 100 38.0

Istomin, D. 10 20 152 117 140 103 36.0
Sadecky, A. 0 1 280 254 282 236 36.0

Gabashvili, T. 10 19 144 108 137 104 34.5
Volandri, F. 12 19 131 101 144 106 34.0
Souza, J. 7 8 126 100 147 107 33.0

Bedene, Aljaz 0 1 261 231 251 217 32.0

Table 7: The ten players whose rankings improved the most after introduction
of the super-user. Based on largest average rank improvement over both the
Colley and Massey methods.

Table 7 shows the ten players whose rank-
ings improved the most once the super-
user was introduced. These 10 play-
ers can be divided into two groups, with
each group populated by a similar type of
player. The three players in the first group,
Andreas Vinciguerra, Alexander Sadecky,
and Aljaz Bedene, lost their only com-
pleted ATP match to players whose ATP
rank at the time of the match was 727th,
401st and 204th respectively. This perfor-
mance was so abysmal that the addition
of sixteen losses to the super-user slightly
improved their Colley and Massey ranking.
Nevertheless these three still remain in the bottom third of ranked players in 2011.
The other group of seven players is much more interesting. Each of them played between 15 and 31 matches and had
2011 Colley/Massey rankings between 126 and 159 before the introduction of the super-user. Notice that few of these
players ended up playing in any matches against the super-user, but their ranking benefited since other players originally
ranked above them had their rankings fall after repeated losses to the super-user. These seven players played 70 of their
combined 159 real-world matches against players in the ATP’s top 50, and despite a combined record of 12-58, these
“quality” losses are rewarded by Colley and Massey, especially once super-user matches were included.
Of course, it is possible that these players are merely being rewarded for having drawn tough first-round opponents,
though it is interesting to note that Benoit Paire, Alejandro Falla, and Denis Istomin have all recorded their career-high
ATP ranking since the 2011 season. Tommy Haas is an interesting case. The oldest player on the list, he was the ATP’s
#2 player in May 2002. His career has been interrupted twice by injury breaks that lasted over a year. He returned
from one of these in mid-2011 and has since returned to the ATP’s top 20. It appears that an increase in the Super-User
Ranking may indicate future success and would be a promising area for future study.
As in the baseball example, the issue of where to place the minimum cutoff arises. If we again try to find a cutoff that
minimizes the sum of the squared deviations from current rank to previous rank, one (local) minimum occurs at 17,
which is where we set this cutoff. A slightly better minimum occurs when the cutoff is 30, although with this cutoff, the
ranking for the top 40 players changes very little compared to when the cutoff is set at 17.

8. Games Beyond Sports. Sports ranking methods

Figure 4: A sample question contained on http://www.
prediculous.com.

can be applied outside the context of sports. One such
application is Prediculous, a free online social game where
users compete with other users by predicting the future
of events in sports, politics, entertainment, business, and
the world. An example question regarding the prediction
of a sporting event is shown in Figure 4. Players compete
for points and leaderboard status. In all, approximately
18,600 unique users have played the game.
In 2011, several authors of this paper applied the Colley
method to this context with the intent of employing a more
advanced ranking method in the website’s leader board.
The first step was defining a game. In this context, a
game occurs over a prediction. Note, both players can be

6The Margin of Victory formula is the creation of Gettysburg College student Michael McLauglin, who studied tennis ranking for his 2012
senior capstone project.

http://www.prediculous.com
http://www.prediculous.com
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correct, both incorrect, or one is correct in a prediction. Further, games occur between each pair of users participating
in a prediction question. As such, ties must be integrated into the Colley method.
Like tennis, players (which are Prediculous users in this case) vary in the number of games played. New users begin
with one prediction. Other users have over 100 predictions. The need for a super-user quickly arises. If one removes
users who do not meet some minimum cut-off, new users will not receive a rank or will simply be put at the bottom
until they surpass the cut-off. For Prediculous, this is undesirable since encouraging new users’ play is important to
growing participation on the site. Consequently, the super-user approach has business implications and is very helpful.
The cut-off was chosen in consultation with Prediculous with their business goals in mind.
Earlier in the paper, other applications beyond sports were listed. If one ranks Netflix movies from user ratings, then
again, movies vary in the number of ratings they receive which can elevate lesser known movies. A similar effect happens
with Amazon products when a sports ranking method is applied to the user ratings of products.

9. Concluding Remarks. From sports to the Internet to businesses looking at their products, ranking is an important
mathematical process. As demonstrated in this paper, the Colley and Massey methods can offer valuable insight in the
ranking of batters and pitchers in Major League Baseball, of tennis players, and of participants in an online social game.
These representative examples underscore how easily contexts arise in which an unequal number of games can arise. As
discussed, removing data of less active players or participants removes valuable information. However, the presence of
unequal numbers of games can decrease the value of the resulting rankings. To make sports ranking methods adaptable
and valuable in such settings, this paper demonstrated how to adapt both the Colley and Massey ranking methods with
the introduction of a super-user. This fictitious player aids in identifying strong players who have not played a significant
number of games. At the same time, the effect of simply playing (and losing) a few games against strong opponents is
not an immediate advantage. Further, the paper showed that such a method does not favor players approaching the
cut-off and is adaptable but also not highly sensitive to the cut-off used with the super-user. The ideas introduced in
this paper can further the scope that such sports ranking methods are applied and the depth of insight they offer.
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