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Abstract. Let G be a connected, loopless multigraph. The sandpile group of G is a finite
abelian group associated to G whose order is equal to the number of spanning trees in G. Holroyd
et al. used a dynamical process on graphs called rotor-routing to define a simply transitive action
of the sandpile group of G on its set of spanning trees. Their definition depends on two pieces of
auxiliary data: a choice of a ribbon graph structure on G, and a choice of a root vertex. Chan,
Church, and Grochow showed that if G is a planar ribbon graph, it has a canonical rotor-routing
action associated to it; i.e., the rotor-routing action is actually independent of the choice of root
vertex. It is well known that the spanning trees of a planar graph G are in canonical bijection with
those of its planar dual G∗, and furthermore that the sandpile groups of G and G∗ are isomorphic.
Thus, one can ask: are the two rotor-routing actions, of the sandpile group of G on its spanning
trees, and of the sandpile group of G∗ on its spanning trees, compatible under plane duality? In this
paper, we give an affirmative answer to this question, which had been conjectured by Baker.
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1. Introduction. Let G be a connected multigraph with no loop edges. The
sandpile group of G is a finite abelian group whose order is equal to the number of
spanning trees in G; it is the group of degree zero divisors of G modulo the equiva-
lence relation generated by lending moves. (We will recall all relevant definitions in
section 2.)

In [8], Holroyd et al. use a dynamical process on graphs called rotor-routing to
define a simply transitive action of the sandpile group of G on its set of spanning
trees. Rotor-routing itself was introduced in [9] under the name “Eulerian walkers”
and has been rediscovered several times in different fields: see [8] for a concise history
of the topic.

The definition of the rotor-routing action on G given in [8] involves two pieces of
auxiliary data. First, the action is defined with respect to a choice of a root vertex
v ∈ V (G), or basepoint. Second, it depends on a ribbon graph structure on G: a choice
of a cyclic ordering of the set of edges incident to each vertex v. Note that such a
choice of cyclic orders defines an embedding of G on some closed, oriented surface S,
in which all cyclic orders correspond to a positive orientation, say with respect to S.
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Fig. 1. This figure shows the result of applying the element [w−x] of S(G) to the spanning tree
T and, in the bottom row, the result of applying the element [c−a] of S(G∗) to T ∗. The graph G
has all rotors oriented clockwise relative to the page, and its planar dual G∗ has all rotors oriented
counterclockwise. We chose x and a as our basepoints of G and G∗ for the respective computations.
The isomorphism S(G) ∼= S(G∗) identifies [w−x] and [c−a], so the trees [w−x] · T and [c−a] · T ∗
must be dual trees, as shown on the right.

We say that G is a planar ribbon graph if S is just a sphere, i.e., if the chosen ribbon
structure equips G with an embedding into the plane.

A recent paper of Chan, Church, and Grochow [5] answers a question of Ellen-
berg [7] by proving that the rotor-routing action does not depend on the choice of
basepoint if and only if G is a planar ribbon graph. This result is somewhat sur-
prising, and as a nice consequence of it, we may henceforth refer to the rotor-routing
action on a planar ribbon graph, without further reference to a choice of basepoint.

Any graph G embedded in the plane has a planar dual graph G∗ whose spanning
trees are in canonical bijection with those of G. Moreover, the sandpile groups of G
and G∗ are, up to sign, canonically isomorphic [1] (see also [6]). Thus, one would hope
that the two rotor-routing actions, of the sandpile group of G on the set T (G) of its
spanning trees, and of the sandpile group of G∗ on its spanning trees, are compatible.

This was, in fact, exactly the conjecture suggested to us by Baker. In this paper,
we provide a proof of Baker’s conjecture on the compatibility of the rotor-routing
action of the sandpile group with plane duality. See Theorem 3.1 for the precise
statement, and see Figure 1 for an example illustrating the result.

We begin with preliminary definitions of the sandpile group and rotor-routing
in section 2. The proof of our main result occupies section 3. The key idea of our
proof is the angle between two spanning trees T and T ′ of G: see Definition 3.3.
The angle from T to T ′ remembers the element of the sandpile group that takes T
to T ′ under rotor-routing. On the other hand, we are able to show, using a direct
geometric argument, that the angle is compatible with plane duality, so the main
theorem follows.

We would also like to refer the reader to the recent preprint [3], which arrives at
another proof of Theorem 3.1 via a completely different route. In that manuscript,
Baker and Wang prove that the bijections obtained by Bernardi in [4, Theorem 45]
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give rise to another simply transitive action of the sandpile group on the spanning
trees of a ribbon graph G with a fixed root vertex. They show that this action is
compatible with plane duality and that it coincides with the rotor-routing action
when G is planar. It would be interesting to study the relationship between these two
approaches further.

2. Preliminaries.

2.1. The sandpile group. Let G = (V,E) be a finite connected loopless multi-
graph with vertex set V and edge multiset E. The set of divisors on G is the free
abelian group on the vertices: Div(G) = ZV . We imagine a divisor D =

∑
v∈V av v

to be an assignment of D(v) := av chips to each vertex v, keeping in mind that this
number may be negative. We write Div0(G) for the subgroup of divisors whose net
number of chips

∑
D(v) is zero.

A lending move by a vertex v consists of removing deg(v) chips from v and
distributing them along incident edges to the vertices neighboring v. In other words,
letting n(v, w) denote the number of edges between v and w, a lending move by v
performed on a divisor D produces a divisor D′ given by

D′(w) =

{
D(w) + n(v, w) if w �= v,

D(v) − deg(v) if w = v.

Notice that lending moves do not change the total number of chips in a divisor.
Divisors D and D′ are linearly equivalent, denoted D ∼ D′, if one can be obtained
from the other by a sequence of lending moves at various vertices. The sandpile group
of G is

S(G) = Div0(G)/∼ .

The sandpile group of a graph is also variously known as the Jacobian of G, the Picard
group Pic0(G), or the critical group of G.

2.2. Integral cuts and cycles. Fix an arbitrary orientation on the edges E,
and let ZE be the free abelian group on these oriented edges. If e = {u, v} ∈ E is given
the orientation (u, v), we write e+ = head(e) = v and e− = tail(e) = u. We identify
−e with the oppositely oriented edge (v, u). Each directed cycle on the underlying
undirected graph G may be thought of as an element of ZE, and the Z-linear span of
these cycles in ZE is the integral cycle space for G, which we denote by C.

Next, for any subset U ⊂ V , the collection of all edges joining a vertex of U to a
vertex of V \ U is called a cut. By directing all of these edges from vertices in U to
vertices in V \ U , we can identify this cut with an element of ZE. If U consists of a
single vertex v, this cut is called a vertex cut at v. The integer span of all cuts is the
integral cut space for G and is denoted by C∗. Note that the vertex cuts generate the
cut space.

Define

E(G) = ZE/(C + C∗).

We now identify E(G) with the sandpile group S(G), as follows. Define the boundary
map ZE → Div0(G) by sending each edge e to e+ − e−. The boundary map is
surjective since G is connected, and its kernel is exactly the cycle space of G, so it
identifies Div0(G) with ZE/C. Now, given D ∈ Div0(G), let Dv be the boundary of a
vertex cut at the vertex v. Then D+Dv is the divisor obtained from D by performing
a lending move at v. Therefore the boundary map induces an isomorphism,
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∂G : E(G)
∼=→ S(G),

e �→ [e+ − e−],

as was proved in [1, Proposition 8]. We will sometimes write ∂ instead of ∂G for
brevity.

2.3. Rotor-routing action on spanning trees. Fix a ribbon graph structure
on G; i.e., for each vertex v, fix a cyclic ordering of the edges incident to v. Fix a
vertex q. A rotor configuration with basepoint q is the choice for each vertex v �= q of
an edge, ρ(v), incident to v. We orient each edge ρ(v) so that its tail is v.

Let D be a divisor on G, thought of as a chip configuration on G, and let ρ be
a rotor configuration with basepoint q. We now recall the rotor-routing process, by
which a divisor D transforms ρ into a new rotor configuration ρ′. Firing a vertex v
consists of updating ρ by replacing ρ(v) with the next edge in the cyclic ordering of
edges at v, then removing a chip from v and placing it at the other end of the new
edge ρ(v). Note that firing v a total of deg(v) times does not change the original
rotor configuration but transforms D by a lending move at v. Now, every divisor D
on G is linearly equivalent to a divisor D′ with D′(v) ≥ 0 for all v �= q; see, e.g., [2,
Proposition 3.1]. From that point, [8] shows that, solely through vertex firings, all
chips may be routed into q, and the rotor configuration at the end of this process
depends solely on the divisor class of D.

Let T (G) denote the set of spanning trees of G. Rooting T ∈ T (G) at q uniquely
determines a rotor configuration ρT : for each vertex v �= q, set ρT (v) to be the edge
incident to v on the path in T from v to q. Given a divisor class [D] ∈ S(G), use
the rotor-routing process to route all chips into q (at which point, all chips will be
gone since deg(D) = 0). It is shown in [8] that the resulting rotor configuration is a
spanning tree, directed into q. Call the underlying undirected spanning tree [D] · T .
Then according to [8] the resulting map,

μG : S(G) × T (G) → T (G),

([D], T ) �→ [D] · T,

is a simply transitive action of S(G) on T (G).

2.4. Planar duality. Now suppose that G = (V,E) is a planar ribbon graph,
and let G∗ = (V ∗, E∗) be its planar dual graph, whose vertices are the faces of G and
whose edges cross the edges of G. We shall assume throughout that both G and G∗

are loopless; i.e., G has neither bridges nor loops. We write e∗ for the edge of G∗

crossing the edge e of G. Each spanning tree of G determines a spanning tree of G∗:
namely, there is a natural bijection

δ : T (G)
∼=−→ T (G∗)

sending T to the tree T ∗ = {e∗ ∈ E∗ : e ∈ E \ T }.
Let us call the orientation of the plane that agrees with the cyclic orderings of

G clockwise. Then we fix once and for all the following planar dual ribbon graph
structure on G∗: take the cyclic orderings of the edges at the vertices of G∗ to be
counterclockwise with respect to the plane.

In order to define ZE, we fixed an arbitrary orientation of the edges of G. To
define ZE∗, we will now choose a compatible orientation on the edges of G∗. For
an oriented edge e of G, let e′ (respectively, e′′) denote the edge at v = e− before
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(respectively, after) e in the cyclic order at v. Now, call the face between e′ and e at
v the face before e, and call the face between e and e′′ at v the face after e. Then we
orient e∗ so that its head is the face of G before e and its tail is the face of G after
e. For example, in Figure 1, with the rotors of G oriented clockwise relative to the
page, suppose that e is the directed edge from x to y. Then e∗ is the directed edge in
G∗ from b to a.

Since directed cycles of G are directed cuts of G∗ and vice versa, mapping each
edge to its dual produces an isomorphism E(G) ∼= E(G∗), and hence we get an iso-
morphism φ of sandpile groups labeled as in the following commutative diagram:

E(G)
∼= ��

∂G

��

E(G∗)

∂G∗
��

S(G)
φ �� S(G∗).

3. Compatibility of rotor-routing with duality. Let G be any planar ribbon
graph such that both G and its dual G∗ are loopless. In the previous section, we
established an isomorphism φ : S(G) → S(G∗) that depended on a single global
choice of orientation of the E∗ derived from the orientation E. With respect to this
choice, we may now state the main theorem of the paper, as follows.

Theorem 3.1. The diagram

S(G) × T (G)
μG ��

φ×δ

��

T (G)

δ

��
S(G∗)× T (G∗)

μG∗ �� T (G∗)

commutes. In other words, the rotor-routing action is compatible with plane duality.
In the rest of this section, we prove Theorem 3.1. We begin with a topological

definition of the angle between two spanning trees; this definition applies to all ribbon
graphs, not just planar ones, and is the key idea in our proof of Theorem 3.1.

Suppose that G is any ribbon graph, and let e and e′ be directed edges emanating
from a vertex u. Suppose that in the cyclic order starting from e = e0, the edges
between e and e′ are e0, e1, . . . , ek, where ek = e′, all directed outward from u. Define
the angle between e and e′ at u by

∠u(e, e′) =
k∑

i=1

∂ei ∈ S(G).

Recall that ∂ denotes the boundary map sending a directed edge e to the element
[e+ − e−] ∈ S(G). Note that the sum includes e′ but not e. See Figure 2.

Lemma 3.2. Suppose G is a planar ribbon graph, and let e0, . . . , ek be consecutive
outgoing edges from some vertex u in the cyclic order at u. For i = 0, . . . , k, let ri be
the face of G (equivalently, the vertex of G∗), lying to the right of ei (with respect to
the cyclic order at u). Then

φ(∠u(e0, ek)) = [r0 − rk] ∈ S(G∗).

Proof. We have φ(∂ei) = [ri−1−ri], so by linearity φ(∠u(e0, ek)) is the telescoping
sum [(r0 − r1) + (r1 − r2) + · · ·+ (rk−1 − rk)], proving the claim.
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e0

e1

e2

ek

Fig. 2. ∠u(e0, ek) = ∂e1 + · · ·+ ∂ek.

Definition 3.3. Let G be an arbitrary ribbon graph, and let T and T ′ be two
spanning trees of G. Let v ∈ V be any vertex. As in section 2.3, let ρT and ρT ′ be the
rotor configurations based at v arising from orienting T and T ′ towards v.

The angle between T and T ′ based at v, denoted ∠v(T, T
′), is the sum of the

angles between their edges at each nonroot vertex. That is,

∠v(T, T
′) :=

∑
u∈V \{v}

∠u(ρT (u), ρT ′(u)) ∈ S(G).

Lemma 3.4. Let G be any ribbon graph, and let T be a spanning tree of G. For
any vertex v and any [D] ∈ S(G) we have

∠v(T, [D] · T )) = [−D].

Here, the rotor-routing action of [D] on T is computed with respect to the basepoint v.
Proof. Without loss of generality, we may choose D to be a chip configuration

that is nonnegative at vertices other than v. Consider the rotor-routing process that
calculates [D] · T . We will say that the directed edge (x, y) is activated if a chip is
sent from vertex x to vertex y during this process. Note that, when the chip is fired,
the chip configuration on the graph changes by ∂(x, y) = y − x. Since at the end of
the rotor-routing process there are no chips left on the graph, it follows that

[D] +
∑
e

∂e = 0,

where the sum is over the multiset of edges that have been activated during the
process.

Next, we claim that the angle between T and [D] · T is in fact equal to
∑

e ∂e,
where the sum is again over the multiset of activated edges. This is because at each
vertex u �= v, the sum of the boundaries of all outgoing edges e at u is 0 ∈ S(G); after
all, this sum corresponds to a lending move at u. So the sum over all activated edges
leaving u is exactly the angle at u between the edge of T leaving u and that of T ′,
and the claim follows. Summarizing, we have

∠v(T, [D] · T )) =
∑
e

∂e = [−D].

Corollary 3.5. Let G be any planar ribbon graph, and let T and T ′ be spanning
trees of G rooted at the same vertex v. Then ∠v(T, T

′) = 0 if and only if T = T ′.
Proof. Assume that ∠v(T, T

′) = 0, and let [D] ∈ S(G) take T to T ′ under
the rotor-routing action with basepoint v. It follows from [8, Lemma 3.17] that the
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element [D] exists and is unique. Then by Lemma 3.4, [D] = 0, so T = T ′. The
converse is clear.

Remark 3.6. It follows from Lemma 3.4 and from [5, Theorem 2] that the notion
of angle between trees for G is independent of the choice of root vertex for the trees
if and only if G is a planar ribbon graph. Indeed, Lemma 3.4 shows that ∠v(T, T

′)
is exactly the element of S(G) sending T ′ to T in the rotor-routing action based at
v, and the rotor-routing action is basepoint-independent if and only if G is a planar
ribbon graph by [5]. Thus, if G is planar, we will henceforth write ∠(T, T ′) for the
angle between T and T ′, computed with respect to any vertex.

We can now prove our main lemma.
Lemma 3.7. Let G be a planar ribbon graph, and let T and T ′ be spanning trees

of G. Then

φ(∠(T, T ′)) = ∠(T ∗, T ′∗) .

Proof. Given a spanning tree T and an edge e not in T , we call the unique cycle
C(e) in T ∪{e} the fundamental cycle of e with respect to T . We first note that there
is a sequence of trees T = T0, T1, . . . , Tr = T ′ such that for each j the trees Tj+1

and Tj have exactly n − 1 edges in common. If T = T ′, this statement is trivially
true. Otherwise, pick e′ ∈ T ′ \ T ; then the fundamental cycle of e′ with respect to T
must contain some edge e ∈ T \ T ′. Set T1 = T ∪ {e′} \ {e}. Then T1 and T ′ have
smaller symmetric difference, so repeating, we produce a sequence of spanning trees
as desired. It follows by induction that we may assume T ′ = T ∪ {e′} \ {e}.

In fact, we may further assume, again by induction, that e and e′ are edges
incident to a common face of G. Indeed, since T ∗ ∪ {e∗} \ {e′∗} = T ′∗ is acyclic, the
fundamental cycle C(e∗) of e∗ with respect to T ∗ contains e′∗. Now starting at e∗

and proceeding along the cycle C(e∗) in either direction, let e∗ = e∗0, e
∗
1, . . . , e

∗
s = e′∗

be the sequence of edges traversed. Then

T ∗, (T ∗ ∪ {e∗})\{e∗1}, (T ∗ ∪ {e∗})\{e∗2}, . . . , (T ∗ ∪ {e∗})\{e∗s}

is a sequence of trees in G∗ such that the symmetric difference of any consecutive pair
of trees consists of two edges of G∗ adjacent to the same vertex. Now passing to G,
we conclude that

T, (T ∪ {e1})\{e}, (T ∪ {e2})\{e}, . . . , (T ∪ {e′})\{e}

is a sequence of trees in G such that the symmetric difference of any consecutive pair
of trees consists of two edges of G incident to the same face.

Thus, from here on, we assume that T ′ = (T ∪ {e′}) \ {e}, where e, e′ ∈ E(G) are
incident to a common face, which we call f . Write e = xy and e′ = x′y′ for vertices
x, y, x′, y′ of V (G) such that f is to the left of the edge e when it is traversed in the
direction x → y, and f is to the right of the edge e′ when it is traversed in the direction
x′ → y′. Write C for the fundamental cycle in T ∪ {e′}; it is illustrated in Figure 3.
(Here and throughout the rest of the proof, we assume a clockwise orientation on the
rotors of G simply in order to talk about the left and right sides of an edge freely. For
example, the face to the right of an oriented edge e = (x, y) should be interpreted as
the face coming in between e and the edge after e in the cyclic order at x.)

By Remark 3.6, the calculation of the angle ∠(T, T ′) ∈ S(G) is independent of
the choice of root vertex. Choose x′ as the root, and orient T and T ′ towards x′. We
wish to study the sum of the angles at each vertex v �= x′ of G between the edges of
T and T ′ that are outgoing from v.
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Fig. 3. The fundamental cycle C of T ∪ {e′}, shaded in black.
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Fig. 4. Parts of the trees T and T ′, rooted at the vertex x′.

Having rooted the trees at x′, we start by observing that the path between y and
y′ in T is directed from y′ to y, whereas in T ′ it has the opposite orientation. This
is illustrated in Figure 4. Furthermore, all other edges shared by T and T ′ have the
same orientation. Indeed, consider a vertex v not on C, and say its unique path in T
to x′ first meets C at v′; then the same path v–v′ in T ′ must be an initial subpath of
the unique path in T ′ from v to x′, so in particular the edge leaving v is unchanged.

Let us fix some notation before going further. Write

y′ = y0, e1, y1, e2, . . . , ym−1 = y

for the sequence of vertices and directed edges in the y′–y path in T . For each directed
edge ei, we write fi (respectively, hi) for the face of G to the right (respectively, left)
of ei.

For convenience, we extend the notation above as follows. We denote by h0 the
face of G to the left of e′ when oriented from x′ to y′, and we denote by hm the face
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x′ y′

x ye

e′
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+−

+

−

−

+

Fig. 5. ∠(T, T ′) ∈ S(G) and φ(∠(T, T ′)) ∈ S(G∗), the former drawn with arrows, and the
latter drawn with plus and minus signs.
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Fig. 6. The cycle C in black, and ∂G∗ (C∗).

of G to the left of e when oriented from y to x. Next, consider the path from x to x′

that bounds f and such that f lies on its right. Call the faces on the left side of this
x–x′ path hm+1, . . . , hN . See Figure 3.

Letting e0 = e′ and em = e, the angle between T and T ′ then is given by

∠(T, T ′) =
m−1∑
i=0

∠yi(ei+1, ei) ∈ S(G),

where in each expression in the sum we regard each edge as being oriented away from
yi in turn. Then by Lemma 3.2, we have

φ(∠(T, T ′)) = (f1 − h0) + (f2 − h1) + · · ·+ (fm−1 − hm−2) + (f − hm−1) ∈ S(G∗).

The angle between T and T ′ is shown in Figure 5. The signs indicate φ(∠(T, T ′)) ∈
S(G∗).

Next, consider the oriented cycle C running from x′ to y′, then along edges of T
from y′ to x, then along edges of f back to x′, as shown in Figure 6. The dual C∗ of
C is a cut of G∗, so ∂G∗(C∗) = 0 ∈ S(G∗). On the other hand,

∂G∗(C∗) = (h0 − f) + (h1 − f1) + · · ·+ (hm−1 − fm−1) +

N∑
i=m

(hi − f).

The signs in Figure 6 indicate ∂G∗(C∗) ∈ S(G∗).
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x′ y′

x ye

e′

f

+

−

+ −

+ −

+ −

Fig. 7. φ(∠(T, T ′)) + ∂G∗ (C∗) ∈ S(G∗).

T ∗

x′ y′

x ye

e′

f

e∗

e′∗
u

T ′∗

x′ y′

x ye

e′

f
e∗

e′∗
u

Fig. 8. Parts of the trees T ∗ and T ′∗, rooted at u.

Summing, we have

φ(∠(T, T ′))) + ∂G∗(C∗) =
N∑

i=m

(hi − f).

This sum is shown in Figure 7.

But this sum is exactly ∠(T ∗, T ′∗). To see this, root the trees T ∗ and T ′∗ at
a vertex u of G∗ on the cycle in T ∗ ∪ {e∗} but different from f , as illustrated in
Figure 8. Then the only nonzero vertex angle contributing to ∠(T ∗, T ′∗) is the angle

at the vertex f , and by definition this angle is
∑N

i=m(hi − f), as shown in Figure 9.
So we are done.

We now prove our main result.
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x′ y′

x y

e∗

e′∗
u

Fig. 9. ∠(T ∗, T ′∗).

Proof of Theorem 3.1. Given [D] ∈ S(G) and T ∈ T (G), let T ′ = [D] · T , and let
T ′′ = φ([D]) · T ∗. We would like to show that T ′′ = T ′∗. By Lemma 3.4,

φ(∠(T, T ′)) = φ([−D]) = ∠(T ∗, T ′′).

By Lemma 3.7,

φ(∠(T, T ′)) = ∠(T ∗, T ′∗).

Hence, ∠(T ∗, T ′′) = ∠(T ∗, T ′∗). Therefore, ∠(T ′′, T ′∗) = 0, and the result then follows
from Corollary 3.5.
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