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Abstract

In this note, we describe a construction that leads to families of graphs
whose critical groups are cyclic. For some of these families we are able
to give a formula for the number of spanning trees of the graph, which
then determines the group exactly.

1 Introduction and Background

This article will discuss some results related to the critical group of a finite connected
graph G. While there are many ways to define the critical group, we will describe it
in terms of a chip-firing game. In particular, we define a configuration on the graph
G to be a function δ : V (G) → Z, which we think of as assigning an integer number
of chips to each vertex of G. Given a configuration, we define its degree to be the
total number of chips assigned.

We next define transitions between configurations, by letting a move consist of
choosing a vertex and either borrowing one chip from each adjacent vertex or firing
one chip to each adjacent vertex. See Figure 1 for one example. We will say that two
configurations are equivalent if one can get from one to the other through a sequence
of these moves.

This setup may appear purely combinatorial in nature but it has a number of
interesting applications in areas such as statistical physics, cryptography, algebraic
geometry, and economics. We define the critical group of G to be the set of equiva-
lence classes of configurations with degree zero. This set is naturally endowed with



R. BECKER AND D.B. GLASS/AUSTRALAS. J. COMBIN. 64 (2) (2016), 366–375 367

0 4

-1

-1

(a) Before firing the center vertex

1 1

0

0

(b) After firing the center vertex

Figure 1: Configurations on a graph before and after firing the center vertex

an abelian group structure where the group operation is addition of chips at corre-
sponding vertices. We will denote this group by K(G). Due to analogies with the set
of divisors on an algebraic curve up to linear equivalence, this group is also known
as the Jacobian of the graph G. For more details on these connections to algebraic
geometry, we refer the reader to [4].

It is well-known that for a given graph on n vertices the critical group of G is
isomorphic to Z

n−1/Im(L∗), where L∗ is the reduced Laplacian matrix of the graph
G (see [2], [13] for details). One can compute the group structure of this quotient by
computing the Smith Normal Form of the matrix L∗. While efficient algorithms to do
this are known, they often do not take into account the combinatorial structure of the
graph. Several recent papers including [3], [6], and [8] attempt to use this structure
in order to gain some insight into critical groups. Some of these results use the fact
that the order of the critical group of a graph is equal to the number of spanning
trees of that graph, which is a corollary of Kirchhoff’s Matrix Tree Theorem. One
result that is well known (see, for example, [6, Prop 1.2]) and which we will use
repeatedly is the following:

Lemma 1.1. Let G1 and G2 be two graphs and let H be the graph obtained by
identifying a single vertex of G1 with a single vertex of G2. Then the critical group
of H is isomorphic to the direct sum of the critical groups of G1 and G2.

Given a graph G, it is natural to ask what the minimal number of elements needed
to generate the critical group of G is. The extreme cases are handled by letting G
be a tree, in which case the critical group is trivial, and letting G be the complete
graph Kn, in which case the critical group is (Z/nZ)n−2. We also note that it
follows from Lemma 1.1 that for any finite abelian group Γ ∼= Z/m1Z⊕ . . .⊕Z/mrZ

it is possible to construct a graph G whose critical group is Γ by starting with r
cycles of length m1, . . . , mr and identifying a single vertex on each of the cycles.
While this construction shows that the rank of the critical group of a graph can be
arbitrarily large, Wagner conjectured in [16, Conj 4.2] that the probability that a
suitably defined random graph has a cyclic critical group approaches one. While this
conjecture has recently been shown to be false, and Wood shows in [17, Cor 9.5] that
the probability that a random graph has cyclic critical group is less than 0.8, there
is still significant evidence that most random graphs have cyclic critical groups. In
this note we will construct large families of graphs for which the critical group will
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be cyclic and we will discuss a method that can be used to compute the order of this
cyclic group.

2 Adding Chains To Graphs

Given a graph G and two vertices x, y ∈ V (G) we define δx,y to be the configuration
on G so that δx,y(x) = 1, δx,y(y) = −1 and δx,y(v) = 0 for v �= x, y. We note that
δx,y = −δy,x, and in particular the two divisors will generate the same subgroup of
K(G).

Definition 2.1. A generating pair of vertices for a graph G is a pair {x, y} ⊂ V (G)
so that the configuration δx,y is a generator of the critical group of G. Equivalently,
{x, y} will be a generating pair if any configuration of degree zero is equivalent to a
configuration which has value zero except possibly at x and y.

Example 2.2. Let G be an n-cycle. More explicitly, let G be a graph with V (G) =
{x1, . . . , xn} and an edge between xi and xj if and only if i ≡ j ± 1 mod n. Let δ be
any configuration of total degree 0 on G. We claim that δ is equivalent to a multiple
of δxn−1,xn.

To see this, we let δ1 be the configuration obtained from δ by borrowing δ(x1)
times at the vertex x2. In particular, δ1 will be the configuration defined by setting
δ1(x1) = 0, δ1(x2) = δ(x2) + 2δ(x1), δ1(x3) = δ(x3)− δ(x1), and δ1(xi) = δ(xi) for all
i ≥ 4. For each 2 ≤ k ≤ n− 2 we define δk inductively as the configuration obtained
from δk−1 by borrowing δk−1(xk) times at xk+1.

We note that the configuration δn−2 is equivalent to δ and δn−2(xi) = 0 ex-
cept possibly at i = n − 1, n. This verifies our claim and in particular proves that
{xn−1, xn} is a generating pair for G. More generally, one can show that the pair
{xi, xj} is a generating pair if and only if gcd(i− j, n) = 1.

It is not always the case that there is a generating pair consisting of two adjacent
vertices. For example, if G is the graph in Figure 2a it follows from Lemma 1.1
that K(G) ∼= Z/15Z but that δx,y will either have order three or five for any pair of
adjacent vertices. However, for the vertices labelled a and b one can see that δa,b will
generate the full group.

We note that even in a situation where a graph has a cyclic critical group then
there does not need to be a generating pair. The following example, provided by
an anonymous referee, describes such a situation, answering a question posed by
Lorenzini in [11, Remark 2.11].

Example 2.3. Let G be the graph in Figure 2b. By Lemma 1.1, K(G) ∼= Z/105Z.
Moreover, if z is the labelled vertex and x �= z is a different vertex on a cycle of size
dx ∈ {3, 5, 7} then we note that the divisor δx,z has order dx. For any two vertices
x, y both of which are distinct from z, the divisor δx,y can be written as δx,z − δy,z,
and therefore has order equal to lcm(dx, dy) ∈ {3, 5, 7, 15, 21, 35} and in particular
not equal to |K(G)|.
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Figure 2: Examples

In the situation where our graph has a known generating pair, then we are able
to construct a family of graphs which also have cyclic critical groups and known
generating pairs due to the following theorem, which is the main result of this section.

Theorem 2.4. Let x and y be a generating pair for G. Let G̃ be the graph G with
an additional path of � ≥ 1 edges (and �− 1 new vertices) between the vertices x and
y. Then any pair of consecutive vertices along this path are a generating pair for G̃.
In particular, K(G̃) is cyclic.

Proof. Let G be a graph and {x, y} be a generating pair for G. In particular, this
means that for any configuration δ on G we can do a series of moves so that the
resulting configuration has chips only on x and y.

Let G̃ be the graph with an additional path of length � between vertices x and y.
To be precise, V (G̃) = V (G) ∪ {x1, . . . , x�−1} and the edges of G̃ will be the edges
of G along with edges connecting xi and xi+1 for 1 ≤ i ≤ � − 2 as well as edges
connecting x to x1 and x�−1 to y. By convention, we set x0 = x and x� = y.

Given a configuration δ̃ on G̃ we can consider its restriction δ̃|G as a configuration
(not necessarily of degree zero) on G. We know there exists a sequence of legal moves
that will make this configuration have chips only on the two vertices x and y. We
perform this sequence of moves on δ̃ and denote the resulting configuration on G̃ by
δ0.

We have now moved all of the chips in the configuration onto the chain connecting
x and y, and we can therefore consolidate these on any two adjacent vertices. To be
explicit, choose two adjacent vertices xi and xi+1. If i ≥ 1 then for each 1 ≤ j ≤ i
we let δj be the configuration obtained by borrowing δj−1(xj−1) times at the vertex
xj . In particular, the configuration δi will only have a nonzero value for vertices in
{xi, . . . , x�}.

We continue by defining δj for j > i. In particular, for each i < j ≤ �− 1 we let
δj be the configuration obtained by borrowing δj−1(x�−j) times at the vertex x�−j−1.
At the end of this process, the resulting configuration δ�−1 will only have a nonzero
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number of chips on the vertices xi and xi+1. In particular, we have shown that every
configuration on G̃ of degree zero is equivalent to a multiple of the divisor δxi,xi+1

and therefore {xi, xi+1} is a generating pair for G̃.

We note that Theorem 2.4 is also a consequence of results in [9, Sect.2]. However,
our proof is more elementary.

Example 2.5. Let G be the ‘house’ graph as pictured in Figure 3 with vertices
as labelled. Assume that δ is a configuration of total degree zero on G. The fact
that a 3-cycle has cyclic critical group and that any pair of adjacent vertices is a
generating pair for the graph tells us that there is a sequence of moves that will lead
to an equivalent divisor δ1 with δ1(z) = 0. In particular, we can let δ1 be the divisor
obtained by borrowing δ(z) times at the vertex x.

x1 x2

yx

z

Figure 3: The one-story house is one simple example of a stack of polygons.

If we now let γ be the divisor obtained by borrowing δ1(x) times at the vertex x1

and δ1(y) times at the vertex x2, we can check that γ(v) is only nonzero at x1, x2.
In particular, (x1, x2) is a generating pair for G. In a similar manner, we could show
that (x, x1) and (x2, y) are also generating pairs for G.

One can generalize the construction in Example 2.5 to more general stacks of
polygons. In particular, let (k1, . . . , kn) be a sequence of integers with each ki ≥ 2.
Define the graph G1 to be a k1-cycle and, for each 1 < i ≤ n define the graph Gi

by starting with graph Gi−1 and adding a path of ki − 1 edges between any two
consecutive vertices of the path added at the previous step. The resulting graph Gn

will consist of a stack of polygons with k1, . . . , kn sides. One example is that the
stack corresponding to (3, 4) or (4, 3) are isomorphic to the house graph in Example
2.5. See Figure 4 for additional examples. It follows from inductive applications of
Theorem 2.4 that K(Gn) is cyclic; we note that similar results are discussed in [12].

We conclude this section by discussing some similarities between our result and
results of Dino Lorenzini. In particular, [10, Thm 5.1] gives the following result:

Theorem 2.6. Let G be a connected graph with vertices x, y so that there are c > 0
edges which have both x and y as their endpoints. Moreover, let G1 be the graph
obtained by deleting all edges between the two vertices x and y. If |K(G)| and |K(G1)|
are relatively prime then K(G) is cyclic.
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(a) (5, 4, 3) (b) (4, 4, 4, 4) (c) (2, 2, 4, 2, 2)

Figure 4: Polygonal stacks corresponding to (k1, . . . , kn)

In [12], he gives an alternate proof of this theorem and strengthens the result
somewhat. In particular, he is able to prove:

Theorem 2.7. Let G be a connected graph with vertices x, y connected by at least
one edge so that |K(G)| and |K(G1)| are relatively prime, where G1 is as defined
in the previous theorem. Let G′ be the graph obtained from G by adding a path of �
edges between x and y, and let G′

1 be the graph obtained from G′ by deleting the single
edge between any two adjacent vertices in the chain. Then |K(G1)| and |K(G′

1)| are
relatively prime. In particular, it follows from Theorem 2.6 that K(G′) is cyclic.

We note the similarities between Theorem 2.7 and Theorem 2.4. This leads us
to pose the following question.

Open Question 2.8. Given a graph G and a pair of vertices x, y so that |K(G)|
and |K(G1)| are relatively prime, must it be the case that the configuration δx,y is a
generator of K(G)?

3 Recurrence Relations and Orders of Critical Groups

Given a finite list of integers k1, . . . , kn with all ki > 1, we define Gn to be a stack of
polygons P1, . . . ,Pn where Pi is a ki-gon, and Pi and Pi+1 share the edge denoted
by ei. Such a graph is not uniquely defined by the n-tuple, as we could stack the
polygons along different edges and get different graphs. However, we will see in this
section that all such graphs will have the same critical group. In particular, it follows
from Theorem 2.4 that K(Gn) is a cyclic group. Moreover, it is a consequence of the
Matrix Tree Theorem that the order of the critical group of any graph is equal to the
number of spanning trees of the graph, so this number will fully determine K(Gn).

In order to count spanning trees on our polygonal graphs, we use a variant on
the technique of deletion-contraction which was developed by Tutte in the 1940’s
after reading some ideas of Kirchhoff related to electronic resistances. In essence,
this method relates the Tutte polynomial of a graph to the Tutte polynomials of the
graphs that are obtained by choosing an edge and either deleting it or contracting
it. One can then use the fact that the number of spanning trees is the evaluation
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of the Tutte polynomial at specific values. Rather than rely on this full machinery,
our discussion will be self-contained, but we refer the interested reader to [15] for a
description of the history of these ideas and [1] for further technical details.

Theorem 3.1. Setting T (k1, . . . , kn) to be the number of spanning trees on the graph
Gn we have the following recurrence relation:

T (k1, . . . , kn) = knT (k1, . . . , kn−1)− T (k1, . . . , kn−2).

Proof. Let Tn (resp. Tn−1,Tn−2) denote the set of spanning trees on Gn (resp.
Gn−1, Gn−2). In the discussion that follows, we will think of a spanning tree T of
a graph G as being the set of edges in the tree. It is also useful to note that a set
of edges on a graph G will be a spanning tree if and only if it consists of exactly
|V (G)| − 1 edges, at least one of which is adjacent to every vertex of the graph.

We define a map Φ : Tn ∪ Tn−2 → Tn−1 in the following way.

• If T ∈ Tn−2 we let Φ(T ) = T ∪ (Pn−1 \ {en−2 ∪ en−1}).

• If T ∈ Tn and (Pn \ {en−1}) ⊆ T then we let Φ(T ) = (T \ Pn) ∪ {en−1}.

• If T ∈ Tn and T does not contain all of (Pn \ {en−1}) then we define Φ(T ) =
T \ (Pn \ {en−1}).

One can check that for each T we have that Φ(T ) will be a spanning tree of Gn−1.
In particular, we note that in the first case one is adding both kn−1 − 2 edges and
vertices as one moves from Gn−2 to Gn−1. Similarly, in the latter two cases one is
removing both kn − 2 edges and vertices as one moves from Gn to Gn−1. Examples
of this map for trees on the graph G3 consisting of a stack of three squares is given
in Figure 5.

If T ′ is a spanning tree of Gn−1 so that en−1 ∈ T ′ then one can see that there are
kn trees T ∈ Tn so that Φ(T ) = T ′. In particular, the preimages of T ′ are exactly
the trees (T ′ \ {en−1}) ∪ (Pn \ {fi}), as the fi ranges over all kn edges of Pn. On
the other hand, if T ′ is a spanning tree of Gn−1 so that en−1 �∈ T ′ then there will be
kn− 1 elements of Tn which map to T ′ (in particular, the trees T ′∪ (Pn \ {en−1, fi})
as fi ranges over the edges of Pn other than en−1) and there is a single tree T ∈ Tn−2

so that Φ(T ) = T ′, namely T ′ \ (Pn−1 \ {en−2}).
Combining these cases shows that the map Φ is both surjective and kn-to-1. This

implies the theorem.

Example 3.2. Let us consider the case where we have a stack of k-gons with k ≥ 2,
and let Tn be the number of spanning trees of such a graph so that the critical group
of this graph is isomorphic to Z/TnZ. In particular, this will be the case where kn is
the constant value k for all n, so Theorem 3.1 implies that the sequence {Tn} satisfies
the second order linear recurrence Tn = kTn−1 − Tn−2. One can easily compute the
initial conditions T0 = 1 and T1 = k.

If one prefers an explicit formula to a recursive one, it is then possible to use
well-known results on recurrence relations (see, for example, [14, Ch. 6]) to compute
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(a) T1 ∈ T1 (b) Φ(T1) ∈ T2 (c) T2 ∈ T3 (d) Φ(T2) ∈ T2

(e) T3 ∈ T3 (f) Φ(T3) ∈ T2 (g) T4 ∈ T3 (h) Φ(T4) ∈ T2

Figure 5: Examples of the map Φ : T1 ∪ T3 → T2

that if k = 2 we have that Tn = n+ 1 and if k ≥ 3 then we have

Tn =
1

2

[(
1 +

k√
k2 − 4

)(
k +

√
k2 − 4

2

)n

+

(
1− k√

k2 − 4

)(
k −

√
k2 − 4

2

)n
]

It is worth noting that when k = 4, the graph Gn is the 2-by-n grid and the num-
ber of spanning trees is computed in [7] using similar techniques to ours. Moreover,
in the case of k = 3 our result gives the same answer obtained in [5] by different
methods. Finally, in the case where k = 2 our graph is the ‘banana graph’ consisting
of two vertices connected by n + 1 edges, in which case it is well known that the
critical group is Z/(n + 1)Z.

Example 3.3. Next, consider the example of an n-story ‘house’, corresponding to
the (n + 1)-tuple (3, 4, . . . , 4). As in the previous example, the number of trees will
satisfy the recurrence relation Tn = 4Tn−1 − Tn−2. One can compute by hand in this
case that T0 = 3 and T1 = 11. In particular, this shows that

Tn =
1

2
√
3

[(
3
√
3 + 5

)(
2 +

√
3
)n

+
(
3
√
3− 5

)(
2−

√
3
)n]

Example 3.4. For our final example, we consider the case of a stack of alternating
k1-gons and k2-gons, where k1 and k2 are both at least 2. We further assume that we
are not in the case where k1 = k2 = 2 in order to simplify the calculations. Again,
it follows from Theorem 2.4 that the critical group is cyclic and therefore we only
need to count the number of spanning trees to determine the group. Let us assume
that An is the number of spanning trees of the graph formed by adding n of each
type of shape in an alternating fashion. (We leave as an exercise to the reader the
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interesting fact that you get a different answer if you put a stack of n k1-gons on
top of a stack of n k2-gons). Moreover, let Bn be the number of spanning trees of a
graph composed with n k1-gons and n− 1 k2-gons arranged alternatingly.

In particular, it follows from Theorem 3.1 that we have An = k2Bn − An−1

and Bn = k1An−1 − Bn−1. From these two relations, one can deduce that An =
(k1k2−2)An−1−An−2 and Bn = (k1k2−2)Bn−1−Bn−2. Combined with the additional
observations that A0 = 1, A1 = k1k2 − 1, B0 = 0, and B1 = k1 one can use standard
results on recurrence relations to get the following explicit formulas for the An and
Bn:

An =

(√
ω + γ

2
√
ω

)
·
(
γ − 2 +

√
ω

2

)n

+

(√
ω − γ

2
√
ω

)
·
(
γ − 2−

√
ω

2

)n

Bn =
(
k1 + 1− γ

2

)
·
(
γ − 2 +

√
ω

2

)n

+
(γ
2
− k1 − 1

)
·
(
γ − 2−√

ω

2

)n

where γ = k1k2 and ω = γ2 − 4γ.
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