Bone: An Acute Buffer of Plasma Sodium during Exhaustive Exercise?

Tamara Hew-Butler

Kristin J. Stuempfle
Gettysburg College

Martin D. Hoffman

Follow this and additional works at: https://cupola.gettysburg.edu/healthfac
Part of the Other Medicine and Health Sciences Commons, and the Sports Sciences Commons

Share feedback about the accessibility of this item.

This is the publisher’s version of the work. This publication appears in Gettysburg College's institutional repository by permission of the copyright owner for personal use, not for redistribution. Cupola permanent link: https://cupola.gettysburg.edu/healthfac/52
This open access article is brought to you by The Cupola: Scholarship at Gettysburg College. It has been accepted for inclusion by an authorized administrator of The Cupola. For more information, please contact cupola@gettysburg.edu.
Bone: An Acute Buffer of Plasma Sodium during Exhaustive Exercise?

Abstract
Both hyponatremia and osteopenia separately have been well documented in endurance athletes. Although bone has been shown to act as a “sodium reservoir” to buffer severe plasma sodium derangements in animals, recent data have suggested a similar function in humans. We aimed to explore if acute changes in bone mineral content were associated with changes in plasma sodium concentration in runners participating in a 161 km mountain footrace. Eighteen runners were recruited. Runners were tested immediately pre- and post-race for the following main outcome measures: bone mineral content (BMC) and density (BMD) via dual-energy X-ray absorptiometry (DEXA); plasma sodium concentration ([Na+]p), plasma arginine vasopressin ([AVP]p), serum aldosterone concentration ([aldosterone]s), and total sodium intake. Six subjects finished the race in a mean time of 27.0±2.3 h. All subjects started and finished the race with [Na+]p within the normal range (137.7±2.3 and 136.7±1.6 mEq/l, pre- and post-race, respectively). Positive correlations were noted between change (Δ; post-race minus pre-race) in total BMC (grams) and [Na+]p (mEq/l) (r=0.99; p

Keywords
hyponatremia, osteopenia, endurance athlete

Disciplines
Other Medicine and Health Sciences | Sports Sciences

This article is available at The Cupola: Scholarship at Gettysburg College: https://cupola.gettysburg.edu/healthfac/52
Bone: An Acute Buffer of Plasma Sodium During Exhaustive Exercise?

Abstract

Both hyponatremia and osteopenia separately have been well documented in endurance athletes. Although bone has been shown to act as a “sodium reservoir” to buffer severe plasma sodium derangements in animals, recent data have suggested a similar function in humans. We aimed to explore if acute changes in bone mineral content were associated with changes in plasma sodium concentration in runners participating in a 161 km mountain footrace. Eighteen runners were recruited. Runners were tested immediately pre- and post-race for the following main outcome measures: bone mineral content (BMC) and density (BMD) via dual-energy X-ray absorptiometry (DEXA); plasma sodium concentration ([Na+]p), plasma arginine vasopressin ([AVP]p), serum aldosterone concentration ([aldosterone]p), and total sodium intake. Six subjects finished the race in a mean time of 27.0±2.3 h. All subjects started and finished the race with [Na+]p within the normal range (137.7±2.3 and 136.7±1.6 mEq/l, pre- and post-race, respectively). Positive correlations were noted between change (Δ; post-race minus pre-race) in total BMC (grams) and [Na+]p (mEq/l) (r=0.99; p<0.0001), and between total sodium intake (mEq/kg) and Δ lumbar spine BMD (r=0.94; p<0.001). Change in [aldosterone]p was positively correlated with: rate of total sodium intake (r=0.84; p<0.05); Δ total BMC (r=0.82; p<0.05); and Δ [Na+]p (r=0.88; p<0.05). No significant pre-to post-race mean differences were noted in BMC or BMD. Robust associations between Δ BMC and Δ [Na+]p suggest that sodium status and bone density may be inter-related during endurance exercise and should be considered in future investigations of athletic osteopenia.

Introduction

In 1996, it was reported that 4 cyclists competing in the Tour de France lost an average of 25% of spinal bone mass over the 3-week event [1]. Subsequent cross-sectional studies demonstrated that competitive road cyclists had significantly lower spine bone mineral density (BMD) compared with recreationally active controls, with 25% of cyclists having lumbar t-scores in the osteopenic and 9% in the osteoporotic range [2]. Prospective studies of cyclists further demonstrated significant decreases in BMC in the hip region (nonsignificantly in the lumbar spine; p=0.07) over a 9 month competitive season with nonsignificant trends for BMD recovery noted in the ensuing 3-months off-season [3]. Larger cross-sectional studies performed on distance runners found similar trends in both males and females, with weekly running distance negatively correlated with lumbar spine bone mineral content (BMC) [4] and BMD [5]. In particular, lumbar spine BMC in elite male runners (>100 km/week) was 19% lower, with a 20–30% increase in bone turnover markers such as urinary pyridinoline, urine deoxypyridinoline, and serum alkaline phosphatase, when compared with age-matched nonrunning controls [4]. A single bout of running has also been documented to inhibit markers of bone formation such as PICP (carboxyterminal-propeptide of type 1 procollagen) and osteocalcin and to stimulate markers of bone resorption such as ICTP (carboxyterminal cross-linked telopeptide of type 1 collagen) and CTX (cross-linked-C-telopeptide of type 1 collagen) after 15 km [6], 28 km [6], and 246 km [7] races. Hyponatremia, defined as a plasma sodium concentration ([Na+]p<135 mEq/l), has recently been associated with the development of osteoporosis in humans, with substantial reductions in bone mass (30%) observed in rats with sustained hyponatremia over a period of 3 months [8]. Oxi-
Hypothesis

...utive stress associated with chronic hyponatraemia appeared to be the primary mediator of the osteoclastogenesis that was seen in these animals [9], with significant decreases in lumbar spine (L1–L4) BMD seen in just 14 days [10]. In more acute settings, it has been hypothesized that osmotic inactivation of circulating sodium or the failure to mobilize osmotically inactive sodium from internal skin and/or bone stores may play a pathogenic role in the development of exercise-associated hyponatraemia (EAH) in athletes participating in endurance races [11]. Thus, the purpose of this investigation was to evaluate if acute changes in bone mineral density could be detected by dual-energy X-ray absorptiometry within the context of fluid and sodium homeostasis in a cohort of runners participating in a long duration race.

Materials and Methods

Institutional Review Board approval was granted for this study and research was performed on human subjects according to the Declaration of Helsinki ethical principles for medical research. Eighteen runners participating in the 100 mile (161 km) Western States Endurance Run (WSER) were recruited and signed written informed consent. All pre-race measurements were obtained 1–2 days prior to race start. All post-race measures were performed at the finish line, within 2 h of race finish.

Bone mineral density (BMD) and content (BMC) were obtained using a dual-energy X-ray absorptiometry (DEXA) scan (Hologic Discovery A bone densitometer, Waltham, MA, USA). All scans were performed by a single technician following a standardized protocol procedure (www.tufts.edu/med/nutrition-infection/tnc-cdaar/protocols/DEXA2.doc). All subjects were positioned supine on a flat table within an air conditioned mobile DEXA van for 5 min before each scan was performed. The %CV was obtained on a single subject repositioned and measured 3 times at race start as well as 3 times at race finish (\(\Delta \) Table 1). Pre- and post-race blood (10 mL) was obtained from an antecubital vein and analyzed for plasma concentrations of sodium ([Na\(^{+}\)\(_p\)] and calcium ([Ca\(^{+}\)\(_p\)]) using a portable analyzer (i-Stat, Abbott, Princeton, NJ, USA). The remaining venous blood was then centrifuged at 3000 rpm within 10 min of collection, separated and then stored at −80°C until analysis of plasma arginine vasopressin ([AVP]\(_p\)) [12], and serum aldosterone ([aldosterone]\(_p\)) analyses (enzyme immunoassay, ALPCO Diagnostics, Salem, NH, USA) could be performed.

Sodium intake during the race was obtained using methodology described previously [13] and assessed using Nutritionist Pro software (Axxya Systems, Stafford, TX, USA).

All data are presented as means±SD. Analyses included paired t-tests and regression analyses. Statistical significance was set at p<0.05.

Results

Only 6 of 18 subjects were able to complete the race with a mean finish time of 27.0±2.3 h. The mean age of the finishers was 47.2±4.7 years, with a pre-race weight of 67.4±15.5 kg. The average total fluid intake during the race was 19.6±6.7 l (742±28 ml per hour) while the average total sodium intake was estimated at 780±439 mEq (11.8±6.7 mEq/kg).

There were no significant differences (pre- to post-race, respectively) in [Na\(^{+}\)\(_p\), 138.7±2.3 to 136.7±1.6 mEq/l] or [Ca\(^{+}\)\(_p\), 4.3±1.5 to 4.0±1.7 mEq/l] concentrations but significant increases were seen in [AVP]\(_p\), (0.7±0.4 to 2.7±1.9 pg/ml; p < 0.05) and [aldosterone]\(_p\), (141.4±38.5 to 313.6±110.7 pg/ml; p < 0.05).

No statistically significant pre- to post-race changes in BMD or BMC (\(\Delta \) Table 1) were noted. However, robust statistically sig-

Table 1 Bone mineral contents (BMCs) of different body regions measured in 6 race finishers at baseline (pre-race) and follow-

<table>
<thead>
<tr>
<th>Region</th>
<th>Pre-Race BMC</th>
<th>Absolute Δ BMC</th>
<th>%Δ BMC</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD (g)</td>
<td>Mean ± SD (g)</td>
<td>Mean ± SD (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(min–max)</td>
<td>(min–max)</td>
<td>(min–max)</td>
<td></td>
</tr>
<tr>
<td>Total body</td>
<td>2557.6±617.6</td>
<td>−82±56.4</td>
<td>0.0±0.0</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>(1823.0–3340.9)</td>
<td>(−103.6–51.1)</td>
<td>(−0.3–0.02)</td>
<td></td>
</tr>
<tr>
<td>Head</td>
<td>521.1±82.7</td>
<td>−18.0±17.5</td>
<td>−3.6±3.4</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>(428.1–652.4)</td>
<td>(−42.5–21.0)</td>
<td>(−8.5–5.0)</td>
<td></td>
</tr>
<tr>
<td>Thoracic spine</td>
<td>94.2±25.5</td>
<td>4.2±12.5</td>
<td>4.6±11.3</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>(65.9–138.9)</td>
<td>(−9.9–22.5)</td>
<td>(−8.9–19.0)</td>
<td></td>
</tr>
<tr>
<td>Lumbar spine</td>
<td>62.8±11.2</td>
<td>0.8±3.5</td>
<td>1.5±6.0</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>(47.6–78.2)</td>
<td>(−4.5–5.5)</td>
<td>(−6.6–10.3)</td>
<td></td>
</tr>
<tr>
<td>Pelvis</td>
<td>318.7±84.0</td>
<td>3.0±7.9</td>
<td>1.2±3.2</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>(228.1–437.3)</td>
<td>(−1.7–19.0)</td>
<td>(−0.7–7.7)</td>
<td></td>
</tr>
<tr>
<td>Right arm</td>
<td>199.5±65.1</td>
<td>−6.8±6.3</td>
<td>−3.8±3.2</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>(116.7–260.1)</td>
<td>(−15.7 to −0.7)</td>
<td>(−7.7 to −0.3)</td>
<td></td>
</tr>
<tr>
<td>Left arm</td>
<td>184.5±57.6</td>
<td>1.1±5.4</td>
<td>0.4±2.3</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>(109.2–243.3)</td>
<td>(−3.9–10.2)</td>
<td>(−1.9–4.0)</td>
<td></td>
</tr>
<tr>
<td>Right rib</td>
<td>85.6±23.0</td>
<td>10.3±9.1</td>
<td>9.9±8.7</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>(60.9–124.5)</td>
<td>(0.1–19.4)</td>
<td>(0.1–19.7)</td>
<td></td>
</tr>
<tr>
<td>Left rib</td>
<td>85.7±25.5</td>
<td>4.3±7.4</td>
<td>5.1±6.9</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>(57.7–132.0)</td>
<td>(−7.7–12.1)</td>
<td>(−6.2–12.5)</td>
<td></td>
</tr>
<tr>
<td>Right leg</td>
<td>507.1±138.8</td>
<td>−3.5±20.2</td>
<td>4.6±11.3</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>(328.8–679.3)</td>
<td>(−9.9–22.5)</td>
<td>(−8.9–19.0)</td>
<td></td>
</tr>
<tr>
<td>Left leg</td>
<td>498.4±132.2</td>
<td>−3.5±17.4</td>
<td>−1.0±3.5</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>(322.9–642.0)</td>
<td>(−18.3–26.7)</td>
<td>(−4.4–4.7)</td>
<td></td>
</tr>
</tbody>
</table>

*Δ: Post-race minus pre-race and percent change (%Δ) from baseline (post-race minus pre-race/pre-race). The coefficient of variation (%CV) was obtained using a single control subject that was repositioned and measured on the same DEXA machine 6 different times (3 pre- and 3 post-race measurements)
significant correlations were noted between absolute and percent changes in BMC and BMD, total sodium intake and aldosterone (Fig. 1a–f). There was a statistically significant positive correlation between post-race [AVP] and post-race [aldosterone], \(r = 0.90; p < 0.05 \). Post-race \([Na^+]_p\) was positively correlated with total sodium intake when measured as a rate (mEq/h) of intake \(r = 0.84; p < 0.05 \). Post-race \([Ca^{++}]_p\) was negatively correlated with both post-race \([Na^+]_p\) \(r = -0.95; p < 0.01 \) and rate of sodium intake (mEq/h) \(r = -0.83; p < 0.05 \). No significant relationships were noted between post-race \([Ca^{++}]_p\) or change in \([Ca^{++}]_p\) with the change in total BMC, BMD, lumbar spine, [AVP] or [aldosterone].

Discussion

The highly significant correlations between pre- to post-race changes in total and regional bone mineral content and density with key markers of water and sodium balance were unexpected given our low subject completion rate and negligible pre- to post-race changes documented in BMC (Table 1). In this cohort of 6 ultra endurance athletes, the pre- to post-race change in plasma sodium concentration appeared to explain 98% of the variance seen in the absolute change in total BMC (Fig. 1a) and 96% of the variance when expressed as a percent change (Fig. 1b). These findings would support the possibility that the skeleton acts as a dynamic buffer in response to acute changes in plasma sodium concentration, perhaps due to a mobilization of sodium from an osmotically inactive crystallized form into an osmotically active form to buffer declining extracellular \([Na^+]_p\) [14]. Conversely, bone mineral density increased in linear proportion to \([Na^+]_p\), suggesting that sodium ions may have mobilized into bone to accommodate rising extracellular \([Na^+]_p\) due to a surplus sodium intake (Fig. 1a, b, d). The plausibility of a true physiologic relationship between \([Na^+]_p\) and bone sodium stores is strengthened by regional data, with total sodium intake (mEq/kg) positively associated with changes in lumbar spine BMD, explaining 88% of the variance (Fig. 1d). Because the lumbar vertebrae are largely composed of metabolically active trabecular bone, bone density changes in this particular region would be the most reactive [8, 15]. Over time, we speculate that a decrease in bone sodium stores (cumulative sweat sodium losses) may potentially manifest as decreased lumbar spine bone mineral density as a transient homeostatic response to protect \([Na^+]_p\) levels during chronic training and competition [1–5]. However, we are mindful that the sodium intake of most people living on a Western diet is high, so additional mechanisms are likely.

In further support of the mobilization of bone sodium stores in the broader context of sodium homeostasis, [aldosterone], the body’s main sodium-retaining hormone, was positively associated with \([Na^+]_p\) (Fig. 1f), rate of sodium intake (Fig. 1e) and [AVP] \(r = 0.90; p < 0.05 \). These key hormonal interrelationships highlight the preservation of fluid homeostasis by classic endocrine mediators of water (AVP) and sodium (aldosterone) balance during heightened physical stress. The change in [aldosterone] was also positively associated with the change in sodium.
Hypothesis

700

may serve as a buffering response to alterations in mineral content during daily or extreme physical activity in ever, support the possibility for accelerated changes in bone These data thereby expose the possibility that DEXA scans may – rather than absolute changes – between metabolic variables after shorter periods of significant physical stress. These data may also have important implications in trauma and disease.

Acknowledgements

This study was supported by the Western States Endurance Run Foundation. The authors wish to thank Joseph Verbalis for his lab support and helpful suggestions, Louise Weschler for her critical comments and help in the field, Mark Vecchiarella from Osteoscan and Ian Rogers, Bill Butler, Charlie Weschler, Ben Hol exa, Kevin Fogard, Ginger Hook, and Ben Hook for their gracious and sleepless research support in the field.

Conflict of Interest

The authors declare that they have no conflicts of interest in the authorship or publication of this contribution.

References

3 Barry DW, Kohtz WM. BMD decreases over the course of a year in competitive male cyclists. J Bone Miner Res 2008; 23: 484–491
4 Hetland ML, Haarbo J, Christiansen C. Low bone mass and high bone turnover in male long distance runners. J Clin Endocrinol Metab 1993; 77: 770–775
5 Hind K, Truscott JG, Evans JA. Low lumbar spine bone mineral density in both male and female endurance runners. Bone 2006; 39: 880–885