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Bone: An Acute Buffer of Plasma Sodium during Exhaustive Exercise?

Abstract
Both hyponatremia and osteopenia separately have been well documented in endurance athletes. Although
bone has been shown to act as a “sodium reservoir” to buffer severe plasma sodium derangements in animals,
recent data have suggested a similar function in humans. We aimed to explore if acute changes in bone mineral
content were associated with changes in plasma sodium concentration in runners participating in a 161 km
mountain footrace. Eighteen runners were recruited. Runners were tested immediately pre- and post-race for
the following main outcome measures: bone mineral content (BMC) and density (BMD) via dual-energy X-
ray absorptiometry (DEXA); plasma sodium concentration ([Na+]p), plasma arginine vasopressin ([AVP]p),
serum aldosterone concentration ([aldosterone]s), and total sodium intake. Six subjects finished the race in a
mean time of 27.0±2.3 h. All subjects started and finished the race with [Na+]p within the normal range
(137.7±2.3 and 136.7±1.6 mEq/l, pre- and post-race, respectively). Positive correlations were noted between
change (Δ; post-race minus pre-race) in total BMC (grams) and [Na+]p (mEq/l) (r=0.99; p
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                                      Bone: An Acute Buff er of Plasma Sodium During 
Exhaustive Exercise?

content (BMC)   [ 4 ]   and BMD   [ 5 ]  . In particular, 
lumbar spine BMC in elite male runners (> 100 km/
week) was 19 % lower, with a 20–30 % increase in 
bone turnover markers such as urinary pyridino-
line, urine deoxypyridinoline, and serum alkaline 
phosphatase, when compared with age-matched 
nonrunning controls   [ 4 ]  . A single bout of running 
has also been documented to inhibit markers of 
bone formation such as PICP (carboxyterminal-
propeptide of type 1 procollagen) and osteocalcin 
and to stimulate markers of bone resorption such 
as ICTP (carboxyterminal cross-linked telopeptide 
of type 1 collagen) and CTX (cross-linked-C-tel-
opeptide of type 1 collagen) after 15 km   [ 6 ]  , 28 km 
  [ 6 ]  , and 246 km   [ 7 ]   races.
  Hyponatremia, defi ned as a plasma sodium con-
centration ([Na  +  ] p ) < 135 mEq/l, has recently been 
associated with the development of osteo porosis 
in humans, with substantial reductions in bone 
mass (30 %) observed in rats with sustained 
hyponatremia over a period of 3 months   [ 8 ]  . Oxi-

        Introduction
 ▼
   In 1996, it was reported that 4 cyclists competing 
in the Tour de France lost an average of 25 % of 
spinal bone mass over the 3-week event   [ 1 ]  . Sub-
sequent cross-sectional studies demonstrated 
that competitive road cyclists had signifi cantly 
lower spine bone mineral density (BMD) com-
pared with recreationally active controls, with 
25 % of cyclists having lumbar t-scores in the 
osteopenic and 9 % in the osteoporotic range   [ 2 ]  . 
Prospective studies of cyclists further demon-
strated signifi cant decreases in BMD in the hip 
region (nonsignifi cantly in the lumbar spine; 
p = 0.07) over a 9 month competitive season with 
nonsignifi cant trends for BMD recovery noted in 
the ensuing 3-months off -season   [ 3 ]  . Larger 
cross-sectional studies performed on distance 
runners found similar trends in both males and 
females, with weekly running distance nega-
tively correlated with lumbar spine bone mineral 
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                                      Abstract
 ▼
   Both hyponatremia and osteopenia separately 
have been well documented in endurance ath-
letes. Although bone has been shown to act as 
a “sodium reservoir” to buff er severe plasma 
sodium derangements in animals, recent data 
have suggested a similar function in humans. 
We aimed to explore if acute changes in bone 
mineral content were associated with changes 
in plasma sodium concentration in runners 
participating in a 161 km mountain footrace. 
Eighteen runners were recruited. Runners were 
tested immediately pre- and post-race for the 
following main outcome measures: bone min-
eral content (BMC) and density (BMD) via dual-
energy X-ray absorptiometry (DEXA); plasma 
sodium concentration ([Na  +  ] p ), plasma arginine 
vasopressin ([AVP] p ), serum aldosterone con-
centration ([aldosterone] s ), and total sodium 

intake. Six subjects fi nished the race in a mean 
time of 27.0 ± 2.3 h. All subjects started and 
fi nished the race with [Na  +  ] p  within the nor-
mal range (137.7 ± 2.3 and 136.7 ± 1.6 mEq/l, 
pre- and post-race, respectively). Positive cor-
relations were noted between change (Δ; post-
race minus pre-race) in total BMC (grams) 
and [Na  +  ] p  (mEq/l) (r = 0.99; p < 0.0001), and 
between total sodium intake (mEq/kg) and  %Δ 
lumbar spine BMD (r = 0.94; p < 0.001). Change 
in [aldosterone] s  was positively correlated 
with: rate of total sodium intake (r = 0.84; 
p < 0.05); Δ total BMC (r = 0.82; p < 0.05); and 
Δ [Na  +  ] p  (r = 0.88; p < 0.05). No signifi cant pre- 
to post-race mean diff erences were noted in 
BMC or BMD. Robust associations between 
Δ BMC and Δ [Na  +  ] p  suggest that sodium status 
and bone density may be inter-related during 
endurance exercise and should be considered in 
future investigations of athletic osteopenia.
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dative stress associated with chronic hyponatremia appeared to 
be the primary mediator of the osteoclastogenesis that was seen 
in these animals   [ 9 ]  , with signifi cant decreases in lumbar spine 
(L1–L4) BMD seen in just 14 days   [ 10 ]  . In more acute settings, it 
has been hypothesized that osmotic inactivation of circulating 
sodium or the failure to mobilize osmotically inactive sodium 
from internal skin and/or bone stores may play a pathogenic role 
in the development of exercise-associated hyponatremia (EAH) 
in athletes participating in endurance races   [ 11 ]  . Thus, the pur-
pose of this investigation was to evaluate if acute changes in 
bone mineral density could be detected by dual-energy X-ray 
absorptiometry within the context of fl uid and sodium homeos-
tasis in a cohort of runners participating in a long duration race.

    Materials and Methods
 ▼
   Institutional Review Board approval was granted for this study 
and research was performed on human subjects according to the 
Declaration of Helsinki ethical principles for medical research. 
Eighteen runners participating in the 100 mile (161 km) West-
ern States Endurance Run (WSER) were recruited and signed writ-
ten informed consent. All pre-race measurements were obtained 
1–2 days prior to race start. All post-race measures were per-
formed at the fi nish line, within 2 h of race fi nish.
  Bone mineral density (BMD) and content (BMC) were obtained 
using a dual-energy X-ray absorptiometry (DEXA) scan (Hologic 
Discovery A bone densitometer, Waltham, MA, USA). All scans 
were performed by a single technician following a standardized 
protocol procedure ( www.tufts.edu/med/nutrition-infection/
tnc-cdaar/protocols/DEXA2.doc ). All subjects were positioned 
supine on a fl at table within an air conditioned mobile DEXA van 
for 5 min before each scan was performed. The  %CV was obtained 

on a single subject repositioned and measured 3 times at race 
start as well as 3 times at race fi nish (     ●  ▶     Table 1  ).
     Pre- and post-race blood (10 mL) was obtained from an antecu-
bital vein and analyzed for plasma concentrations of sodium 
([Na  +  ] p ) and calcium ([Ca  +  +  ] p ) using a portable analyzer (I-Stat, 
Abbott, Princeton, NJ, USA). The remaining venous blood was 
then centrifuged at 3 000 rpm within 10 min of collection, sepa-
rated and then stored at  − 80 °C until analysis of plasma arginine 
vasopressin ([AVP] p )   [ 12 ]  , and serum aldosterone ([aldosterone] s ) 
analyses (enzyme immunoassay, ALPCO Diagnostics, Salem, NH, 
USA) could be performed.
  Sodium intake during the race was obtained using methodology 
described previously   [ 13 ]   and assessed using Nutritionist Pro 
software (Axxya Systems, Staff ord, TX, USA).
  All data are presented as means ± SD. Analyses included paired 
 t -tests and regression analyses. Statistical signifi cance was set at 
p < 0.05.

    Results
 ▼
   Only 6 of 18 subjects were able to complete the race with a mean 
fi nish time of 27.0 ± 2.3 h. The mean age of the fi nishers was 
47.2 ± 4.7 years, with a pre-race weight of 67.4 ± 15.5 kg. The 
average total fl uid intake during the race was 19.6 ± 6.7 l 
(742 ± 28 ml per hour) while the average total sodium intake was 
estimated at 780 ± 439 mEq (11.8 ± 6.7 mEq/kg).
  There were no signifi cant diff erences (pre- to post-race, res-
pectively) in [Na  +  ] p  (138.7 ± 2.3 to 136.7 ± 1.6 mEq/l) or [Ca  +  +  ] p  
(1.2 ± 0.2 to 1.1 ± 0.1 mEq/l) concentrations but signifi cant increases 
were seen in [AVP] p  (0.7 ± 0.4 to 2.7 ± 1.9 pg/ml; p < 0.05) and 
[aldosterone] s  (141.4 ± 38.5 to 313.6 ± 110.7 pg/ml; p < 0.05).
  No statistically signifi cant pre- to post-race changes in BMD or 
BMC (     ●  ▶     Table 1  ) were noted. However, robust statistically sig-

 
  Region    Pre-Race BMC 

 Mean ± SD (g) 

 ( min–max )  

  Absolute Δ BMC 

 Mean ± SD (g) 

 ( min–max )  

   %Δ BMC 

 Mean ± SD ( %) 

 ( min–max )  

  CV ( %)  

  Total body    2 557.6 ± 617.6 
 ( 1 823.0–3 340.9 )  

   − 8.2 ± 56.4 
 ( −  103.6–51.1 )  

  0.0 ± 0.0 
 ( −  0.3–0.02 )  

  0.39  

  Head    521.1 ± 82.7 
 ( 428.1–652.4 )  

   − 18.0 ± 17.5 
 ( −  42.5  to  −  2.1 )  

   − 3.6 ± 3.4 
 ( −  8.5  to  −  0.5 )  

  1.4  

  Thoracic spine    94.2 ± 25.5 
 ( 65.9–138.9 )  

  4.2 ± 12.5 
 ( −  9.9–22.5 )  

  4.6 ± 11.3 
 ( −  8.9–19.0 )  

  2.1  

  Lumbar spine    62.8 ± 11.2 
 ( 47.6–78.2 )  

  0.8 ± 3.5 
 ( −  4.5–5.5 )  

  1.5 ±  ± 6.0 
 ( −  6.6–10.3 )  

  6.3  

  Pelvis    318.7 ± 84.0 
 ( 228.1–437.3 )  

  3.0 ± 7.9 
 ( −  1.7–19.0 )  

  1.2 ± 3.2 
 ( −  0.7–7.7 )  

  1.0  

  Right arm    199.5 ± 65.1 
 ( 116.7–260.1 )  

   − 6.8 ± 6.3 
 ( −  15.7  to  −  0.7 )  

   − 3.8 ± 3.2 
 ( −  7.7  to  −  0.3 )  

  2.3  

  Left arm    184.5 ± 57.6 
 ( 109.2–243.3 )  

  1.1 ± 5.4 
 ( −  3.9–10.2 )  

  0.4 ± 2.3 
 ( −  1.9–4.0 )  

  1.5  

  Right rib    85.6 ± 23.0 
 ( 60.9–124.5 )  

  10.3 ± 9.1 
 ( 0.1–19.4 )  

  9.9 ± 8.7 
 ( 0.1–19.7 )  

  1.2  

  Left rib    85.7 ± 25.5 
 ( 57.7–132.0 )  

  4.3 ± 7.4 
 ( −  7.7–12.1 )  

  5.1 ± 6.9 
 ( −  6.2–12.5 )  

  1.4  

  Right leg    507.1 ± 138.8 
 ( 328.8–679.3 )  

   − 3.5 ± 20.2 
 ( −  9.9–22.5 )  

  4.6 ± 11.3 
 ( −  8.9–19.0 )  

  1.7  

  Left leg    498.4 ± 132.2 
 ( 322.9–642.0 )  

   − 3.5 ± 17.4 
 ( −  18.3–26.7 )  

   − 1.0 ± 3.5 
 ( −  4.4–4.7 )  

  0.6  

 Δ: Post-race minus pre-race and percent change ( %Δ) from baseline (post-race minus pre-race/pre-race). The coeffi  cient of variation 
( %CV) was obtained using a single control subject that was repositioned and measured on the same DEXA machine 6 diff erent times 
(3 pre- and 3 post-race measurements) 

 Table 1    Bone mineral contents 
(BMCs) of diff erent body regions 
measured in 6 race fi nishers at 
baseline (pre-race) and follow-
ing the race as measured as an 
absolute change.
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nifi cant correlations were noted between absolute and percent 
changes in BMC and BMD, total sodium intake and aldosterone 
(     ●  ▶     Fig. 1a–f  ). There was a statistically signifi cant positive corre-
lation between post-race [AVP] and post-race [aldosterone] s  
(r = 0.90; p < 0.05). Post-race [Na  +  ] p  was positively correlated 
with total sodium intake when measured as a rate (mEq/h) of 
intake (r = 0.84; p < 0.05). Post-race [Ca  +  +  ] p  was negatively cor-
related with both post-race [Na  +  ] p  (r =  − 0.95; p < 0.01) and rate 
of sodium intake (mEq/h) (r =  − 0.83; p < 0.05). No signifi cant 
relationships were noted between post-race [Ca  +  +  ] p  or change 
in [Ca  +  +  ] p   with the change in total BMC, BMD, lumbar spine, 
[AVP] p  or [aldosterone] s .

     Discussion
 ▼
   The highly signifi cant correlations between pre- to post-race 
changes in total and regional bone mineral content and density 
with key markers of water and sodium balance were unexpected 
given our low subject completion rate and negligible pre- to 
post-race changes documented in BMC (     ●  ▶     Table 1  ). In this cohort 
of 6 ultra endurance athletes, the pre- to post-race change in 
plasma sodium concentration appeared to explain 98 % of the 
variance seen in the absolute change in total BMC (     ●  ▶     Fig. 1a  ) and 
96 % of the variance when expressed as a percent change 
(     ●  ▶     Fig. 1b  ). These fi ndings would support the possibility that the 
skeleton acts as a dynamic buff er in response to acute changes in 
plasma sodium concentration, perhaps due to a mobilization of 

sodium from an osmotically inactive crystallized form into an 
osmotically active form to buff er declining extracellular [Na  +  ] p  
  [ 14 ]  . Conversely, bone mineral density increased in linear pro-
portion to [Na  +  ] p , suggesting that sodium ions may have mobi-
lized into bone to accommodate rising extracellular [Na  +  ] p  due 
to a surplus sodium intake (     ●  ▶     Fig. 1a, b, d  ). The plausibility of a 
true physiologic relationship between [Na  +  ] p  and bone sodium 
stores is strengthened by regional data, with total sodium intake 
(mEq/kg) positively associated with changes in lumbar spine 
BMD, explaining 88 % of the variance (     ●  ▶     Fig. 1d  ). Because the 
lumbar vertebrae are largely composed of metabolically active 
trabecular bone, bone density changes in this particular region 
would be the most reactive   [ 8   ,  15 ]  . Over time, we speculate that a 
decrease in bone sodium stores (cumulative sweat sodium losses) 
may potentially manifest as decreased lumbar spine bone mineral 
density as a transient homeostatic response to protect [Na  +  ] p  levels 
during chronic training and competition   [ 1            – 5 ]  . However, we are 
mindful that the sodium intake of most people living on a Western 
diet is high, so additional mechanisms are likely.
  In further support of the mobilization of bone sodium stores in 
the broader context of sodium homeostasis, [aldosterone] s , the 
body’s main sodium-retaining hormone, was positively associa-
ted with [Na  +  ] p  (     ●  ▶     Fig. 1f  ), rate of sodium intake (     ●  ▶     Fig. 1e  ) and 
[AVP] p  (r = 0.90; p < 0.05). These key hormonal interrelationships 
highlight the preservation of fl uid homeostasis by classic endo-
crine mediators of water (AVP) and sodium (aldosterone) bal-
ance during heightened physical stress. The change in 
[aldosterone] s  was also positively associated with the change in 

    Fig. 1    Signifi cant positive correlations (n = 6; 
open symbols represent female and closed sym-
bols represent male subjects) for  a  the absolute 
change (Δ; post-race minus pre-race) in total bone 
mineral content (BMC) vs. the change in plasma 
sodium concentration ([Na  +  ] p );  b  the relative (per-
cent) change ( %Δ; post-race minus pre-race/pre-
race) in total bone mineral content (BMC) vs. the 
change in plasma sodium concentration ([Na  +  ] p ); 
 c  the absolute change in total mineral bone con-
tent (BMC) vs. the change in serum aldosterone 
concentration;  d  the percent change in lumbar 
spine bone mineral density (BMD) vs. total sodium 
(Na  +  ) intake during the race;  e  the rate of sodium 
(Na  +  ) intake during the race vs. the change in 
serum aldosterone concentration;  f  the change 
in plasma sodium concentration ([Na  +  ]) vs. the 
change in serum aldosterone concentration. 
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total BMC (     ●  ▶     Fig. 1c  ), which suggests that this sodium-retaining 
hormone may have a role in sodium mobilization in bone, as 
previously documented in the skin of rats (as another sodium 
reservoir) placed on high or low salt diets   [ 16 ]  .
  Data in support of bone as a potential reservoir for ̴ 40 % of total 
exchangeable body sodium stores have been known since 1954 
  [ 17 ]  . The acute (2–4 h) and chronic (5 days) eff ects of marked 
derangements in [Na  +  ] p  (severe hypernatremia and hyponatremia) 
on bone sodium content has been previously documented in 
animals   [ 14   ,  18 ]  . Recent studies, however, indicated that the 
minimum time it would take for osteoclasts to become activated 
and demineralization to occur in response to low serum sodium 
(hyponatremia) would be 2 weeks   [ 8   ,  10 ]  . Concomitantly, 1–4 
weeks appeared necessary to detect a decreased skin charge 
density signifying mobilization of inactive sodium ions from 
glycosaminoglycans in rats in response to a low sodium diet 
  [ 16 ]  . Thus, these studies collectively suggest that the mobiliza-
tion of sodium stores to augment blood sodium concentrations 
would require a minimum of 2 weeks before a signifi cant physio-
logical response could be detected. The present fi ndings, how-
ever, support the possibility for accelerated changes in bone 
mineral content during daily or extreme physical activity in 
response to alterations in fl uid and sodium homeostasis.
  Finally, although it has been previously hypothesized that bone 
may serve as a buff er for changes in [Na  +  ] p    [ 11 ]  , whether or not 
such changes could be detected by a DEXA scan, within a normal 
range of dynamically shifting blood sodium concentrations, over 
a short period of time (̴ 30 h) did not appear plausible until now. 
These data thereby expose the possibility that DEXA scans may 
be useful tools in assessing acute changes in bone density, in 
relationship with other fl uctuating homeostatic variables. The 
robust associations (     ●  ▶     Fig. 1a–d  ) underlying the unimpressive 
mean pre- to post-race changes in BMC (     ●  ▶     Table 1  ) highlights the 
need to reconsider not only the usefulness of the DEXA under acute 
conditions, but how we interpret DEXA results in the context of 
bone as a dynamic warehouse of shifting mineral stores under spe-
cialized conditions of stress. Therefore, it is evident by these data 
that in a period as short as 27 h, it is neither likely nor possible that 
major changes in BMC/BMD will be seen. However, this should not 
preclude the potential importance of smaller metabolically active 
changes occurring during shorter periods of time.
  The major limitations of this study include the small sample size 
and relevance to normal human activity. The (unexpected) 66 % 
attrition rate in our original sample cohort, however, demon-
strates the extreme nature of this event while highlighting the 
exceptional physical and mental stamina of this small cohort of 
fi nishers. Despite the variability associated with the small sam-
ple size and measurement techniques, these data produced 
strong correlations in support of heightened sodium regulation 
during exhaustive exercise. These correlations also support pre-
vious observations suggesting that the composition of bone 
sodium is not fi xed but rather refl ective of a state of chemical 
equilibrium within the body   [ 17 ]  .
  In conclusion, these data suggest an alternative possible explana-
tion for the dramatic and unexplained changes in lumbar spine 
density documented in competitive endurance athletes. Although 
the number of subjects was small, these data provide a provocative 
launching pad for future investigation of: 1) bone as an acute buff er 
of plasma sodium concentration during exhaustive endurance 
exercise and 2) DEXA scans as a useful tool to assess relationships 
– rather than absolute changes – between metabolic variables after 

shorter periods of signifi cant physical stress. These data may also 
have important implications in trauma and disease.
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