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Click-Through Rate (CTR) Prediction 

 

• Number of impressions = number of times an 
advertisement was served/offered 

• Given: much data on past link offerings and 
whether or not users clicked on those links 

• Predict: the probability that a current user will 
click on a given link 



Example Data on Past Link Offerings 

• User data: 
– User ID from site login, cookie 

– User IP address, IP address location 

• Link context data: 
– Site ID, page ID, prior page(s) 

– Time, date 

• Link data: 
– Link ID, keywords 

– Position offered on page 



Example: Facebook Information 



Better CTR 
Prediction 

Better Ad 
Selection 

Greater Click-
Through Rate 

Greater Ad 
Revenue 

Why is CTR Prediction Important? 

• Advertising Industry View: 

– Much of online advertising is billed using a pay-
per-click model. 



New Idea? 

https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468 

https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468


Benefits Beyond Advertising 

• Herbert Simon, 1971:  
– “In an information-rich world, 

the wealth of information 
means a dearth of something 
else: a scarcity of whatever it 
is that information consumes. 
What information consumes 
is rather obvious: the 
attention of its recipients.” 

• Better CTR prediction  
more relevance  better use 
of scarce time 

https://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1978/simon-bio.html
https://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1978/simon-bio.html


Outline 

• Click-Through Rate Predition (CTRP) Introduction 
• Kaggle 

– Learning community offerings incentives 
– CTRP Competitions 

• Feature Engineering 
– Numbers, Categories, and Missing Values 

• Favored regression techniques for CTRP 
– Logistic Regression 
– Gradient Boosted Decision Trees (e.g. xgBoost) 
– Field-aware Factorization Machines (FFMs) 

• Future Recommendations 



What is Kaggle.com? 

• Data Science and Machine Learning Community 
featuring 
– Competitions  $$$, peer learning, experience, 

portfolio 

– Datasets 

– Kernels  

– Discussions 

– Tutorials (“Courses”) 

– Etc. 

• Status incentives 

https://www.kaggle.com/
https://www.kaggle.com/competitions
https://www.kaggle.com/datasets
https://www.kaggle.com/kernels
https://www.kaggle.com/discussion
https://www.kaggle.com/learn/overview






Kernels 

• Jupyter notebooks of mixed text and Python/R  

– Interleaved explanations and free runnable code 

• E.g. https://www.kaggle.com/mjbahmani/a-
comprehensive-ml-workflow-with-python  
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Discussions 



Tutorials 



Status Incentives 



Kaggle CTRP Competitions 



Criteo Display Advertising Challenge 

https://www.kaggle.com/c/criteo-display-ad-challenge 
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Criteo Display Advertising Challenge 

• Criteo Display Advertising Challenge Data: 

– Features (inputs): 

• 13 numeric: unknown meanings, mostly counts, power 
laws evident 

• 26 categorical: unknown meanings, hashed (encoding 
without decoding), few dominant, many unique 

– Target (output): 0 / 1 (didn’t / did click through) 



Mysterious Data 

Source: https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf 
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Mysterious Data 

Source: https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf 

Unknown Labels: meanings of numbers and categories not given 
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Mysterious Data 

Source: https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf 

Categorical data is hashed. 

https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
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Hashing 

• A hash function takes some data 
and maps it to a number. 

• Example: URL (web address) 
– Representation: string of characters 
– Character representation: a 

number (Unicode value) 
– Start with value 0. 
– Repeat for each character: 

• Multiply value by 31 
• Add next character Unicode to value  

– Don’t worry about overflow – it’s 
just a consistent “mathematical 
blender”. 

“Hi” 
H = 72, i = 105 
31 * 72 + 105 = 2337 

https://en.wikipedia.org/wiki/Hash_function


Hash Function Characteristics 

• Mapping: same input  same 
output 

• Uniform: outputs have similar 
probabilities 
– Collision: two different inputs  

same output 

– Collisions are allowable (inevitable if 
#data > #hash values) but not 
desirable. 

• Non-invertible: can’t get back input 
from output (e.g. cryptographic 
hashing, anonymization) 

https://en.wikipedia.org/wiki/Hash_function


Missing Data 

• The first 10 lines of the training data: 

 

 

• Missing numeric and categorical features: 

 

… 



Missing Data: Imputation 

• One approach to dealing with missing data is to 
impute values, i.e. replace with reasonable values 
inferred from surrounding data. 

• In other words, create predictors for each value 
based on other known/unknown values. 

• Cons: 
– Difficult to validate. 

– In Criteo data, missing values are correlated. 

– So … we’re writing predictors to impute data we’re 
learning predictors from? 

General Introduction to Handling Missing Data 

https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4


Missing Data: Embrace the 
“Unknown” 

• Retain “unknown” as data that contains 
valuable information. 

• Does the lack of CTR context data caused by 
incognito browsing mode provide information 
on what a person is more likely to click? 

• Categorical data: For each category C# with 
missing data, create a new category value 
“C#:unknown”. 



Missing Data: Embrace the 
“Unknown” 

• Numeric data: 

– Create an additional feature that indicates 
whether the value for a feature is (un)known. 

• Additionally could impute mean, median, etc., for 
unknown value. 

– Convert to categorical and add “C#:unknown” 
category… 



Numeric to Categorical: Binning 

• Histogram-based 
– Uniform ranges: (+) simple (-) uneven distribution, 

poor for non-uniform data 
– Uniform ranges on transformation (e.g. log): (+) 

somewhat simple (-) transformation requires 
understanding of data distribution 

• Quantiles 
– E.g. quartiles = 4-quantiles, quintiles = 5-quantiles 
– (+) simple, even distribution by definition, (-) 

preponderance of few values  duplicate bins 
(eliminate) 
 



Categorical to Numeric:  
One-Hot Encoding 

• For each categorical input variable: 
– For each possible category value, create a new numeric 

input variable that can be assigned numeric value 1 
(“belongs to this category”) or 0 (“does not belong to this 
category). 

– For each input, replace the categorical value variable with 
these new numeric inputs. 

https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding  
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Categorical to Numeric: Hashing 

• When there are a large number of categories, 
one-hot encoding isn’t practical. 

– E.g. Criteo data category C3 in its small sample of CTR 
data had 10,131,226 distinct categorical values. 

– One approach (e.g. for power law data): one-hot 
encode few dominant values plus “rare” category.  

– Hashing trick:  

• Append category name and unusual character before 
category value and hash to an integer. 

• Create a one-hot-like category for each integer.   



Hashing Trick Example 

• From https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf:  

 

 

 

 

 

 

• Fundamental tradeoff: greater/lesser number 
hashed features results in … 
– … more/less expensive computation 

– …  less/more frequent hash collisions (i.e. unlike categories treated as 
like) 
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Logistic Regression Motivation 

• Logistic regression is perhaps the simplest 
technique to beat the Criteo benchmark, 
scoring ~42nd percentile on leaderboard: 
– https://www.kaggle.com/c/criteo-display-ad-

challenge/discussion/10322  

– 100 lines of Python, 200MB RAM, 30 min. training 

– Also: logistic regression recommended for CTRP 
by researchers of Criteo, Microsoft, LinkedIn, 
Google, and Facebook for practical, scalable 
implementation. 

https://www.kaggle.com/c/criteo-display-ad-challenge/discussion/10322
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Example: Passing vs. Studying 



Unknown Logistic Model 



Misapplication of Linear Regression 



Logistic Regression Recovering Model 



Logistic Regression with Stochastic 
Gradient Descent 

• Output:  
• Initially: β0 = β1 = 0 
• Repeat: 

– For each input x, 
• Adjust intercept β0 by learning rate * error * p′(x) 
• Adjust coefficient β1 by learning rate * error * p′(x) * x 

• Note: 
– Error = y - p(x) 
– p′(x) = p(x) * (1 – p(x))      (the slope of p at x)  
– This is neural network learning with a single logistic  

neuron with bias input of 1 
 
 
 



Logistic Regression Takeaways 

• The previous algorithm doesn’t require 
complex software. (12 lines raw Python code) 

• Easy and effective for CTR prediction. 

• Key to good performance: skillful feature 
engineering of numeric features 

• Foreshadowing: Since logistic regression is a 
simple special case of neural network 
learning, I would expect deep learning tools to 
make future inroads here. 



Maximizing Info with Decisions 

• Number Guessing Game example: 

–  “I’m thinking of a number from 1 to 100.” 

– Number guess  “Higher.” / “Lower.” / “Correct.” 

– What is the best strategy and why? 

• Good play maximizes information according to 
some measure (e.g. entropy). 



Decision Trees for Regression 
(Regression Trees) 

• Numeric features (missing values permitted) 

• At each node in the tree, a branch is decided 
on according to a features value (or lack 
thereof) 

 

 

A regression tree estimating the probability of kyphosis (hunchback) after surgery, 
given the age of the patient and the vertebra at which surgery was started. 
Source: https://en.wikipedia.org/wiki/Decision_tree_learning 

https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning


The Power of Weak Classifiers 

• Caveats: 
– Too deep: Single instance leafs  overfitting; similar 

to nearest neighbor (n=1) 

– Too shallow: Large hyperrectangular sets  
underfitting; poor, blocky generalization 

• Many weak classifiers working together can 
achieve good fit and generalization.  
– “Plans fail for lack of counsel, but with many advisers 

they succeed.” – Proverbs 15:22 

• Ensemble methods: boosting, bagging, stacking 



Gradient Boosting of Regression Trees 

• Basic boosting idea: 
– Initially, make a 0 or constant prediction. 

– Repeat: 
• Compute prediction errors from the weighted sum of 

our weak-learner predictions. 

• Fit a new weak-learner to predict these errors and add 
its weighted error-prediction to our model.  

• Alex Rogozhnikov’s beautiful demonstration: 
https://arogozhnikov.github.io/2016/06/24/gr
adient_boosting_explained.html  
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XGBoost 

• “Among the 29 challenge winning solutions 

published at Kaggle’s blog during 2015, 17 

solutions [~59%] used XGBoost. Among these 

solutions, eight [~28%] solely used XGBoost 

to train the model, while most others combined 

XGBoost with neural nets in ensembles.” - 
Tianqi Chen, Carlos Guestrin. “XGBoost: A Scalable Tree 
Boosting System” 

https://arxiv.org/pdf/1603.02754.pdf
https://arxiv.org/pdf/1603.02754.pdf
https://arxiv.org/pdf/1603.02754.pdf
https://arxiv.org/pdf/1603.02754.pdf


XGBoost Features 

• XGBoost is a specific implementation of gradient 
boosted decision trees that: 
– Supports a command-line interface, C++, Python 

(scikit-learn), R (caret), Java/JVM languages + Hadoop 
platform 

– A range of computing environments with 
parallelization, distributed computing, etc. 

– Handles sparse, missing data 

– Is fast and high-performance across diverse problem 
domains 

– https://xgboost.readthedocs.io  

https://xgboost.readthedocs.io/
https://xgboost.readthedocs.io/


Field-aware Factorization Machines 
(FFMs) 

• Top-performing technique in 3 of 4 Kaggle CTR 
prediction competitions plus RecSys 2015: 
– Criteo: https://www.kaggle.com/c/criteo-display-ad-

challenge 

– Avazu: https://www.kaggle.com/c/avazu-ctr-
prediction 

– Outbrain: https://www.kaggle.com/c/outbrain-click-
prediction  

– RecSys 2015: 
http://dl.acm.org/citation.cfm?id=2813511&dl=ACM
&coll=DL&CFID=941880276&CFTOKEN=60022934  
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What’s Different? Field-Aware Latent 
Factors 

• Latent factor  

– learned weight; tuned variable 

– How much an input contributes to an output 

• Many techniques learn “latent factors”: 

– Linear regression: one per feature + 1 

 

– Logistic regression: one per feature + 1 

 

 



What’s Different? Field-Aware Latent 
Factors (cont.) 

• Many techniques learn “latent factors”: 

– Degree-2 polynomial regression: one per pair of 
features 

  

 

– Factorization machine (FM):  

• k per feature 

• “latent factor vector”, a.k.a. “latent vector” 

 



What’s Different? Field-Aware Latent 
Factors (cont.) 

• Many techniques learn “latent factors”: 

– Field-aware Factorization machine (FFM):  

• k per feature and field pair 

• Field: 
– Features are often one-hot encoded 

– Continuous block of binary features often represent different 
values for the same underlying “field” 

– E.g. Field: “OS”, features: “Windows”, “MacOS”, “Android” 

– libffm: FFM library (https://github.com/guestwalk/libffm) 

 

https://github.com/guestwalk/libffm
https://github.com/guestwalk/libffm


Winning Team Process 

• From https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf: 

  

https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf


Is the Extra Engineering Worth it? 

• Kaggle Criteo leaderboard based on 
logarithmic loss (a.k.a. logloss) 

– 0.69315  50% correct in binary classification 
(random guessing baseline) 

• Simple logistic regression with hashing trick: 

– 0.46881 (private leaderboard)  ~62.6% correct 

•  FFM with feature engineering using GBDT: 

– 0.44463 (private leaderboard)  ~64.1% correct 

 

 



Computational Cost 

• ~1.5% increase in correct prediction, but 
greater computational complexity: 

– Logistic regression: n factors to learn and relearn 
in dynamic context 

– FFM: kn2 factors to learn and relearn  





Published Research from the Trenches 

• Initial efforts focused on logistic regression 

• Most big production systems reportedly kept 
it simple in the final stage of prediction: 
– Google (2013): prob. feature inclusion + Bloom 

filters  logistic regression 

– Facebook (2014): boosted decision trees  
logistic regression 

– Yahoo (2014): hashing trick  logistic regression 

• However… 

 

https://research.google.com/pubs/archive/41159.pdf
https://research.fb.com/wp-content/uploads/2016/11/practical-lessons-from-predicting-clicks-on-ads-at-facebook.pdf?
http://people.csail.mit.edu/romer/papers/TISTRespPredAds.pdf


Towards Neural Network Prediction 

• More recently, Microsoft (2017) research 

– reports “factorization machines (FMs), gradient 
boosting decision trees (GBDTs)  and deep neural 
networks (DNNs) have also been evaluated and 
gradually adopted in industry.” 

– recommends boosting neural networks with 
gradient boosting decision trees 

https://www.microsoft.com/en-us/research/wp-content/uploads/2017/04/main-1.pdf


Perspective 

• The last sigmoid layer of a neural network (deep or 
otherwise) for binary classification is logistic regression. 

• Previous layers of a deep neural network learn an internal 
representation of inputs, i.e. perform automatic feature 
engineering. 

• Thus, most efforts to engineer successful, modern CTR 
prediction systems focus on layered feature engineering 
using: 
– Hashing tricks 
– Features engineered with GBDTs, FFMs, and deep neural 

networks (DNNs), or a layered/ensembled combination thereof. 

• Future: Additional automated feature representation 
learning with deep neural networks 



CTRP Conclusions 

• To get prediction performance quickly and easily, 
hash data to binary features and apply logistic 
regression. 

• For + few % of accuracy, dig into Kaggle forums 
and the latest industry papers for a variety of 
means to engineer features most helpful to CTR 
prediction. We’ve surveyed a number here. 

• Knowledge is power. ( data   predictions) 

• Priority of effort:  data >  feature engineering > 
 learning/regression algorithms. 



Next Steps 

• Interested in learning more about Data Science and 
Machine Learning? 

– Create a Kaggle Account 

– Enter a learning competition, e.g. “Titanic: Machine 
Learning from Disaster” 

– Take related tutorials, learn from kernels and discussions, 
steadily work to improve your skills, and share it forward 

 

https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/titanic
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