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Engineered nanoparticles are aquatic contaminants of emerging concern that exert ecotoxicological effects on
a wide variety of organisms. We exposed cetyltrimethylammonium bromide–capped spherical gold
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Abstract 

 Engineered nanoparticles are aquatic contaminants of emerging concern 

exerting ecotoxicological effects on a wide variety of organisms.  We exposed 

cetyltrimethylammonium bromide capped spherical gold nanoparticles to wood 

frog and bullfrog tadpoles with conspecifics and in combination with the other 

species continuously for 21 days, then measured uptake and localization of gold. 

Wood frog tadpoles alone and in combination with bullfrog tadpoles took up 

significantly more gold than bullfrogs. Bullfrog tadpoles in combination with wood 

frogs took up significantly more gold than controls.  The rank order of weight 

normalized gold uptake was wood frogs in combination > wood frogs alone > 

bullfrogs in combination > bullfrogs alone > controls. In all gold-exposed groups 

of tadpoles, gold was concentrated in the anterior region compared to the 

posterior region of the body. The concentration of gold nanoparticles in the 

anterior region of wood frogs both alone and in combination with bullfrogs was 

significantly higher than their corresponding posterior regions. We also measured 

depuration time of gold in wood frogs.  After 21 days in a solution of gold 

nanoparticles, tadpoles lost over 83% of internalized gold when placed in gold-

free water for 5 days. After 10 days in gold-free water, tadpoles lost 94 % of their 

gold. After 15 days, gold concentrations were below the level of detection.  Our 

finding of differential uptake between closely related species living in similar 

habitats with overlapping geographical distributions argues against generalizing 

toxicological effects of nanoparticles for a large group of organisms based upon 

measurements in only one species.  
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Introduction 

Modern uses of nanoparticles encompass a wide variety of fields from 

catalysis and solar cells to drug delivery and cancer therapeutics.1-3 This broad 

range of utility has been engendered by advances in synthetic control over the 

size, shape, and monodispersity of the nanoparticles. As these synthetic controls 

have continued to evolve, new applications and increased incorporation of 

nanoparticles into commercial and industrial products has become common. 

Many bulk materials exhibit new properties when confined at the nanoscale, 

essentially opening entirely new fields of materials research. One particularly 

poignant example is the new optical properties that emerge from gold when it is 

confined to the nanoscale. More specifically, gold nanoparticles are being 

investigated for their unique optical properties with applications in medicine, 

energy, and catalysis. Gold nanoparticles have one of the most varied and robust 

array of synthetic strategies incorporating spheres, cubes, pyramids, bipyramids, 

nanostars, octopods, and other variants.4 Not only are the shapes well defined, 

but the surface coatings of gold nanoparticles are well characterized and can be 

specifically tailored for an intended use. One important consideration when 

dealing with nanomaterials outside of laboratory environments is that the surface 

chemistry is critical to determining the physiochemical properties of the 

nanomaterial that will be present in the environment. While the physiochemical 

identity of a nanomaterial may be well characterized in a laboratory, it is a poor 

assumption that the physiochemical identity will remain the same in the 

chemically complex environment. More specifically, the aquatic environment, and 
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the transient nature of environmental systems, will have dramatic influence on 

the aggregation state and surface chemistry of the nanoparticles. Given the 

increased research and applications of nanomaterials, it is likely that more and 

more nanoparticles will enter the environment as their usage in commercial 

products continues to increase.  

Since the beginning of the 21st century nanoparticle-containing consumer 

products have been rapidly increasing. While gold nanoparticles have not been 

incorporated into consumer products at the same rate as other materials like 

silver, titanium, zinc, and carbon, they are an important class of materials that is 

widely studied across a variety of fields due to their unique optical properties.5 As 

nanomaterials continue to make the transition from research labs to commercial 

production facilities, a legitimate concern is that engineered nanoparticles are 

contaminants of emerging concern in aquatic ecosystems. 6-12  

The environmental impacts of nanomaterials are not well understood 

especially in aquatic environments. Laboratory experiments have employed 

nanoparticles of various types, sizes, and coatings, and the test organisms have 

included macrophytes 13, invertebrates such as Daphnia 14,15 and bivalves 16, and 

vertebrates particularly the amphibian Xenopus.17-20 More specifically, exposure 

to gold nanoparticles has been found to affect a number of different biochemical 

and morphological endpoints in a number of aquatic organisms21, including algae 

22, bivalves 21-23 Daphnia 24, fish25,26  and to serve as a general toxicant.27 

Common themes that emerge from these studies indicate that gold nanoparticles 

are concentrated in the digestive systems, that gold nanoparticles increase the 
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formation reactive oxygen species, and that the smaller nanoparticles tend to be 

more toxic.   

 The toxicity of different metal and metal oxide nanoparticles on amphibian 

larval stages using a variety of endpoints has been previously described for 

Xenopus laevis 17-19,28-30, Pelophylax perizi 31 and Lithobates catesbeianus.32 

These studies span a wide range of nanomaterials including Fe2O3, CuO, ZnO, 

TiO2, Ag, Carbon nanotubes, and CeO2. While it is difficult to draw any firm 

conclusions across such a broad array of organisms and nanoparticles it is clear 

that these materials can inhibit growth, cause abnormalities, disrupt endocrine 

signaling, and both accelerate and retard metamorphosis. Clearly, there is ample 

room to further explore the impacts that nanomaterials have on the growth and 

development of amphibians.  

 While there are no measured environmental concentrations of 

nanoparticles, there are probabilistic models for the release and subsequent 

concentrations of nanoparticles in sewage sludge and aquatic ecosystems33,34 

with predicted concentrations in freshwater environments ranging from 1-3000 

µg/L.35 Furthermore, trophic transfer of gold nanoparticles from soil to 

earthworms and finally to juvenile bullfrogs has been shown.36 Since gold 

nanoparticles have been proposed as biosensors of pesticides37 and as  

bioconjugates in the purification of polluted waters38, the accumulation of gold 

nanoparticles in the aquatic environment including amphibian habitats is likely. 

Most of the previous ecotoxicological studies utilizing nanoparticles as toxicants 

have exposed them to either a single species or to different species that are not 
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closely related. Recently, our lab showed that long-term exposure to gold 

nanoparticles decreases time to metamorphosis without affecting mass in wood 

frog tadpoles.39  

 Based upon our previous work, we measured localization and uptake of 

gold nanoparticles in two species of anuran tadpoles, the wood frog (Lithobates 

sylvaticus) a species known to be sensitive to environmental stressors, and the 

American Bullfrog (L. catesbeianus), a species native to the eastern United 

States, but which has been introduced throughout North America, Europe, Asia, 

the Caribbean, and South America.40 These two species are closely related but 

have differing life history strategies.  We tested the hypothesis that competition or 

aggressive behavior between species should result in lower uptake of gold 

nanoparticles by the smaller wood frog tadpoles compared to bullfrog tadpoles. 

Additionally, we measured the depuration of gold nanoparticles from wood frog 

tadpoles. We hypothesized that gold nanoparticles would be concentrated in the 

anterior portion of the body as uptake is likely via the oral cavity or the gills as 

opposed to uptake through the skin. 

  



 7 

Materials and Methods 

Gold Nanoparticle Synthesis and Characterization 

 Cetyltrimethylammonium bromide (CTAB) capped gold nanoparticles were 

synthesized for the species specific uptake experiments utilizing the well-known 

seed mediated growth approach.41 Briefly, gold seeds were synthesized by 

adding 600 µL of 10 mM NaBH4 to a solution containing 9.75 mL of 100 mM 

CTAB and 250 µL of 10 mM HAuCl4 while stirring vigorously. In a separate flask, 

5 mL of 10 mM HAuCl4 and 100 µL of 10 mM AgNO3 were added to 95 mL of 

100 mM CTAB. To this solution 550 µL of trisodium citrate were added and 

swirled until the solution became colorless. Once the solution turned colorless, 

200 µL of seed solution was added and the solution was gently swirled. This 

solution was allowed to sit for a minimum of 2 hours before being purified via 

centrifugation. The resulting nanoparticle solution was spun at 14,000 xg for 20 

minutes and the supernatant was discarded. The pellet was resuspended in 18.2 

MΩ water. This centrifugation process was then repeated a second time. 

Approximately ninety 100 mL batches of nanoparticles were then mixed together 

to provide enough volume, at the appropriate concentrations, for the biological 

experiments. All reported data on particles is from the combined solutions. 

 For the depuration experiments CTAB capped nanoparticles were 

synthesized using a flow reactor system.42 The flow reactor was utilized to 

streamline the synthesis and to address a growing trend towards flow based 

synthesis in the nanoparticle community.43 Briefly, three input flasks were 
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connected to a peristaltic pump (Cole-Parmer Masterflex L/S) running at 30 rpm. 

The first flask contained 237 mL of 100 mM CTAB, 50 mL of 10 mM HAuCl4, and 

1 mL of 10 mM AgNO3. The second flask contained 237 mL of 100 mM CTAB 

and 5.5 mL of 100 mM trisodium citrate. The third flask contained 475 mL of 100 

mM CTAB and 1.2 mL of seed solution. The seed solution was prepared 

identically as above. The third flask was split into two lines that went through the 

peristaltic pump so that the usage of all solutions was matched. The solutions 

from flask one and two were mixed after the peristaltic pump and went through 

18 feet of tubing before mixing with the seed solution. The seed solution had also 

gone through 18 feet of tubing before mixing with the combination of flask one 

and two. After the solutions were all mixed, they flowed through an additional 54 

feet of tubing and were then collected into a large flask. Once all of the solutions 

had been collected into the large flask, the flask was kept in a water bath at 30 

°C overnight and purified via centrifugation as described above. Multiple 1 L 

batches were synthesized and mixed after purification. All characterization is on 

the combined purified solutions of nanoparticles. 

 Nanoparticles were characterized via UV/Vis spectroscopy (Jasco v-670), 

DLS and Zeta potential measurements (Malvern NanoZS90), and TEM (Zeiss 

EM-109). The most prominent peak in the raw intensity distributions was used in 

all DLS measurements to measure the aggregation state of the particles. 

Particles were characterized after purification and at various time points after 

dilution into the dechlorinated tap water used in the experiments. Stock solutions 

of gold nanoparticles in MilliQ water were created at 500 pM, where the 
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concentrations were determined with Beer’s law and a calculated molar 

absorptivity based on the absorption maximum. Note that this method returns a 

concentration of the nanoparticles in molarity where the nanoparticles are the 

unit of measure.  

Gold Uptake and Localization by Wood Frog and Bullfrog Tadpoles  

 The collection and use of all animals was approved by the Institutional 

Animal Care and Use Committee (IACUC) of Gettysburg College. Wood frog 

(Lithobabates sylvaticus) egg masses were collected from vernal pools in 

Michaux State Forest, Adams County, PA, USA (39.91o N, 77.56o W) in early 

April, 2014, and were immediately transported (20 minutes) in pond water to the 

lab at Gettysburg College. All applicable international, national, and/or 

institutional guidelines for the care and use of animals were followed. 

 Eggs were maintained in pond water for two days, then transferred to a 

50:50 mixture of pond water: dechlorinated tap water (for 1 day, and finally to 

dechlorinated tap water thereafter) (Stress Coat dechlorinator, Aquarium 

Pharmaceuticals Inc. Chalfont, PA). Dechlorinated tap water (pH 7.5, DO 7.2 

ppm, temperature 21 °C, conductivity 772 µS/cm) has been used in laboratory 

experiments with anuran tadpoles with success.39,44 Eggs from at least six 

different egg masses began to hatch four days after collection.  Experiments 

began 11 days after collection when tadpoles reached Gosner stage 24-25. 

 Bullfrog tadpoles (Lithobates catesbeianus) (up to 3 inches long at Gosner 

stage 25-28) were shipped from Carolina Biological Supply Co. and received in 

mid-April, 2014. These tadpoles were born in spring-summer 2013, overwintered 
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in the field, and collected in early spring, 2014. Tadpoles were maintained in their 

shipping medium for two days, then transferred to a 50:50 mixture of shipping 

medium: dechlorinated tap water for one day, then finally to dechlorinated tap 

water until experiments began 4 days after their arrival. 

 We designed an experiment to examine the uptake and location of gold 

nanoparticles in the presence and absence of congeneric tadpole species. We 

established 3 arrangements of tadpoles (wood frogs (WF) alone, bullfrogs (BF) 

alone, and WF + BF (3 of each species) in combination groups) with three 

treatments (in dechlorinated tap, in CTAB, and in gold nanoparticle solution with 

a final concentration of 20 pM) for a total of 9 groups with n=4 aquaria per group. 

Each aquarium initially contained 6 tadpoles. CTAB stock was 5 µM and to each 

CTAB tank we initially added 1936 ml of dechlorinated tap water, the tadpoles 

were added, then 64 mL of CTAB (5 µM) was added for a final CTAB 

concentration of 1.6 x 10-7 M (estimated concentration of free CTAB at the 

nanoparticle exposure dose). 

 For gold treatments, aquaria initially contained 1920 ml of dechlorinated 

tap water with 6 tadpoles per aquarium.  Thereafter, we added 80 ml of gold 

nanoparticles (of stock 500 pM), to achieve a final gold concentration of 20 pM. 

Water controls received 1920 mL of dechlorinated tap water, the tadpoles were 

added, then 80 mL of dechlorinated tap water was added to each control tank. All 

solutions were changed twice a week and tadpole food pellets (Carolina 

Biological Supply Co.) were added after each solution change. If a tadpole died, 

it was removed and the volume in the aquarium reduced by accordingly per dead 
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tadpole to maintain the volume of media/tadpole. During the solution changing 

process the tanks were rinsed with dechlorinated tap water and wiped out with a 

paper towel. After three weeks, tadpoles were sacrificed by anesthetizing them in 

30 % isopropanol and fixing them in 10 percent neutral buffered formalin.   

 Note: Eight tadpoles died before the end of the 25 day exposure period. 

These tadpoles were still processed and analyzed to quantify gold uptake but 

were not included in the reported findings. Two tadpoles were misplaced 

between exposure and processing and thus were not analyzed for gold content. 

Thus 4.6% of the initial sample size was not reported in the findings.  

Fixed tadpoles were dried with a Kimwipe and a wet mass was measured. 

Each tadpole was placed in a teflon vial (Savillex Corporation) and 10.0 mL of 

trace metal grade nitric acid was added. Vials were heated to 200 °C until 

dryness, approximately 24 hours. Once dry and cooled to room temperature, 

5.00 mL of 10% aqua regia (trace metal grade) was added to the vials with a 

volumetric pipette. Samples were sonicated in the teflon vials until the dried pellet 

was completely suspended. The resulting solutions were filtered using 0.22 µm 

syringe filters into 15 mL conical tubes. The tubes were capped and sealed with 

Parafilm and stored in the refrigerator until ready to be analyzed with ICP-OES 

(Optima Series, Perkin Elmer). The amount of gold in tadpoles was determined 

using the 267.595 nm emission line from gold and compared against a series of 

standard solutions that were prepared gravimetrically from a 1000 mg/L standard 

solution (Fluka) with R2 ≥ 0.999 in all cases. New calibration curves were 

prepared for each set of measurements. To establish baseline gold background 
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measurements for the digestion, the experimental protocols were followed 

starting with the addition of the 10.0 mL of nitric acid with an absence of 

tadpoles. The average value of the baseline experiments was subsequently 

subtracted from all measurements. 

8 tadpoles from each group of the uptake experiment were selected at 

random from the gold exposed tadpoles groups. After being fixed in 10% 

formalin, tadpoles were carefully cut with a razor blade into an anterior half 

containing all viscera and a posterior half containing the tail. These sections were 

analyzed for gold as described above. 

Gold Depuration from Wood Frogs: 

 Egg masses of wood frogs were collected on March 28th, 2015 from 

vernal pools in Michaux State Forest, Adams County, Pennsylvania (39.91oN, 

77.56oW).  At least 4 individual masses of eggs were transported (20 minutes) in 

pond water to the laboratory at Gettysburg College.  Eggs were initially placed in 

20-gallon aquaria with pond water.  After 24 hours, room temperature 

dechlorinated tap water was added to the aquaria to create a 50:50 mixture.  

Thereafter, tadpoles were maintained in 100% declorinated tap water. The eggs 

hatched on 2 April 2015 and pooled embryos from the egg clutches were reared 

in dechlorinated tap water until Gosner stage 23 when experiments began. 

 We established four groups of tadpoles all of which received gold 

nanoparticles (final concentration 2 pM) for a minimum of 21 days. The first 

group was sacrificed on day 22, while subsequent groups were placed into 100% 
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dechlorinated tap water (no gold nanoparticles added) for 5, 10, and 15 days and 

then sacrificed. We used plastic, 3-liter aquaria as units of replication and 

randomly distributed tadpoles (initially 6 tadpoles per aquarium) into each. For 

each treatment group there were n=9 aquaria. Each aquarium had an initial 

volume of 2000 mL of test media. If a tadpole died, it was removed and the 

volume in the aquarium reduced by 333 mL per dead tadpole to maintain the 

volume of media/tadpole. Fresh media was added twice per week similar to the 

procedure described above. To 1800 mL of dechlorinated tap water, we added 

200 ml of either gold nanoparticles at 20 pM for a final concentration of 2 pM or 

dechlorinated tap water.  Aquaria with reduced volumes were adjusted 

accordingly.   
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Results and Discussion 

Gold analysis and uptake of gold nanoparticles  

 Figure 1A shows the TEM micrograph of the CTAB capped gold 

nanoparticles used in the uptake studies. The particles are relatively 

monodisperse with a mean size of 22 ± 5 nm (n = 500). As shown in Figure 1B 

the UV/Vis data indicates that there is some aggregation occurring as the peak 

broadens and decreases in intensity over the course of 48 hours. It is important 

to note that the nanoparticles are not stable against aggregation at 50 pM in 

dechlorinated tap water. Figure 1C shows the DLS measurements of the 

particles at 0 and 48 hours which supports that particle aggregation is occurring. 

Combined together, the DLS and the UV-Vis data give an insight to the 

aggregation state of the particles in solution. The DLS data reported is the 

average size of the largest peak in the intensity distribution, which indicates that 

aggregation is occurring. However, the plasmon absorption band of the gold 

nanoparticles, which is very sensitive to the aggregation state, remains fairly 

stable indicating that there is a mixture of aggregated particles and particles that 

are primarily in the dispersed state. It is worth noting that the stability of CTAB 

particles is highly dependent on the concentration of free CTAB in solution.45 It 

may be that the aggregation is not due entirely to the components of the 

dechlorinated tap water but that the dilution of CTAB plays a role as well. Even in 

the relatively well-controlled conditions we used, the particles still differ from their 

physiochemical identity in the lab. Zeta potential measurements show that the 

surface charge switches from + 30 mV to – 12 mV within fifteen minutes of 
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mixing with the dechlorinated tap water. The negative zeta potential persists on 

the particles throughout the exposure time. 

 To test the species-specific uptake of gold, we exposed wood frog and 

bullfrog tadpoles to gold nanoparticles either alone or in combination together. 

For the various tadpole groups in gold, there was a significant effect of exposure 

on gold uptake (one-way ANOVA, F (4, 19) = 145.24, p < 0.0001). While all 

groups of tadpoles exposed to gold showed some uptake, wood frogs showed 

significantly higher uptake per gram body mass than bullfrogs (Figure 2). Wood 

frogs in combination with bullfrogs and wood frogs alone took up the highest 

amounts of gold (144.6 and 102.9 µg Au/g body mass, respectively). Both groups 

of wood frogs took up significantly higher amounts of gold than all other groups 

(Tukey’s test, p < 0.01 for all pairwise combinations, Figure 2). Bullfrogs in 

combination with wood frogs took up significantly higher amounts of gold 

compared to controls (p< 0.05), but not compared to bullfrogs alone. 

 While we do not have a definitive answer to why wood frogs take up more 

gold/body weight, the tadpoles in combination take up significantly more 

nanoparticles than when alone. Bullfrog tadpoles in combination with wood frogs 

also show an increase in the amount of nanoparticles taken up even though this 

difference is not significant. To our knowledge this is the first comparative study 

of nanoparticle uptake between closely related organisms of any kind. Why gold 

uptake was higher in wood frogs than in bullfrogs could be explained by several 

different mechanisms. One possibility is that gold nanoparticles were ingested 

with food particles. We did not measure ingestion rate, but Seale and Beckvar 
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measured ingestion rate of tadpoles of bullfrogs and wood frogs fed the 

cyanobacterium Anabaena sphaerica.46 They found maximum ingestion rates to 

be very similar between the two species (and similar between five species in 

three different genera).  Another possibility is that the presence of bullfrogs 

increased the activity and therefore the respiratory rate of wood frogs. Monello et 

al. found that tadpoles of the Pacific treefrog (Pseudacris regilla) increased 

activity and grew faster when grown in the presence of bullfrog tadpoles.47 By 

contrast, Walston and Mullin showed that wood frog tadpoles that had no 

experience with bullfrog displayed reduced activity when grown in the presence 

of bullfrogs.48 These possible mechanisms could explain why in our study, wood 

frogs in combination with bullfrogs took up the highest concentrations of gold, but 

not why wood frogs alone took up significantly higher concentrations than either 

bullfrogs in combination or bullfrogs alone. 

 Our work uses a diffuse exposure mechanism as opposed to a direct 

exposure method to the GI tract, however, the gross distribution of nanoparticles 

in the tadpole bodies is still of interest. Figure 3 shows that in all cases there is 

more gold in the anterior region of the tadpoles when compared to the posterior 

region. More specifically, there was a significant effect of condition (anterior vs. 

posterior) on mean gold uptake (one-way ANOVA, F(1,16) = 28.46, p = 0.0001).  

The anterior portions of wood frogs, both alone and in combination with bullfrogs 

showed significantly more uptake of gold than did their corresponding posterior 

regions (Tukey’s test, p < 0.01 for both comparisons, Figure 3).  The anterior 

portions of bullfrogs also had higher concentrations of gold than their 
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corresponding posterior regions, but not significantly.  There was a significant 

combined effect of group x condition (anterior vs. posterior) on mean gold uptake 

(2-way ANOVA, F (3,12) = 5.55, p = 0.01) indicating that the anterior portions of 

wood frogs concentrated more gold than those of bullfrogs. These results are 

suggestive that the route of uptake is potentially through the oral cavity or 

through the gills rather than a passive adsorption through the skin.  

 Bacchetta et al. found that nanoparticles were localized in the stomach 

and gut of larval Xenopus laevis.18 Nations et al. reported nanoparticles in the gut 

coils of larval X. laevis.29 Mouchet et al found double-wall carbon nanotubes 

concentrated in the intestine of Xenopus laevis tadpoles.19 Unrine et al. 

demonstrated trophic transfer of gold nanoparticles by feeding adult bullfrogs 

with gold-exposed earthworms with the finding of gold accumulation in bullfrog 

internal organs including the stomach and intestine.36 Our results, framed in the 

context of the literature on nanomaterial uptake in amphibians, are consistent 

with the most likely route of uptake of nanomaterials in amphibian larvae being 

through ingestion. 

 We measured gold nanoparticle uptake in wood frog and bullfrog tadpoles, 

two species that are closely related but have differing life history strategies.  We 

found that their ability to accumulate gold nanoparticles is significantly different, 

at least in the laboratory. Carter et al. reported significantly different uptake and 

depuration of pharmaceuticals in two species of earthworm that live in slightly 

different layers of sediment.49 These combined results indicate the importance of 

not generalizing toxicant sensitivity of aquatic and terrestrial organisms based 
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upon previous studies on closely-related species. More importantly further testing 

of non-target congeneric species with varying life history strategies is needed. 

Depuration study 

 To further elucidate the route of uptake, we wanted to see if the particles 

would depurate from the tadpoles when the toxicant, gold nanoparticles, was 

removed from the tanks. CTAB capped gold nanoparticles, synthesized via flow 

reactor, were used for this study and their time dependent physiochemical 

properties when placed into dechlorinated tap water are shown in Figure 4. Gold 

nanoparticles with a mean diameter of 27 ± 12 were diluted in dechlorinated tap 

water and the aggregation was monitored with UV/Vis, DLS and Zeta potential. 

The decrease in the intensity of the plasmon band, indicates that the 

concentration of the particles is decreasing, and the shouldering of the peak 

indicates that the particles are aggregating (Figure 4B). Figure 4C shows that the 

particles very quickly increase in size and begin to decrease possibly due to 

large particles settling out of the solution. As noted previously, the combination of 

the UV-Vis and the DLS data is used to determine that while there is some 

degree of aggregation, the particles are primarily in the dispersed state. It is 

worth noting that the initial physiochemical properties of the nanoparticles in the 

uptake and depurations studies are very similar, yet they have somewhat 

different aggregation properties when they are diluted in dechlorinated tap water. 

As mentioned previously, the concentration of free CTAB may play a role in the 

different aggregation profiles of the gold nanoparticles. Additionally, the gold 

nanoparticles synthesized in the flow reactor are more polydisperse than the 
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particles synthesized via the traditional methods, which may also have an impact 

on the aggregation profile.  

 When the toxicant, gold nanoparticles, was removed from the wood frog 

tadpole’s environment, the internalized gold was significantly depurated over time 

(one-way ANOVA, F(3, 32) = 73.32, p < < 0.00001) (Figure 5). After 21 days in a 

solution containing 2 pM gold nanoparticles, the mean gold values in non-

depurated tadpoles was 9.51 µg gold/g body mass. This value was significantly 

higher than those depurated for 5 days (1.37 µg/g), 10 days, (0.39 µg/g), and 15 

days (below the level of detection) (Tukey’s test, p < 0.01 for all pair-wise 

comparisons, Figure 5).  

 Overall, the literature on depuration of nanoparticles from organisms is not 

particularly robust, however there are a few papers that look at depuration in 

aquatic organisms. 24,50,51 To the best of our knowledge, there are no previously 

reported depuration data for amphibian larvae.  In the common carp, Jang et al. 

reported that silver nanoparticles were reduced to control levels after 14 days of 

depuration.51 Our work shows that while wood frog tadpoles do internalize gold 

nanoparticles after chronic exposure, they also depurate the nanoparticles in 

about two weeks. This suggests that these particular CTAB capped gold 

nanoparticles at around 30 nm might act as a transient toxicant. It is important to 

note that the particles here are relatively large and upon exposure to the 

dechlorinated tap water they aggregate to larger sizes. 
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 The size of nanoparticles can significantly impact their biodistribution 

especially as you approach smaller nanoparticles. Recent work from Lavelle et 

al. shows that quantum dots (~12 nm) could enter the blood stream and be 

transported to other organs including the liver, gonads, spleen, and kidneys after 

nanoparticle exposure through oral gavage.52 They postulate that there may be 

protein-mediated effects that have an impact on the uptake and internalization. 

This work may also help explain why our larger nanoparticles could be 

depurated. The increased size may lead to particles that cannot be transported 

into the bloodstream. 
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Conclusions 

 In this work we have shown that CTAB capped gold nanoparticles are 

taken up into both wood frog and bullfrog tadpoles. We found that their ability to 

accumulate gold nanoparticles is significantly different, at least in the laboratory.  

When the tadpoles are exposed to nanoparticles in the presence of one another, 

the uptake is higher indicating either a species dependent uptake or some 

competitive uptake regime. Uptake into the anterior region of the tadpoles was 

higher than the posterior suggesting that the route of uptake was through the oral 

cavity or through the gills rather than a passive uptake through the skin. Finally, 

gold was quickly and significantly depurated in wood frog tadpoles in as short as 

5 days. Although the depuration starts within 5 days, it takes around 2 weeks 

time for the level of gold to fall below our limits of detection, indicating that gold 

nanoparticles may be a transient environmental toxicant. Finally, CTAB capped 

gold nanoparticles are susceptible to aggregation over time when in the presence 

of dechlorinated tap water and the free CTAB concentration is low enough. Our 

study points to the importance of not generalizing the sensitivity to toxicants of 

aquatic organisms based upon previous studies on closely-related species, and 

argues for further testing of non-target congeneric species with varying life 

history strategies. 
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TOC graphic 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Uptake of gold nanoparticles is species dependent and generalizing the 

impacts of nanomaterials to aquatic organisms should be avoided.  
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Figures 
 

 
 
 
Figure 1: Nanoparticle characterization for the uptake and localization 
experiments. a) TEM micrograph of CTAB capped AuNPs (22 ± 5 nm). B) 
aggregation over time diluted 1-10 from stock solution in dechlorinated tap water 
c) DLS data at 0 and 48 hours showing aggregation in dechlorinated tap water.  
D) Zeta potential measurements of a 500 pM nanoparticles diluted 10 x in 
dechlorinated tap water. 
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Figure 2. Concentration of gold nanoparticles (mean+/- S.E.) detected in wood 
frogs, bullfrogs, and those in combination (e.g. wood frogs combined with 
bullfrogs) (n = 4 tanks per group).  Controls were pooled, non-gold exposed 
groups (n= 32 tanks).  Bars that share letter notations are not significantly 
different. 
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Figure 3. Concentration of gold nanoparticles (mean +/- S.E.) detected in anterior 
vs. posterior body regions of wood frogs (WF), bullfrogs (BF), and those in 
combination with the other (WF combo and BF combo).  Sample sizes were n = 4 
tanks per group. *: p < 0.01 
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Figure 4: Nanoparticle characterization for the depuration experiments. a) TEM 
micrograph of CTAB capped AuNPs (27 ± 12 nm). B) aggregation over time 
diluted 1-10 from stock solution in dechlorinated tap water c) DLS data at 0 and 
48 hours showing aggregation in dechlorinated tap water. D) Zeta potential 
measurements of a 500 pM nanoparticles diluted 10 x in dechlorinated tap water. 
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Figure 5. Concentration of gold nanoparticles (mean +/- S.E.) detected in wood 
frog tadpoles exposed to gold for 21 days, then depurated for 5, 10, and 15 days.  
Sample sizes were n = 9 tanks per group *: p < 0.01 vs. all three depuration 
groups. 
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