
















Median time to metamorphosis was also significantly lower in heterospecific crosses when com-

pared to conspecific crosses (average median time ± SD for heterospecific crosses = 75.16 ± 31.08

days; average median time ± SD for conspecific crosses = 114.71 ± 25.29 days; χ2 = 4.1, df = 1,

P = 0.043). Finally, we found no difference in survival rate to two-week old metamorphs

between heterospecific and conspecific crosses.

Discussion

Our study shows that E. petersi, E. “selva”, and E. “magnus” overlap extensively in Yasuni

National Park, and this range overlap has led to heterospecific pairings in nature. Whether

Cross Type

Conspecific crosses

E. p
ete

rsi
  

E. p
ete

rsi

Fe
rt

ili
za

tio
n 

ra
te

1.0

0.8

0.6

0.4

0.2

0

Heterospecific crosses

E. “m
ag

nu
s” 

 

E. “m
ag

nu
s”

E. “s
elv

a” 
 

E. “m
ag

nu
s”

E. “m
ag

nu
s”

E. “s
elv

a”

E. “m
ag

nu
s”

E. p
ete

rsi

E. p
ete

rsi

E. “m
ag

nu
s”

Fig 3. Fertilization rates for conspecific and heterospecific crosses. Overall fertilization rates decreased in heterospecific

crosses compared to conspecific crosses but this was due to significant reductions in only some of the heterospecific cross

directions.

https://doi.org/10.1371/journal.pone.0174743.g003
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heterospecific pairings lead, in turn, to successful hybridization will depend, in part, on the fer-

tilization success and development of offspring in these crosses. Our results show that both fer-

tilization success and tadpole developmental time differ significantly in heterospecific crosses

compared to conspecific crosses in the E. petersi species complex.

We found reduced fertilization rates in both of the heterospecific crosses we conducted (E.

“magnus”- E. petersi and E. “magnus”- E. “selva”). However, some hybrid cross directions had

low success, while others were relatively fertile. Asymmetric post-mating isolation is a com-

mon occurrence in hybridizing species of amphibians [28], and can result from incompatibili-

ties between heterogametic sex chromosomes, incompatibilities in nuclear-mitochondrial

genomes, or from maternal epigenetic effects [29]. While our study does not address the possi-

ble mechanisms of post-mating isolation in the E. petersi complex, karyotypic differences

between the species present themselves as a promising area for future research. Although all

three species have the same chromosome number (2n = 22), cytogenetic analyses have revealed

high variation in chromosomal structure (including centromere position, banding patterns

and length), as well as presence or absence of heteromorphic sex chromosomes [30]. Hetero-

morphic sex chromosomes are a rare condition in anurans, yet they are present in E. petersi
and not in E. “selva” or E. “magnus” [30,31]. Hybrid offspring of species with very different kar-

yotypes may have unbalanced genomes and reduced fitness. Thus, karyotypic differences

between E. petersi, E. “magnus” and E. “selva” could be an important factor influencing fertili-

zation success and the development of reproductive isolation [30].

Our study also revealed a significant decrease in tadpole development time (both minimum

and median time to metamorphosis) in heterospecific crosses when compared to conspecific

crosses, regardless of cross direction. Faster developmental times in frogs have been suggested

alternatively as a sign of heterozygote advantage, adaptive responses to environmental cues, or

as the result of high physiological stress [32–35]. Ecologically speaking, reduced developmental

times can be beneficial if they lower risks posed by predation or desiccation [36], but they can

also lead to ecological and physiological tradeoffs in the later developmental stages [37–39].

Studies examining the full lifespan of hybrid F1 offspring in the E. petersi species complex will

be necessary to resolve the importance, if any, of this reduction in developmental timing for

offspring’s fitness.

We found no differences between heterospecific and conspecific crosses neither in latency

to hatch nor in tadpole survival for two weeks after metamorphosis. Tadpole survival was,

however, highly variable across crosses, and this variability may have obscured any small dif-

ferences in survival due to cross type. F1 individuals with high survival could still have reduced

fertility if karyotypic differences generate unbalanced genomes that are lethal for F2 zygotes. In

a separate experiment, we attempted to breed F2 MS hybrid and MM pure lines and we

observed a wide range of fertilization rates for the pure line, 0–90%, as compared to very low

fertilization (0–4%) for the hybrid line. These low fertilization rates in the hybrid line eventu-

ally produced a total of four F2 hybrid individuals (unpub. data).

Although our study shows selection against heterospecific crosses in the E. petersi complex,

we also found that amplectant frogs at our field sites included heterospecific pairs. This, along

with our result that some crosses produce high hatching rates, suggests a potential for the pres-

ence of F1 hybrid individuals in nature. Although Funk et al. (2011) suggested that hybridiza-

tion among these species involves ancient mitochondrial introgression from E. “magnus” into

E. “selva”, studies determining the prevalence and abundance of F1 hybrids in nature [40] as

well as whether they are fertile or not, will add to our understanding of the nature and extent

of the interactions between these cryptic species. Ultimately, low fertilization rates of hybrid

crosses and karyotypic differences that prevent fertility of F1 hybrids may be sufficient to main-

tain reproductive isolation in sympatric populations.
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In the E. petersi species complex, pre-mating isolation and post-mating fertilization success

are not always associated. E. “selva” and E. “magnus” show behavioral isolation due to differ-

ences in the males’ calls when tested in laboratory assays [19] and we did not find them in

cross-species amplexus. The low fertilization rate in the E. “magnus”-E. “selva” crosses matches

this strong behavioral isolation, and hybrids, therefore, may be very rare despite overlapping

populations in at least one breeding site (Fig 4). In contrast, while E. petersi and E. “selva” also

differ in the spectral content of their calls and display behavioral isolation, we found two pairs

in cross-species amplexus at sites where these species overlap (Fig 4). In each case, the E.

“selva” female was in amplexus with a heterospecific male from the locally abundant E. petersi
species. Unfortunately, our heterospecific crosses for these species were too few to include

them in the posthoc analysis of fertilization rates, so we cannot predict the outcome of these

matings. Finally, E. petersi and E. “magnus” produce calls with similar spectral content and do
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P.M.I.
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Fig 4. Schematic of species interactions for E. petersi, E. “magnus” and, E. “selva”. Summarizes observations of pairs observed in hybrid amplexus

and post-mating isolation results from the current study, along side previously reported results from behavioral isolation trials (Guerra and Ron, 2008; Boule

et al, 2007). Arrows indicate cross direction or high fertilization success. Filled circles indicate direction of rejection during behavioral trials or decrease in

fertilization success (female!male).

https://doi.org/10.1371/journal.pone.0174743.g004
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not show behavioral isolation [17,40]. Consistent with their lack of spectral differences and

lack of behavioral isolation, we found two pairs in cross-species amplexus. Importantly, our

study shows that heterospecific crosses between E. petersi and E. “magnus” have reduced fertili-

zation success and shorter tadpole developmental time (Fig 4). Thus, our results suggest that a

lack of behavioral isolation between these species can result in detrimental hybridization.

This study shows evidence of small-scale range overlap, heterospecific matings, and post-

mating isolation within the E. petersi species complex. Interestingly, we find a pattern of post-

mating isolation for crosses between E. petersi and E. “magnus” species, which did not display

behavioral isolation in previous studies. Overlap in distribution of E. petersi and E. “magnus”
may be recent, or genetic variability for mating behaviors may not be sufficient, for selective

pressures against hybrids to drive divergence in female preferences and male signals in this

species pair. While previous studies have explored mechanisms of behavioral isolation between

these frogs, the documentation of hybrid pairs in nature, and the quantification of fitness costs

when hybrid matings do occur gives us a window into the cohesiveness or fluidity of this spe-

cies complex. As cryptic species with dynamic geographic ranges continue to be discovered,

studies that look at post-mating isolation as well as hybrid mating in nature can give us a fuller

picture of the dynamics of the reproductive frontiers that define these species.
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mops (= Physalaemus). Developmental Dynamics 238: 1444–1454. https://doi.org/10.1002/dvdy.

21952 PMID: 19384855

22. Terán-Valdez A, Guayasamin JM, Coloma LA (2009) Description of the tadpole of Cochranella resplen-

dens and redescription of the tadpole of Hyalinobatrachium aureoguttatum (Anura, Centrolenidae).

Phyllomedusa: Journal of Herpetology 8: 105–124.

23. Darst CR, Cannatella DC (2004) Novel relationships among hyloid frogs inferred from 12S and 16S

mitochondrial DNA sequences. Molecular Phylogenetic Evolution 31: 462–475.

24. Goebel AM, Donelly MA, Atz M (1999) PCR primers and amplification methods for 12S ribosomal DNA,

the control region, cytochrome oxidase I, and cytochrome b in bufonids and other frogs, and an over-

view of PCR primers which have amplified DNA in amphibians successfully. Molecular Phylogenetics

and Evolution 11: 163–199. https://doi.org/10.1006/mpev.1998.0538 PMID: 10082619

25. Ron SR, Santos JC, Cannatella DC (2006) Phylogeny of the túngara frog genus Engystomops (= Phy-
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