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ABSTRACT Bacteriophages are important in structuring bacterial communities, includ-
ing desert soils dominated by Bacillus species. Here, we describe two genetically similar
temperate phages isolated on a Bacillus subtilis strain from soil in Tucson, Arizona.
Their double-stranded DNA (dsDNA) genomes contain 98 and 102 genes, with a set of
4 genes being found in only one phage.

Bacterial communities in desert environments are often dominated by Firmicutes
strains, including Bacillus subtilis and relatives (1–4). Given how bacteriophages

impact bacterial communities (5–7), understanding these communities requires under-
standing phage diversity. Here, we describe two temperate phages from the Sonoran
Desert.

Each phage was isolated from its own soil sample collected at Tumamoc Hill Desert
Laboratory (Tucson, AZ) in May 2016 (32°13904.90N, 111°00912.90W), at sites separated
by 10 m. The soil was dry and sandy, dug to 10 cm. Approximately 1 g of soil was
added to 20 mL LB broth, incubated for 4 h at 37°C with shaking at 250 rpm, and then
filtered (0.22 mm). Samples were then plated on Bacillus subtilis strain T89-06 (also
called S89-6 or T89-6), which was originally isolated by Istock and colleagues (8, 9).
Individual plaques were isolated and were single plaque purified three times on lawns
made from spores of the isolation host. High-titer lysates were prepared by flooding,
with LB broth, multiple plates containing at least 104 plaques. Lysates were filtered,
and DNA was extracted using phenol-chloroform (10). For sequencing, libraries were
prepared with the Illumina TruSeq Nano DNA library preparation kit and sequenced
with the Illumina MiSeq platform, using a 150-bp single-end read v3 flow cell, at the
North Carolina State University Genomic Science Laboratory. We assembled genomes
using GS De Novo Assembler v2.9 (11). For each phage, the 150-bp reads were
assembled into one contig with .1,000� coverage, and contig consensus quality was
verified in Consed v29 (12) (Table 1). Genome ends were determined with PhageTerm
(13) (Table 1). The finished sequences were imported into DNA Master v5.22.22 (http://
cobamide2.bio.pitt.edu/computer.htm) to map and compare open reading frames.
Putative genes were called based on both Glimmer v3.0 and GeneMark v2.5 algorithms
(14, 15). Putative protein functions were predicted using BLAST v2.12 (16) and HHpred
(17). For BLASTp matches, an E value of ,1025 was required to assign function. For
HHpred matches, a high probability (.85%), substantial coverage (.50%), and low E value
(,1025) were required. The absence of tRNA genes was confirmed with ARAGORN (18).
Default settings were used for all programs.

Phages 268TH002 and 268TH007 have double-stranded DNA (dsDNA) genomes
with 98 and 102 predicted protein coding genes, respectively (Table 1), and a genome
organization typical of Siphoviridae, with structural genes showing conserved order
(19). They show limited nucleotide similarity to other sequenced phages (Table 1) but
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share 96% nucleotide identity with each other, differing primarily through the pres-
ence of 2,525 bp in the middle of the genome of 268TH007 with four open reading
frames (putatively coding for a FtsK-like DNA translocase, a replication-relaxation fam-
ily protein, a helix-turn-helix transcriptional regulator, and a hypothetical protein). FtsK
translocases are involved in the bacterial SOS response to DNA damage, can activate
prophage induction (20), and may broaden conditions for prophage induction. In addi-
tion, two genes whose predicted products have sequence identity to tyrosine recombi-
nase have been identified. Whether and how these function in phage integration are
open questions. Finally, both phages have ribonucleotide reductase genes, which may
benefit them through synthesis of deoxyribonucleotides during periods when host
DNA synthesis is inactive (21).

Data availability. Genome sequences and associated information can be found
under the following GenBank and SRA accession numbers: 268TH002, ON210835 and
SRX15148566; 268TH007, ON210834 and SRX15148567, respectively.
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TABLE 1 Sequencing information and genome characteristics for Bacillus phages 268TH002 and 268TH007
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No. of
reads

Coverage
(×)

Genome
size (bp)

GC content
(%)

Genome
endsa

No. of protein-
coding genes

Best BLASTn match
(GenBank accession no.)b

Query coverage
(%) with best
match
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with best
match
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63 88
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(OM654379.1)

24 76

268TH007 505,753 1,124 68,062 47.4 310-bp
DTRs

102 Bacillus velezensis strain Lzh-a42
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61 88

Bacillus phage vB_BauS_KLEB27-1
(OM654379.1)

23 76

a DTR, direct terminal repeat. By convention, genomes start and end with the DTR sequence and with the terminase gene on the forward strand (11).
b The genome of each phage was compared to the complete nucleotide database and to the same database restricted to all tailed phages (combined taxid numbers 10699,
10662, and 10744) with BLASTn. For each search, the best match is reported.
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