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Abstract 
Himalayan communities that primarily depend on rain-fed agriculture are disproportionately 
vulnerable to the effects of climate change.  To initiate appropriate adaptation strategies, 
communities must have sufficient resources and accurately perceive the changes that are 
occurring.  In this study, we compare local perceptions of climate change from a household 
survey (n=251) to climate data obtained from the Global Land Data Assimilation System 
(GLDAS 2.1) and MODIS Terra Snow Cover data product datasets.  The study is situated in and 
around the Kedarnath Wildlife Sanctuary, which is located within the Garhwal Himalayas in the 
Indian state of Uttarakhand.  We found that a large majority of respondents perceive that rainfall 
is increasing and that snowfall is decreasing, while a smaller majority perceives an increase in 
summer temperatures and no change in winter temperatures. Agreeing with the perceptions of 
the majority, the climate data show an increase in summer temperature and winter rainfall.  
However, the climate data also show an increase in winter temperature, and no monotonic 
change in snowfall, findings which are contrary to the perception of the majority. Consistent with 
previous studies, respondents are more perceptive to increasing temperatures in the hot season 
than the cold season.  Furthermore, respondents are highly perceptive to increasing rainfall, 
potentially due to the importance of rain to livelihood, the visual salience of rain, and the recent 
major flooding events in the region. Climate data do not show a decrease in snowfall but do 
indicate that snowfall has shifted later at higher elevations.  Household perceptions of climate 
change were not associated with adaptation; while many households perceived change, very few 
reported that they were taking action or planning to adapt. To encourage adaptation, 
communities would benefit from locally appropriate climate and weather data products, and 
active collaboration on best practices with researchers, NGOs, and extension services. 
 
Keywords 
Kedarnath Wildlife Sanctuary, India, Himalayas, climate change, local perceptions, adaptation  
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1. Introduction 

In the past 50-60 years, the Himalayas have experienced a rising number of extreme heat 

events, a decrease in the number of extreme cold events, and locally variable snowfall trends 

(Bolch et al., 2019; Krishnan et al., 2019). The warming trends in the Himalayas are higher than 

the global average (Xu & Grumbine, 2014), resulting in melting glaciers, changing vegetation 

distribution, altered crop phenology, and new pests and weeds (Chaudhary et al., 2011; Sharma 

& Shrestha, 2016).  Glacial retreat threatens to reduce stream flow and fresh water availability 

for drinking and crop irrigation, and lead to stress on groundwater resources (Mall et al., 2006; 

Negi et al., 2012).    

Communities that primarily depend on agriculture and subsistence farming are 

disproportionately vulnerable to the effects of climate change (IPCC 2018). Yet in such 

communities in the Himalayas, adaptation responses to climate change are incremental, 

insufficient, and poorly integrated with wider efforts (Mishra et al., 2019).  A major reason for 

the inadequate response to climate change is a lack of resources -- lower caste families, women, 

and other marginalized groups have particular difficulty adapting to climate change (Macchi et 

al., 2015; Stock et al., 2017).  In addition, adaptation to climate change is influenced by 

perceptions of risk and by personal experiences (Ricke & Caldeira, 2014).  Without accurate 

perceptions, the communities may not initiate appropriate adaptation strategies (Amadou et al., 

2015; Piya et al., 2012).  Several studies in the Himalayas have found that the majority of people 

hold perceptions of climate change that are in agreement with the instrumental record (i.e. 

warmer temperatures, precipitation variability, and drying of water resources) (Abid et al., 2015; 

Chaudhary et al., 2011; Sharma & Shrestha, 2016; Uprety et al., 2017). However, other studies 

have shown that perceptions are highly variable.  For example, one study found that the 
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perception of Nepalese farmers matches the observed trends for maximum temperature, but not 

for minimum temperature or rainfall (Budhathoki & Zander, 2019).  Another study found that 

perceptions of temperature and winter precipitation varied by study area across Nepal and India, 

while perceptions of annual precipitation, monsoon onset, and crops/pests were widely consistent 

(Macchi et al., 2015).  A study of communities in Nepal found that while many correctly 

perceive climate change, a large minority of people do not correctly perceive changes (Piya et 

al., 2012). 

The present study compares perceptions of climate change from 16 Himalayan villages to 

climate data from NASA data sets. The key research goals are to (1) determine whether local 

perceptions of climate change are in agreement with climate data, and (2) identify the probable 

reasons for the agreement/lack of agreement and implications for adaptation to climate change. 

The study is situated in the Kedarnath Wildlife Sanctuary (KWS) Landscape, located in the 

Indian state of Uttarakhand.  A better understanding of perceptions of climate change would 

allow decision-makers to formulate adaptation measures and policy that address the impacts of 

greatest concern to communities (Reyes-García et al., 2015; Simelton et al., 2013), to identify 

linkages between environmental change and livelihoods that may not be self-evident (Byg & 

Salick, 2009; Reyes-García et al., 2015; Savo et al., 2016), and to help explain why people 

undertake adaptation strategies or not (Singh et al. 2018).   

 

2. Methods 

2.1.Study Area 

The study area for this research comprised 16 villages located within the two central 

valleys of the KWS landscape, Madhmaheshwar Valley and Kalimath Valley (Figure 1).  
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Established in 1972, the Kedarnath Wildlife Sanctuary is among the largest protected areas in 

Uttarakhand (975 km2), and ranges in elevation from 1,100m to 7,068m. This large elevational 

gradient results in high variability in climate and floral assemblages. It is approximately 48% 

forested, including oak-dominated forests (Quercus sp.) in the temperate region (1500-2900m) 

and Pine-dominated forests (Pinus roxburghii) in the subtropical regions (<1500m) (Prabhakar et 

al., 2001). The KWS attracts thousands of tourists and religious pilgrims who come to visit 

numerous holy sites (Manral, 2018).  

 

Figure 1: Study Area: The Kedarnath Wildlife Sanctuary (KWS) Landscape in Uttarakhand, 

India. 

 

We surveyed residents from 251 households within 16 villages located in this geographic 

area. The locations of study households ranged from 1,068 to 2,969 meters in elevation, 

representing a climatic gradient of sub-tropical to temperate. Of the 16 villages, 5 are located 

within the wildlife sanctuary and 11 are located outside the sanctuary boundaries (Table 1). As in 

most parts of the Western and Central Himalaya, residents depend on cultivation of small 

agricultural terraces, as well as forest resources for fuelwood and fodder (Malik et al., 2014; 

Manral et al., 2017).  Dominant crops include paddy, wheat, kidney beans, and traditional grains. 

A small number of households seasonally migrate with their livestock to temporary summer 

settlements at higher elevations with better fodder availability.  

 
Table 1: Study area villages 
 
 

2.2.Survey Data on Climate Perceptions 
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Fieldwork for this study took place from May-July 2015. To evaluate local perceptions of 

changing climate, a household-level survey was conducted in 16 villages within the KWS 

landscape (Table 1). Within each village, a two-person team systematically visited every fifth 

home, administering the survey to a total of 251 households across the 16 villages 

(approximately 20% of households).  At each home, a detailed questionnaire-based interview 

was conducted with a single adult member of the household.  In households with more than one 

adult member, a single adult was invited to participate – adults of different genders and 

generations were chosen to ensure the representativeness of the sample.  Informed consent was 

obtained prior to each interview; participation was voluntary and unpaid. The questionnaires 

were administered in Hindi or Garhwali depending on the respondent’s preferred language. The 

responses were then translated to English and entered into a spreadsheet for coding and analysis.  

The questionnaire dealt with four categories: climate trends, changes to agro-ecological 

systems, changes in resource availability in local forests, and wildlife sighting and conflict.  Only 

the first of these categories is analyzed in this study.  A separate study analyzed a broader set of 

questions from same questionnaire and found few differences between the responses of 

subgroups (i.e. categories of gender, education, or wealth) (citation redacted).  Thus, in this 

study we focus primarily on aggregate results and do not stratify by subgroup. 

The present study analyzes results from a subsection of the questionnaire dealing with 

respondent perceptions of climate trends. Key questions followed the format: “Have you noticed 

changes in any of the following environmental conditions over past 15-20 years?”  The 

respondents were asked whether they perceived an increase, decrease, or no change (or “don’t 

know”) for environmental conditions including temperature, rainfall, and snowfall.   

Respondents were given an opportunity to explain their answers (“Explain your concerns about 
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environmental changes in this area”) and to provide additional, free-form narrative data. These 

explanations are selectively quoted in the discussion.  Finally, respondents were asked whether 

they are “taking or planning actions in response to environmental change” (i.e. adapting or 

planning to adapt).  They were given an opportunity to describe their adaptations or explain why 

they had no plan for adaptation.  Using chi square tests, we evaluated whether those who 

perceive environmental change are more likely to report adaptation.   

 

2.3.Climate Data 

We used climate data from the Global Land Data Assimilation System version 2.1 

(GLDAS-2.1) and the MODIS Terra Snow Cover data product. The primary data source was 

GLDAS-2.1, which uses satellite and ground observation to generate rasters representing daily 

climate conditions and contains a variety of bands that align with the climate variables measured 

in the survey (Table 2). GLDAS-2.1 has a spatial resolution of 0.25 arc degrees, which 

corresponds to approximately 28 km x 24 km at the latitude of the study area. The grid cell 

covering the study area (Figure 1) has an average elevation of 2,997 meters, which is higher than 

the elevation of the households (1,068 to 2,969 m). An additional dataset was the MODIS Terra 

Snow Cover Daily Global 500m product (MOD10A1). The snow cover data uses the Normalized 

Difference Snow Index (NDSI) and other tests for the presence of snow.  NDSI shows the spatial 

extent of snow cover rather than snow depth or rate of snowfall. The MODIS data product is 

more spatially detailed than GLDAS-2.1 and was used to evaluate spatial variation in snowfall 

within the KWS landscape. We used data from the beginning of the datasets (1/1/2000 for 

GLDAS-2.1, 2/24/2000 for MODIS) through 6/30/2015 (the last full month of the household 



 

8 
 

survey).  Annual summaries of the climate variables in Table 2 were calculated for the following 

seasons:  

 Winter (November-February) 

 Summer (April-June) 

 Monsoon (July-September) 

 Annual (full calendar year) 

 
Table 2: Selected survey questionnaire items and associated climate data sources. 
 

For each climate variable, we used a non-parametric linear regression to evaluate trends 

in mean and standard deviation over time. Specifically, we used the Mann-Kendall (M-K) test to 

test for monotonic trends (i.e. consistent upward or downward trends that may or may not be 

linear). The M-K test is suitable for annual data where there is no seasonal trend present, and 

requires that the original data or any power transformation of the data be distributed similarly 

over time (Helsel & Hirsch, 2002). Therefore, unlike OLS regression M-K tests may be used in 

many cases where the variance of the original data changes over time.  We also use the non-

parametric Theil-Sen linear regression to quantify the slope of the trend. The Theil-Sen method 

calculates the slope of every data pair and uses the median slope to characterize the trend (Sen, 

1968).  Theil-Sen is robust to outliers and noise, which makes it particularly appropriate to 

identifying trends in climate and weather data (Fernandes & Leblanc, 2005).  In addition, for 

each MODIS pixel in the study area, we found the simple linear trend between NDSI and time.  

We then created scatterplots between elevation and slope (i.e. rate of change in NDSI) for each 

month for the 2001-2015 period.  Google Earth Engine was used for image processing of 

MODIS data products (Gorelick et al., 2017).    
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While there is no weather station data available for the entire span of the study period, 

monthly data is available for 2008-2010 from the weather station at Tungnath.  Located 8 km 

east of the study area, the Tungnath weather station is located at treeline at an elevation of 3360 

meters – higher than the elevation of households (1,068 to 2,969 m) and also higher than the 

average elevation within the GLDAS-2.1 grid cell (2,997m). We found that the GLDAS-2.1 data 

are significantly correlated to monthly data from the Tungnath weather station (Table 2).  

Temperature and rainfall had the highest correlation, while monthly snowfall rate and snow 

cover were moderately correlated.   

The methods we have used to analyze climate trends have general applicability; the 

datasets (i.e GLDAS 2.1 and Modis Snow Cover data sets) and statistical methods (i.e. Mann-

Kendall Trend and Sen’s Slope Estimate) have not been used in previous studies of climate 

perception, and could potentially be applied to other places with no long-term weather stations.  

 

2.4.Comparison of Questionnaire Items to Climate Data 

To evaluate whether there was general agreement between perceptions and associated 

climate data (Table 2), we first defined “agreement” as cases when the modal perception for an 

environmental change (increase, decrease, or no change) is consistent with the direction of the 

Sen slope.  For the changes for which there is agreement, we then compared the level of 

consensus about environmental change (% of respondents who give the modal response) and the 

statistical confidence (p value of the M-K test). Because perceptions may be influenced by recent 

trends, we also calculated the percentile of climate data from recent years (i.e., 2013-2015) 

within the time series. Finally, we evaluated how change in snow cover relates to elevation, and 
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assessed how spatial and temporal patterns of snow cover may relate to perceptions of annual 

snowfall.  

An important caveat is that we are comparing data collected at two different scales: local 

household perceptions and regional climate data. Since local climate is strongly correlated with 

regional climate, it is common practice to assess potential local impacts of climate change using 

regional climate data (Maraun and Widmann, 2015).  However, it is important to recognize that 

complex terrain (e.g. the rain shadow of mountain ranges) can complicate the relationship 

(Maraun and Widmann, 2015).  We found that we found that temperature and rainfall at the 

Tungnath Weather Station are strongly correlated to GLDAS-2.1 temperature and rainfall.  

Snowfall at the weather station location had a lower correlation, but we were able to supplement 

with a more detailed dataset, the MODIS Terra Snow Cover data product. Furthermore, it is 

important to note that household perceptions of climate change are shaped by both regional and 

local factors. This is evident from qualitative responses noted later in the paper, i.e. respondents 

mentioned regional flooding events and snow in the mountains at higher elevations than where 

they live.   

 

3. Results 

3.1. Perceptions of climate change 

 
The greatest consensus among respondents relates to precipitation: 82% of respondents 

perceive that rainfall is increasing and 79% perceive that snowfall is decreasing (Figure 2).  In 

terms of temperature, results are split with 53% perceiving an increase in summer temperature 

but only 34% perceiving an increase in average winter temperatures. The majority of respondents 
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(51%) perceive no change in winter temperatures, and a large minority (43%) perceived no 

change in summer temperatures.   

 
Figure 2: Respondent perceptions of environmental change   
 

 
3.2.Climate Data 

Temperature increased monotonically during all seasons (Figure 3), with a steeper 

increase in temperature during the summer (0.26 degrees Celsius [ºC] annually) and monsoon 

season (0.27 ºC annually) than the winter season (0.20 ºC annually) (Table 3).  In addition, the 

standard deviation of temperature in the summer and monsoon seasons increased monotonically, 

which suggests that temperature became increasingly variable over time. 

Rainfall mean and standard deviation increased monotonically only during winter (Figure 

3), but not during other seasons. Winter snowfall rate and snow cover did not change 

monotonically in terms of either mean or standard deviation.  This suggests that winter rainfall 

has increased, but winter snowfall has not changed monotonically over time. 

 

Table 3: Mann-Kendall (M-K) Trend and Sen’s Slope Estimate for mean and standard deviation 
of climate variables 2000-2015. 

Figure 3: Change in (a) temperature, (b) winter rainfall rate, (c) winter snowfall rate. 

 

Over time, we found a complex non-linear relationship between elevation and the slope 

of change in snow cover 2001-2015 (Figure 4a and 4b). At elevations below treeline 

(approximately 3,500m), there is no trend in average snow cover over the time period.  At 

elevations between 3,500-5,000m, however, there is a negative slope for snow cover in early 

winter (Figure 4b) and a positive slope for snow cover in late winter (Figure 4c).  The results 
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indicate that while the annual snow cover has not changed monotonically, the seasonality of 

snow cover has shifted at higher elevations during the time period studied. 

 

Figure 4: Elevation versus slope of NDSI for the early and late winter season.  (Positive slope 
indicates an increase in snow, while a negative slope indicates a decrease). 
 

3.3.Agreement between local perceptions and climate data 

There is agreement between perceptions and climate data for average summer 

temperature and rainfall.  In both cases, more than 50% of respondents perceive an increase, 

there is a positive Sen slope, and the M-K test is significant at the p<.05 level (Table 4). For 

winter temperature and snowfall, there is no clear agreement. While there is evidence of a 

monotonic increase in winter temperatures (positive Sen slope and significant M-K test), 51% of 

respondents perceived ‘no change’. A significant minority (34%) did perceive an increase in 

winter temperatures. While there is no evidence of a monotonic change in snowfall (M-K test not 

significant), 79% of respondents perceive a decrease. There is, however, a decrease in snowfall 

at higher elevations in the early winter period (Figure 4a, b). 

 

Table 4: Agreement of perceptions and climate data   

 

Interestingly there is little relationship between the level of consensus about 

environmental change (% of respondents who give the modal response) and the statistical 

confidence (p value of the M-K test) (Table 4).  For example, a large number of respondents 

(82%) perceive that rainfall is increasing, but statistically the confidence is moderate that rainfall 

is increasing (p <0.05 but not p<.01).  In contrast, a smaller number of respondents (34%) 
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believe that winter temperature is increasing, but statistically the confidence is high that winter 

temperature is increasing (p< 0.01).  The averages of the three years leading up to the survey 

(2013-2015) were characterized by above average temperatures, above average rainfall rate, and 

close to average snowfall rate (Table 5).      

 

Table 5: Percentile of recent years within time series. 

 

3.4.Climate Perceptions and Adaptation 

Of the 251 households in the survey, only 35 (14%) reported that they are adapting (i.e. 

“taking or planning actions in response to environmental change”).   Chi square tests suggested 

that perceptions of environmental change were for the most part not associated with adaptation.  

Adaptation households did not differ significantly from no-adaptation households in terms of 

perceptions of summer temperature (χ=1.72, p=0.19), winter temperature (χ=0.684, p=0.408), or 

winter snowfall (χ=0.03, p=0.862).  However, 60% of respondents in adaptation households 

perceived an increase in rainfall versus 87% for no-adaptation households [F(1,249)=14.982, 

p=0.000].  Overall, these results underscore that in terms of perceptions of temperature and 

snowfall, the households that report adaptation are similar to those who report no adaptation.  In 

the discussion section (4.4) we evaluate the reasons behind this finding. 

Households reported adaptations such as planting vegetation (e.g. fruit and fodder trees) 

to stabilize landslide areas, switching from traditional staple grains to crops typically grown in 

warmer climates (e.g. mustard, lentils, or alternate grains), and increasing insecticide use to 

combat the increase in agricultural pests. In open-ended comments, some respondents provided 
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explanations for why they were not adapting, including a lack of money, a lack of knowledge, 

and a general sense that the environmental changes they face are beyond their control.   

 

4. Discussion 

In the following section, we interpret the agreement between survey data and climate 

observations, compare the results to other similar studies, and suggest implications for 

adaptation.  

4.1.Temperature 

The GLDAS-2.1 dataset shows that temperatures increased in all seasons, and the 

increase was particularly steep during the summer and the monsoon season. Temperature also 

became more variable in summer and the monsoon season.  These results are consistent with 

studies elsewhere in the Himalayas.  For example, across the Himalayas the warming trend has 

been ~0.06ºC/year since circa 1980 (Negi et al., 2012; Shrestha et al. 2012). Higher rates of 

change were observed in winter months (Chaudhary et al., 2011) and at higher elevations (Negi 

et al., 2012).   

Worldwide, perceptions of temperature increase typically correspond to observed 

temperature increase from climate records (Howe et al., 2012). While some Himalayan studies 

have found that residents perceive temperature increases in both summer and winter (Chaudhary 

et al., 2011, Sharma and Shrestha 2016), we found that the majority of people perceive 

increasing temperatures only in summer.  This finding is similar to those reported by Piya et al. 

(2012) in Nepal, in which the majority also perceived increasing summer temperatures yet 

disagreed about the direction of winter temperatures. It may be that respondents are more likely 

to perceive warming when the ambient temperature is already high. A survey of 91,073 people 
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across 89 countries found that whether the survey was conducted during the warm or cool season 

had an influence on perceptions of warming; during the warm season respondents were 11-19% 

more likely to perceive that average temperatures had increased (Howe et al., 2012).  

 

4.2.Rainfall 

The GLDAS-2.1 dataset shows that rainfall increased and became more variable in the 

winter.  Outside of winter, there was no significant change in rainfall.  Previous studies have 

found that in India rainfall mean has not changed since the 1950s, but the frequency and 

magnitude of extreme events has increased (Goswami et al., 2006).  At the local level, some 

regions in India are experiencing an increase in rainfall and others a decline (Mall et al., 2006).  

While we found no monotonic change in monsoon rainfall, it is possible that there are local 

variations that we could not detect at the resolution of the GLDAS 2.1 data; a previous study 

found that in Uttarakhand, monsoon rains declined at high altitudes and increased in low 

altitudes from ca. 1960s-2000s (Singh & Mal, 2014).  

Consistent with the GLDAS-2.1 data, the majority of respondents perceive rainfall to be 

increasing. Other studies also found that local populations were able to perceive changes to the 

amount, frequency, and intensity of rainfall (Amadou et al., 2015; Chaudhary et al., 2011; 

Sharma & Shrestha, 2016), and that farmers are more likely to perceive changes than non-

farmers (Piya et al., 2012). This may be attributed in part to the visual salience (ease of 

observation) of rainfall (Vedwan & Rhoades, 2001) and to the utilitarian importance of rain.  

Farmers are highly dependent on rainfall for their crops and consequently they may be more 

aware of changes to rainfall (Amadou et al., 2015; Meze-Hausken, 2004).  In the study area, 

rainfall early in the growing seasons (i.e. June- July and November-February) is particularly 
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important for a successful harvest.  Only one of the 16 villages in the study area has an irrigation 

system; the remainder employs entirely rain-fed agriculture.   

Recent rain events may influence perceptions of long-term change. A study in Tibet 

found that locally reported perceptions are more in line with short-term, rather than long-term, 

trends possibly due to the direct impact on current livelihoods from recent events (Piya et al., 

2012). This may also be true for the present study; extreme flooding rather than long-term trends 

may shape respondents’ perception of rainfall. Two years before the survey for the present study, 

severe flash floods and debris flows in KWS landscape led to more than 4,000 deaths, many 

including many tourists and pilgrims (Chevuturi & Dimri, 2016; Kala, 2014). In qualitative 

comments, a number of respondents cited “irregular rains” and “increased landslides” as specific 

concerns (e.g. “due to fast rain fertile soil is running away and soil is no more fertile.”) While we 

found an increase in rain in the winter, there is no significant monotonic trend in rainfall in the 

summer or the monsoon season (Table 3).   

 

4.3. Snowfall 

Neither the GLDAS-2.1 dataset snowfall rate (2000-2015) nor the MODIS Terra Snow 

Cover data product (2001-2015) shows a monotonic trend. However, the MODIS data set does 

suggest that the seasonality of snow cover has shifted at higher elevations, with less snow cover 

in early season (i.e. November-December) and more snow late season (i.e. January through early 

summer).  Studies elsewhere in the Himalayas have also found snow cover trends that are 

elevation-dependent. For example, the length of the snow-covered season in Tibet has decreased 

at lower elevations and increased at higher elevations (Gao et al., 2012).  In locations where 

snowfall has remained high, an increase in precipitation has likely compensated for increase in 
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air temperature (Gao et al., 2012).  In contrast, in the upper Indus basin, there has been a 

decrease in snow cover in winter at higher elevations, but the change was not significant at lower 

elevations (Immerzeel et al., 2009).  

 In the present study, the majority of respondents believe that snowfall has decreased over 

the last 15-20 years.  The result is consistent with what has been found worldwide; communities 

across a range of biomes have reported a reduction in snowfall and snowpack in mountains 

(Savo et al., 2016). Similarly, glacial retreat and a decline in snowfall have been reported by 

communities in the Himalayas and Tibet (Byg and Salick 2009; Chaudhary et al. 2011).  Local 

farmers are highly perceptive of snowfall changes because of the high visual salience of snow 

(Vedwan & Rhoades, 2001) as well as the impacts that diminished snowfall has on crop 

production (Byg & Salick, 2009; Vedwan & Rhoades, 2001).  Although we did not ask 

respondents to comment on the timing of snowfall, participants in other similar studies have 

perceived rain and snowfall to be shifting to a later timing (Chaudhary et al., 2011; Byg & 

Salick, 2009; Piya et al., 2012; Vedwan, 2006).  

 There are a number of possible reasons why residents in our study area would perceive a 

decline in snowfall even though the datasets do not show a monotonic change. One possibility is 

that they are responding to changes other than “snowfall intensity” or “snow cover”.  For 

example, respondents may be responding to changes in snow depth, the moisture content of 

snow, the volume of snowmelt, or the magnitude of individual snow events.  These other 

characteristics of snow are not directly contained in the GLDAS 2.1 or MODIS snow cover 

datasets.  

A second possibility is that residents are sensitive to changes in snowfall at particular 

times of the year.  One study suggested that apple growers in the Himalayas are more perceptive 
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of snow early in the winter season, because early season snow promotes the required “chilling 

period” for apple trees (Vedwan, 2006).  Similarly, in the KWS landscape, residents expressed 

the belief that snowfall in early winter can kills pests and result in good harvest, while snowfall 

in late winter may damage flowering plants.  Therefore, it is possible that residents are more 

perceptive of changes in snow at certain times of year.  Third, as with perceptions of rain, it is 

possible that residents are responding to recent weather: snowfall in the year prior to the survey 

was significantly lower than average (Table 5). Fourth, it is possible that snowfall has lower 

visual salience for residents of the study area; most snowfall in the region occurs at elevations 

much higher than where people live. Finally, it is possible that residents perceived other climate-

related changes and presume that snow must be decreasing. As one respondent said, “When we 

were young then there was lot of snowfall, but today if it rains heavily than there are landslides. 

Earlier it was not like this.”  Similarly, numerous respondents perceive that the increase in pests 

is associated with a decrease in snow: for example, “Earlier there was a lot of snowfall that used 

to kill rodents, but now due to less snowfall they are increased” and “Earlier insects used to die 

due to frost and snowfall, but now climate is changing and insects are not dying”. Our analysis 

suggests, however, that although rain is increasing in the winter, there is no corresponding 

decrease in winter snowfall over the time period studied. 

 

4.4. Implications for adaptation to climate change 

Previous studies have suggested that people are not motivated to adapt to climate change 

without accurate risk perception and personal experience (Tripathi & Mishra, 2017) as well as 

scientific awareness (Rudiak-Gould, 2014).  Furthermore, poor and marginalized groups have 

difficulty adapting to climate change (Macchi et al., 2015; Stock et al., 2017). 
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While accurate perceptions of climate change may be necessary for successful adaptation, 

they were not sufficient to prompt adaptation in this case.  We found that the majority of 

respondents accurately perceived increasing summer temperatures and annual rainfall, yet very 

few engaged in adaptation or planned to do so in the future.  Indeed, very few households of any 

income level or socioeconomic group are taking action or planning to adapt.  The small number 

of households that are adapting report actions that are limited in scope (e.g. planting warmer-

weather crops, applying insecticide, planting vegetation to stabilize soil). In open-ended 

comments, respondents mentioned many barriers to adaptation, i.e. cost, a lack of knowledge, 

and a sense that there is nothing they can do.   

While perceptions of climate can shape peoples’ behavior (i.e. whether or not to adapt), 

factors in the “operational environment” such as institutions, information, resources, and 

technology also play an essential role in shaping risk perceptions and behavior (Singh et al 

2018). In the KWS landscape, respondents have access to few resources and many do not believe 

that organizations (particularly the Forest Department, Central Government, or NGOs) are 

helpful.  Thus, many respondents believe that they do not have the capacity to make meaningful 

adaptations, a collective belief that may shape the behavior and willingness of members of the 

community to adapt. 

To encourage adaptation in the communities of the KWS landscape, we believe that new 

programs must be developed by local governments and organizations. The programs should 

acknowledge the perceptions of climate change, address misconceptions, and provide adaptation 

knowledge, resources, and opportunities for community involvement.  Toward these ends, we 

propose the following actions for regional researchers, relevant NGOs, extension services, and 

local governmental bodies: (1) expand the weather station network and make the data publicly 



 

20 
 

available; (2) actively involve communities in identifying and disseminating locally appropriate 

climate data products; and (3) collaborate with communities to create a better operational 

environment for adaptation.  

First, we propose expanding and maintaining the weather station network, particularly in 

the hills and mountains. The Himalayas and Tibetan Plateau tend to be data poor and are sparsely 

covered by weather stations (Piya et al., 2012). In Uttarakhand, automatic weather stations exist 

but some are poorly maintained, and the data are typically not publicly available (SANDRP, 

2013).  The weather stations that do exist do not capture the significant altitudinal and 

topographical variation (Macchi et al., 2015).  In this study, we used the GLDAS-2.1 dataset 

because it is the only consistently collected publicly available climate data for the entire span of 

the study. Unfortunately, GLDAS-2.1 is coarse, not ‘real time,’ and requires technical expertise 

to access.  A wider network of monitoring stations would also help communities manage risk and 

water supply (Gao et al., 2019).   

Secondly, we propose actively involve communities in identifying and disseminating 

locally appropriate climate data products. Making choices about how best adapt to climate 

change requires access to reliable and timely information and is a precursor to community self-

empowerment (Ogra & Badola, 2015).  Scientific knowledge must be presented in locally 

appropriate ways that take into account social structure, community complexities, and local 

needs (Muccione et al., 2016).  While classic meteorological variables (e.g. air temperature, 

humidity, air pressure, precipitation, and wind) should be reported (Gao et al., 2019), so too 

should data summaries that directly relate to local livelihoods. Since the seasonality of climate 

change is important to residents, climate summaries should include the timing and intensity of 

change in addition to current weather and annual averages. 
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Finally, researchers, local governments, NGOs, and extension services should collaborate 

more with communities to build a better operational environment for adaptation.  Extension 

service agents can play an important role as information disseminators between government 

support programs and beneficiaries (Abid et al., 2015).  The Forest Department authorities in the 

KWS and the NGO sector are well-positioned to assist local communities to adapt to climate 

change. It is important that the staff members of these institutions are trained in basic 

meteorology and climate science (Piya et al., 2012), as well as recognize how climate change 

differentially impacts livelihood vulnerability (Shukla et al., 2016; Ogra & Badola, 2015).  By 

disseminating knowledge and building a community around climate change adaptation, local 

governmental organizations and NGOs can create viable pathways for a wider range of effective 

adaptation strategies. 

  

5. Conclusion 

Changes in temperature and precipitation have direct impacts on agricultural 

productivity, leading to reduced water availability for irrigation, lower soil fertility, declines in 

crop yields, shifting of crop cycles, and invasion of new weeds and pest species (Negi et al., 

2012; Tripathi & Mishra, 2017).  In the KWS landscape, we found evidence that temperature is 

increasing across all seasons, that rainfall is increasing in the winter, and that there is no 

monotonic change in winter snowfall or summer/monsoon rain. The majority of respondents 

perceived an increase in summer temperature and an increase in rainfall, but contrary to the 

climate data, perceived no change in winter temperature and perceived a decrease in snowfall. 

One finding differs from other related studies: respondents perceive a decrease in snowfall 
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decrease, while snowfall has primarily shifted later in the season but has not decreased overall 

during the period of the study.  

There are several reasons why perceptions do not consistently match climate data.  Rain 

and snow have greater visual salience (more easily observable) than temperature (Vedwan & 

Rhoades, 2001).  This may explain why respondents are in greater agreement about trends in 

precipitation than trends in temperature even though the statistical evidence for temperature is 

stronger.  Furthermore, perceptions of climate change are influenced by short-term local weather 

patterns, which are variable and may not reflect long-term trends (Howe et al., 2012; Shao, 2015; 

Piya et al., 2012; Lehner & Stocker, 2015).  The 2013 floods in Uttarakhand may have 

influenced respondent perceptions of “total rainfall” even though there is no long-term 

monotonic trend in rainfall in the summer or monsoon seasons.  Finally, perceptions can be 

affected by climate factors that we did not measure.  For example, while there is no evidence of a 

change in total snowfall, residents may perceive that snow is melting more quickly and presume 

that increased winter rain necessarily leads to decreased winter snowfall.  

In this study, the perceptions of climate change were not clearly connected to adaptation; 

very few households have plans for adaptation regardless of their climate perceptions or 

socioeconomic factors.  To encourage a wider range of effective adaptation measures, 

communities in the KWS landscape and other similar regions in the Himalayas would benefit 

from improved weather and climate monitoring, locally appropriate data products, and active 

collaboration on adaptation strategies with researchers, NGOs, local government, and extension 

services.  
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Table 1: Study area villages. 
 

Village Name 
Number of 
Households 
Surveyed 

Minimum 
Elevation (m) 

Maximum 
Elevation (m) 

Proximity to  
KWS 

Bedula  20  1271  1665  Outside 

Bhatwari  7  1283  1392  Outside 

Buruwa  16  1346  1622  Outside 

Chaumansi  10  1926  2354  Inside 

Chilond  10  1878  2117  Inside 

Gadgu  18  1550  1755  Inside 

Gaundar  10  1700  2969  Inside 

Jal Malla  15  1463  2043  Outside 

Kalimath  16  1221  1335  Outside 

Kaviltha  8  1404  1524  Outside 

Khonu  8  1608  1700  Outside 

Kotma  20  1438  2021  Outside 

Mansoona  22  1307  2687  Outside 

Ransi  24  1251  2649  Inside 

Raulaink  29  1290  1752  Outside 

Sansari  18  1068  1305  Outside 
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Table 2: Survey questions and associated climate data sources. 

Survey question: 
  “Have you noticed 
changes in any of the 

following 
environmental 

conditions over past 15‐
20 years?” 

GLDAS‐2.1 Data (2000‐
2015) 

Tungnath 
Weather Station 

Data 
(2008‐2010) 

Pearson’s R Correlation of 
monthly GLDAS 2.1 and 

Tungnath Weather Station 
Data   

(2008‐2010) 

Temperature 

(Winter and Summer) 

Average surface skin 

temperature, ºK 
Temperature, ºK  .95 ** 

Total Rainfall 
Rain precipitation rate, 

kg/m2/s 
Rainfall (cm)  .85 ** 

Total Snowfall 

Snow precipitation 

rate, kg/m2/s  Snowfall (cm) 
.67 ** 

Snow Cover (NDSI)  .64 ** 

 
* significant at p<.05 level 

** significant at p<.01 level 
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Table 3: Mann‐Kendall (M‐K) Trend and Sen’s Slope Estimate for mean and standard deviation of GLDAS‐2.1 climate variables 2000‐2015. 

Climate Variable (Mean)
Mann‐Kendall 

Trend
Sig

Sen's Slope 
Estimate

RMSE Residuals

Annual temperature (C) 3.65 *** 0.22 0.66

Winter temperature (C) 2.47 * 0.20 0.70
Summer temperature (C) 2.93 ** 0.26 1.01

Monsoon temperature (C) 3.76 *** 0.27 0.48

Annual Rain precipitation rate (kg/m2/s * million) 2.12 * 0.06 3.45

Winter Rain precipitation rate (kg/m2/s * million) 3.07 ** 0.69 0.46

Summer Rain precipitation rate (kg/m2/s * million) ‐0.23   ‐0.30 11.90
Monsoon Rain precipitation rate (kg/m2/s * 

million) 1.19    0.96 13.13

Winter Snowfall rate (kg/m2/s * million) 0.11   0.02 1.08

Winter Snow Cover (NDSI) 0.00   0.02 3.28

Climate Variable (Standard Deviation)
Mann‐Kendall 

Trend
Sig

Sen's Slope 
Estimate

RMSE Residuals

Annual temperature (C) 3.02 ** 0.10 0.42

Winter temperature (C) 1.64   0.09 0.54

Summer temperature (C) 2.03 * 0.14 0.70
Monsoon temperature (C) 1.98 * 0.09 0.63

Annual Rain precipitation rate (kg/m2/s * million) 2.12 * 0.57 3.45
Winter Rain precipitation rate (kg/m2/s * million) 3.18 ** 2.84 20.12

Summer Rain precipitation rate (kg/m2/s * million) ‐0.14   ‐0.89 48.78
Monsoon Rain precipitation rate (kg/m2/s * 

million) 1.19
 

2.14 32.37

Winter Snowfall rate (kg/m2/s * million) 1.39   1.52 15.67
Winter Snow Cover (NDSI) 0.11   0.02 3.28

* significant at p<.05 level 

** significant at p<.01 level 

   



Table 4: Agreement of perceptions and climate data 
 

Survey Variable 
Modal perception of 
change (15‐20 years 
leading up to 2015) 

Monotonic change 
in climate data 
(2000‐2015) 

Agreement 

Summer Temperature  Increase (53%)  Increase **  Yes 

Winter Temperature  No Change (51%)  Increase **  No 

Total Rainfall  Increase (82%)  Increase *  Yes 

Total Snowfall  Decrease (79%)  No Change  No 

 
* significant at p<.05 level 

** significant at p<.01 level 
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Table 5: Percentile of recent years within time series. 

Climate Variable  2013  2014 2015 Average

Annual Temperature  100%  93% * 97%

Winter Temperature  64%  85% 75% 75%

Summer Temperature  93%  80% 33% 69%

Monsoon Temperature  100%  77% * 88%

Annual Rainfall Rate  100%  60% * 80%

Winter Rainfall Rate  57%  100% 92% 83%

Summer Rainfall Rate  100%  27% 73% 67%

Monsoon Rainfall Rate  36%  50% * 43%

Winter Snowfall Rate  73%  33% 60% 56%

Winter Snow Cover  54%  85% * 69%

* Excluded (post‐survey) 
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