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A random packing of hard particles represents a fundamental model for granular matter. Despite its importance,
analytical modeling of random packings remains difficult due to the existence of strong correlations which
preclude the development of a simple theory. Here, we take inspiration from liquid theories for the n-particle
angular correlation function to develop a formalism of random packings of hard particles from the bottom
up. A progressive expansion into a shell of particles converges in the large layer limit under a Kirkwood-like
approximation of higher-order correlations. We apply the formalism to hard disks and predict the density
of two-dimensional random close packing (RCP), φrcp = 0.85 ± 0.01, and random loose packing (RLP), φrlp =
0.67 ± 0.01. Our theory also predicts a phase diagram and angular correlation functions that are in good agreement
with experimental and numerical data.

DOI: 10.1103/PhysRevE.89.052207 PACS number(s): 81.05.Rm

I. INTRODUCTION

In recent years, many important practical applications
have been found for granular materials, which are commonly
modeled by dense packings of hard spheres [1]. Sphere packing
problems are equivalent to important problems in number
theory and error-correcting coding [2], both of which are
fundamental in computer science. Despite its importance,
analytical developments in granular matter have lagged behind
in comparison with other fields of condensed matter, like liquid
theory. In the case of random packings [3], analytical results
are still difficult to obtain. The theoretical difficulty arises due
to (i) the absence of a first-principle derivation of the statistical
ensemble of packings (such as Liouville’s theorem in ordinary
liquids) that would lead to a proper definition of randomness
[4], and (ii) the existence of correlations between the particle
positions determining the properties of random packings.

In previous theories, these correlations have been neglected
or treated using simple approximations. For instance, Gotoh
and Finney [5] estimated the density of RCP based only on
correlations among the contact neighbors. Another example is
the “granocentric” model [6], which considers the correlations
between the central particle and nearest Voronoi neighbors.
Beyond local correlations, the statistical treatment of Song
et al. takes a mean-field approximation of the long-range
correlations [7,8]. Other mean-field approaches are developed
based on liquid theories [9] and replica theory (RT) of the
glass transition [10]. However, in low dimensions the effects
of fluctuations are strong and mean-field approximations are
insufficient. For example, in two dimensions, the coarse-
grained approximation used in Ref. [7] works poorly [11],
and therefore more sophisticated treatments of correlations
become necessary.

In this paper, we aim to establish a framework for random
packings that addresses the two problems stated above:
(i) we define an ensemble of equiprobable graphs that satisfy
the jamming conditions to represent the statistics of all possible
contact networks, and (ii) we take into account pair and

*Corresponding author: hmakse@lev.ccny.cuny.edu

higher-order particle correlations that are important to describe
low-dimensional systems. Inspired by the more advanced
liquid theories, our formulation is analogous to the Yvon-
Born-Green (YBG) hierarchy [12] augmented to consider the
contact network and local and global jamming conditions for
packings. We develop a systematic layer expansion within a
Kirkwood-like superposition approximation [12] to provide
a phase diagram and predictions of the volume fractions
of jammed packings. The theoretical predictions on volume
fractions and pair distribution functions agree well with
experiments and computer simulations on two-dimensional
(2D) frictional packings. We also discuss the relation between
the present approach and glass theory frameworks in search of
unifications of random packings and glasses [10,13–15].

The present approach builds up on the Edwards mean-field
theory of packings developed by Song et al. [7], by incor-
porating correlations between the particle positions. Previous
theory [7] utilizes a mean-field assumption of uniformity of
the particle density in the bulk as well as the particles in
contact. The present theory is a bottom-up approach to take into
account particle-particle correlations which were neglected in
[7] in a systematic way. In the thermodynamic limit of an
infinite number of particles in the bulk and contacts, the theory
recovers the results of Song et al. [7], namely the exponential
form of the distribution of the excluded Voronoi volume
which is the basic result to predict the volume fraction of the
packing.

The paper is organized as follows: In Sec. II we develop a
general theoretical formalism. The formalism is applied to 2D
packings (Sec. III) which provides a phase diagram (Sec. IV).
The theoretical predictions are tested with experiments and
computer simulations in Sec. V. At the end, we conclude our
paper with discussions (Sec. VI).

II. GENERAL FORMALISM

Within the context of the Edwards statistical ensemble
of packings [7,8,16–19], the volume associated with each
particle plays the role of the Hamiltonian, since packings
tend to minimize the occupied volume rather than energy. The
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FIG. 1. (Color online) Illustration of the theoretical formalism.
(a) A 2D illustration of the Voronoi volume (bounded by red lines)
and the Voronoi radius � in direction ŝ. (b) The Voronoi excluded
volume �(�) (pink area). � is determined by particle j because
it minimizes

rij

2ŝ·r̂ij . (c) An illustration of the contact network and
the Voronoi particles. Each dot represents a particle. The exclusive
angle αj is the angle between any two contact neighbors. No other
contact particles are allowed to be inside this angle. (d) In two
dimensions, the Voronoi radius � is determined by the Voronoi
particles on the two closest branches (green). Other particles may
contribute only in an exceptional case such as shown by the dashed
blue line. (e) An illustration of the geometrical quantities used in the
calculation of P (�). (f) Mapping monodisperse contact disks to 1D
rods. The 2D exclusive angle α corresponds to the 1D gap.

fundamental quantity to describe the packing ensemble is the
Voronoi volume surrounding each particle, which is defined as
the volume of the Voronoi cell whose interior consists of the
points that are closer to a given particle than to any other.
The d-dimensional Voronoi volume Wi of particle i is an
angular average of a function of the “Voronoi radius” � [7]
[see Fig. 1(a)]:

Wi =
∮ ∫ �

0
rd−1dŝdr = Sd

d
〈�d〉s , (1)

where Sd is the d-dimensional solid angle. By the definition
of the Voronoi cell, � is the minimum of the projection of the
distance �rij (from particle i to any other particle j ) along the
direction ŝ, � ≡ minŝ·r̂ij

rij

2ŝ·r̂ij
, and ŝ · r̂ij > 0 [Fig. 1(b)].

According to Eq. (1), the ensemble average of the Voronoi
volume is

〈W 〉e = 1

N

∑
i

〈Wi〉e = Sd

d
〈〈〈�d〉s〉i〉e, (2)

where 〈· · · 〉s is the average over direction ŝ, and 〈· · · 〉i
is the average over particle i. In the random ensemble of
homogeneous and isotropic packings, each particle as well
as each direction is equivalent. Thus � is independent of
particle i and direction ŝ:

〈W 〉e = Sd

d
〈�d〉e. (3)

Equation (3) shows that it is enough to consider the distribu-
tions of particle positions along any arbitrary direction around
any arbitrary particle, and the result is representative for the
global properties of the entire packing. This feature of random
packings significantly simplifies the problem. Furthermore,
this ensemble average can be calculated from distribution
functions:

〈W 〉e = Sd

d

∫ ∞

0
�dp(�)d� = −Sd

d

∫ ∞

0
�ddP (�), (4)

and the packing fraction φ is the ratio between the volume of
spheres,

φ = Vd

〈W 〉e . (5)

Here p(�) is the probability distribution function of � in the
ensemble, and P (�) is the inverse cumulative distribution
function: p(�) = −dP (�)/d�. According to the definition,
P (�) is the probability that rij

2ŝ·r̂ij
> � for all j particles

at a distance rij from i. Geometrically, P (�) corresponds
to the probability that all particles are outside a “Voronoi
excluded volume,” �(�), which is a sphere of radius �

[Fig. 1(b)]. The Voronoi excluded volume is a generalization
of the excluded volume due to hard-core interactions, dating
back to Onsager’s hard rods solution [20]. The distribu-
tion function P (�) is similar to the exclusion probability
function in the scaled particle theory for liquids [21], and
is related to the n-particle correlation functions gn of all
orders [8].

As shown in Fig. 1(c), to determine P (�) we need to
consider Voronoi particles which are the only ones with
possible contributions to the Voronoi radius �. This means that
in the condition rij

2ŝ·r̂ij
> � for P (�), we only need to consider

particle j labeled as a Voronoi particle. In two dimensions, the
Voronoi particles are located on the two closest branches to
the direction ŝ, but in higher dimensions more branches
should be considered. The positions of the Voronoi particles
are described by the n-particle angular correlation function
Gn(α1,α2, . . . αn) of exclusive angles.

However, to calculate Gn one needs to define a proper
ensemble first. Here we use the principle of entropy maxi-
mization which corresponds to a statistical treatment of an
ensemble of all jammed states, each of which has an equal
probability [5,7,8,16]. This ensemble can be represented by
a set of contact networks satisfying the jamming condition,
while for a given contact network, particle positions are
allowed to fluctuate without destroying the contacts. Our
approach defines a random packing as the typical state in a
flat average over the ensemble of all possible graphs of contact
network configurations constraint to a given average coordi-
nation number [7]. Mechanical force and torque balance are
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assured by the isostatic condition imposed on the coordination
number [22].

The network representation is a unique feature of packings
compared to unjammed liquid systems. For contacting neigh-
bors, we only need to know the distribution of the surface
angles: The original d-dimensional problem is mapped onto
a (d − 1)-dimensional space. The theory is mathematically
treatable in two limits: (i) In two dimensions, the one-
dimensional (1D) surface space can be analyzed analytically;
(ii) in large dimensions, the contacting neighbors on the surface
can be approximated to the simple ideal gas [8]. Below we
apply the general formalism to study 2D random packings,
where correlations are more profound.

III. APPLICATION OF THE THEORY
IN TWO DIMENSIONS

In this section, we apply the general formalism in two
dimensions, and provide quantitative predictions which can
be tested by experiments and computer simulations. The
approach may be generalized to higher dimensions, although
the calculations might become much more complicated.

A. Calculation of P(�)

By definition, P (�) of the central particle i = 1 is
the probability that the Voronoi excluded volume �(�) is
empty of particles, or equivalently r1j

2ŝ·r̂1j
> � for any other

particle j .
It is sufficient to only consider “Voronoi particles” on the

two closest branches except for the case shown in Fig. 1(d).
This exception disappears in the infinite expansion order limit
n → ∞. The condition that all Voronoi particles are outside
�(�) requires that r1j

2 cos βj
> �, where r1i is the distance between

the central particle i = 1 and the Voronoi particle j , and
cos βj = ŝ · r̂1j . We can write P (�) as

P (�) = lim
n′→∞

∫
· · ·

∫
p(�r12,�r13, . . . �r1n′)

×
n′∏

j=2

�

(
r1j

2ŝ · r̂1j

> �

)
d�r12 · · · d�r1n′ , (6)

where n′ is the total number of Voronoi particles considered,
and p(�r12,�r13, . . . �r1n′) is the distribution function of the
positions of Voronoi particles. The constraints �( r1j

2ŝ·r̂1j
− �)

impose the Voronoi exclusive conditions. For a given contact
network, the positions (�r12,�r13, . . .) can be transformed to
the exclusive angles (α1,α2, . . .) and the angle β of the
direction ŝ (see Appendix A). Using this transformation, P (�)
becomes

P (�) = lim
n→∞

∫
· · ·

∫
p(�r12,�r13, . . . �r1,n+2)

×
n+2∏
j=2

�

(
r1j

2ŝ · r̂1j

> �

)

× ∂(�r12,�r13, . . . �r1,n+2)

∂(β,α1, . . . ,αn)
dβdα1 · · · dαn, (7)

where we let n′ = n + 2. If the contact network is fixed, the
degree of freedom of each particle is reduced from two to
one. Therefore the position variables (�r12,�r13, . . . �r1,n+2) and
angular variables (β,α1, . . . ,αn) have the same total n + 1
degrees of freedom.

Now the distribution of positions can be related to the
distribution of angles:

p(�r12,�r13, . . . �r1,n+2)
∂(�r12,�r13, . . . �r1,n+2)

∂(β,α1, . . . ,αn)

∼ G(β,α1, . . . ,αn)

∼ �(α1 − β)Gn(α1, . . . ,αn). (8)

The Heavyside function �(α1 − β) means that the direction
ŝ is uniformly distributed and is bounded by the Voronoi
particles (β < α1). Using Eq. (8), we rewrite Eq. (7) with
the n-particle angular correlation function Gn:

P (�) = lim
n→∞

z

L

∫
· · ·

∫
�(α1 − β)Gn(α1, . . . αn)

×
n+2∏
j=2

�

(
r1j

2ŝ · r̂1j

− �

)
dβdα1 · · · dαn, (9)

where L = 2π , z is the average coordination number, and
z/L is a normalization factor determined from the condition
that P (1/2) = 1 (we set the particle diameter to be one).
Equation (9) can be truncated at any value of n, and becomes
exact in the limit n → ∞. In this study, it is treated as
an expansion of n or number of coordination layers (n
corresponds to twice the number of layers).

Equation (9) is similar to the YBG hierarchy [12] in
liquid theories in the sense that it relates one distribution
function, P (�), to another, Gn. This similarity inspires us
to bring the two approaches together to solve Eq. (9)
within a closure approximation for Gn. In liquid theory,
the three-point correlation function g3 is decomposed into
the product of pair correlation functions g2, by the use of
Kirkwood’s superposition approximation [23]. This provides
a closure of the YBG hierarchy, which results in the nonlinear
integro-differential Born-Green equation [12]. Here we use a
similar Kirkwood-like approximation to decompose Gn into
the single-particle angular correlation function G(α):

Gn(α1, . . . αn) ≈
n∏

j=1

G(αj ). (10)

This approximation neglects higher-order correlations be-
tween particles that do not share any common neighbors
(Appendix B).

B. Calculation of the single-particle angular correlation
function G(α) from a 1D model

To find G(α), we map the contacting particles to a system
of 1D rods with an effective potential. As shown in Fig. 1(f),
the contact particles in two dimensions can be mapped to
a set of z interacting 1D hard rods at position xi of length
l0 = π/3 and system size L = 2π = 6l0, with a periodic
boundary condition. The local jamming condition requires
that each particle has at least d + 1 contacting neighbors,
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and not all of these neighbors are in the same “hemisphere.”
In two dimensions, this means that z � 3 and there is no
exclusive angle α that could be greater than π . In the equivalent
1D model, the latter condition requires that no two nearest
neighbors are separated farther than 3l0. Thus, the jamming
condition is equivalent to introducing an infinite square-well
potential between two hard rods:

V (x) =
{

∞, if x/l0 < 1 or x/l0 > a

0, if 1 < x/l0 < a,
(11)

with potential parameter a = 3. The total potential is a sum of
the pairwise potentials,

V (x1, · · · ,xz)

= V (L − xz) + V (xz − xz−1) + · · · + V (x2 − x1). (12)

To solve the 1D model, we first calculate the partition
function Q(L,z), which is

Q(L,z) =
∫

· · ·
∫

exp[−V (x1, · · · ,xz)
z∏

i=2

dxi

=
∫ l

0
exp[−V (L − xz)]dxz

×
∫ xz

0
exp[−V (xz − xz−1)]dxz−1 · · ·

×
∫ x3

0
exp[−V (x3 − x2)] exp[−V (x2)]dx2, (13)

where we have used Eq. (12), and set the temperature to be
the unit since it is irrelevant for our system. This integral is a
z-fold convolution for the Laplace transform of the function
exp[−βV (x)] [24], which could be written as

Q(L,z) = 1

2πi

∫ γ+i∞

γ−i∞
esLqz(s)ds,

(14)

q(s) =
∫ ∞

0
exp[−sx − V (x)]dx,

where γ is greater than the real parts of all the singularities of
q(s). If we plug the potential V (x) [Eq. (11)] in q(s), we have
(see Appendix C for details)

Q(L,z) =
� L/l0−z

2 �∑
k=0

(−1)k
(

z

k

)
[L/l0 − z − 2k]z−1

(z − 1)!

×�(L/l0 − z)�(3z − L/l0), (15)

where �x� is the integer part of x.
To provide an analytical form of the single-particle angular

correlation function, we consider the distribution of gaps
between 1D neighboring rods. For simplicity, we only consider
the gap between rods 1 and 2 (its distribution is the same as
that of other gaps due to translational invariance):

G(α) = 〈δ(x2 − x1 − α)〉

= 1

Q(L,z)

∫
· · ·

∫
0=x1<x2<···<xz<L

z∏
i=2

dxi

× exp[−βV (x1, · · · ,xz)]δ(x2 − α)

= exp[−βV (α)]

Q(L,z)

∫
· · ·

∫
α=x2<x3<···<xz<L

z∏
i=3

dxi

× exp[−βV (x2, · · · ,xz)]

= Q(α,1)Q(L − α,z − 1)

Q(L,z)
. (16)

If we set a = ∞ in the potential V (x), the system becomes
a classical model—a one-dimensional gas of hard rods (Tonks
gas) [25]. In the thermodynamic limit (L → ∞ and z → ∞),
the gap distribution is [24,25]

GHR(α) = ρf e−ρf (α/l0−1), (17)

where ρf = z/(L/l0 − z) is the free density. This result is
exact in one dimension because the Kirkwood-like decompo-
sition Eq. (10) is satisfied. Equation (17) is also consistent with
the exponential form of the distribution of Voronoi excluded
volume in Ref. [7], where the 1D hard rod model is used as a
mean-field approximation for 3d packings.

IV. PHASE DIAGRAM OF 2D JAMMED PACKINGS

The strategy of our method to calculate the volume fraction
for a fixed coordination number z is to first evaluate G(α)
from Eq. (16), then plug it into Eqs. (10) and (9) to calculate
P (�) and eventually obtain 〈W 〉e and φ via Eqs. (4) and (5).
Equation (9) is a high-dimensional integration which is solved
numerically by the Monte Carlo method.

In the proof of the Kepler conjecture, Hales shows that
considering a cluster of 50 spheres is sufficient in search
for the optimal crystal packing [26]. Analogously, we expect
that the volume fraction of random packings would converge
quickly with n. We truncate the expansion Eq. (9) to a
finite value of n, and extrapolate the finite behavior to the
infinite limit. Indeed, our results show that φ(n) approaches
the asymptotic value φ∞ exponentially fast as n → ∞
(Fig. 2 inset).

The results can be visualized into a 2D phase diagram in
the z − φ plane. Figure 2 shows the equation of state φ∞(z)
(see Appendix D for values) as well as the approach to this
asymptotic value for small n. Our formalism reproduces the
highest density in 2D packings obtained by Thue and Tóth [27]
of hexagonal packing φ∞

hex = 0.91 at z = 6. It also predicts
the densities of isostatic packings with different friction
coefficients. In order to have a mechanical stable packing, the
isostatic counting argument [22,28] requires that z = 2d = 4
for frictionless packings (RCP), and z = d + 1 = 3 for infinite
frictional packings (RLP). Our theory asymptotically predicts
the two limiting cases: φ∞

rcp = 0.85 ± 0.01 and φ∞
rlp = 0.67 ±

0.01 for z = 4 and z = 3, respectively.
The 2D RCP density of monodisperse packings has been

estimated theoretically by Berryman from a continuous exten-
sion of the liquid phase [9], which reports φrcp = 0.82 ± 0.02.
However, this approach is questionable due to the existence of
a glass transition between liquid and jammed phases as noted
in [10]. Binary disk simulations (commonly used to suppress
crystallization) obtain φrcp ∼ 0.84 [29] which is within the
predicted φ∞

rcp. On the other hand, to our knowledge there is
no reported density of 2D RLP.
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FIG. 2. (Color online) Phase diagram of 2D packings. Theoret-
ical results for n = 1,2,3 (line points, from left to right) and φ∞

(red) are compared to (i) values in the literature: Berryman [9]
(down triangle), RT [10] (diamond), and O’Hern et al. [29] (up
triangle), (ii) simulations of 10 000 monodisperse disks (crosses),
and polydisperse disks (pluses) with a discrete uniform distribution of
radius in [0.7,1.0] (in unit of maximum radius), and (iii) experimental
data of frictional disks (square). (Inset) The theoretical RCP volume
fraction φrcp(n) as a function of n. The points are fitted to a function
φrcp(n) = φ∞

rcp − k1e
−k2n, where k1 = 0.34 ± 0.02, k2 = 0.67 ± 0.06,

and φ∞
rcp = 0.85 ± 0.01 (blue dashed line). Other values of φ∞ (with

different z) are obtained in the same way.

More sophisticated theories use RT to solve for the density
of hard spheres [10,13], and predict that packings can exist
in a range of volume fractions at the isostatic coordination
number z = 2d [10]. In the case of two-dimensional packings
RT predicts isostatic packings in a range from the threshold
density φth = 0.8165 to the maximum density of glass close
packing φGCP = 0.8745 [10]. It is interesting to interpret our
prediction of a single RCP point within the range predicted by
RT [10]. The ensembles in our theory are characterized by the
correlation functions like Gn or P (�). This provides a system-
atic way to correlate φ to characteristic packing structures. If
the isostatic packings could indeed have different correlations,
which might be protocol dependent in the experimental
realizations, then our theory would also predict multiple
packing fractions as in RT, based on proper characterizations
of the correlations. This venue will test possible commonalities

between Edwards statistical mechanics for jamming and the
mean-field RT picture for glasses, a unification that has been
sought after in the field [8,13–15].

V. EXPERIMENTAL AND NUMERICAL TESTS

The experiments are conducted using a granular monolayer
of photoelastic disks [31]. The data consist of 500 packings
each containing 1004 bidisperse disks in a 1:1 concentration
with diameters 11.0 and 14.4 mm, having an interparti-
cle friction coefficient μB ≈ 0.8. Packings are isotropically
compressed and recorded using separate images to measure
the position of the disks and contact forces. This study
presents data similar to Ref. [31], except that we consider
only the majority particles in the bath with the same friction
coefficient. More experimental details can be found in Ref. [31]
and Appendix E. The average φ = 0.7859 ± 0.0006 and the
average z = 3.4 ± 0.1 agree well with the prediction of the
theory as seen in Fig. 2.

Further test of the theory is obtained by comparing the
correlations. For this purpose, we obtain the angular corre-
lation function g(θ ) [32] (equivalent to the pair correlation
function of angles, where θ is the angle between any two
surface particles) from the theory (Appendix F):

g(θ ) = L

z

z−1∑
m=1

Q(θ,m)Q(l − θ,z − m)

Q(l,z)
, (18)

which reproduces well the experimental data (Fig. 3). The
theory deviates from data in the peak magnitudes but not
locations when the local coordination number z1 = 5. This
might be due to the presence of the polydisperse effect in
the experiments (which becomes more significant for larger
coordination numbers), or the neglect of higher-order corre-
lations in the theory. The peak presented in the experimental
data at θ ≈ π/3 (or 5π/3) when z1 = 3 is probably due to the
remaining crystalline order in binary packings.

We also tested the theory with simulation packings gener-
ated by the Lubachevsky-Stillinger (LS) algorithm [33] and the
“split” algorithm [7]. Using simulations we are able to test the
full curve of φ(z). We prepare packings for both monodisperse
and polydisperse disks in the random phase 3 < z < 4 by
changing the interparticle friction coefficient from zero (z = 4,
RCP) to infinity (z = 3, RLP) [34]. We find good agreement

FIG. 3. (Color online) Angular pair correlation function g(θ ). The theoretical g(θ ) (red solid lines, rescaled by π/3) is compared to
simulation (black triangle lines) and experimental (green circle lines) data, with local coordination number (a) z1 = 3, (b) z1 = 4, and
(c) z1 = 5 [30]. The simulation data are obtained from a polydisperse RCP packing in order to avoid crystallization. The subset of particles
with local coordination number z1 is used to evaluate g(θ ).
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except for small z, which suggests that for very loose packings,
higher-order correlations beyond the Kirkwood decomposition
Eq. (10) may be necessary. The numerical g(θ ) is consistent
with theories and experiments as seen in Fig. 3. Our results are
in line with existing analysis [36].

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we construct a framework to study random
packings. Our theory is based on a statistical approach, which
assumes that each state can be visited with equal probability.
The approach should be applied and generalized with caution.
For example, in Ref. [31], the authors studied the equilibrium
of two subsystems with different frictions. They found that
while each subsystem is equilibrated, only the angoricity
(conjugate to the stress) but not the compactivity (conjugate to
the volume) equilibrates between the two subsystems. In this
case, one should appropriately integrate the stress ensemble
with the volume ensemble. Moreover, in recent years, it
is found that several protocols produce RCPs at densities
different from the commonly observed values (φRCP ∼ 0.64
in 3d and φRCP ∼ 0.84 in two dimensions). The ensembles
generated by these protocols are likely different from the
Edwards ensemble, and the final states could depend on the
dynamics of the protocols. In principle, one needs a dynamic
theory for each of these protocols, and we leave the question
open whether they can be described by static theories like the
present approach.

The mean-field theory to Song et al. [7] has been gen-
eralized to particles of nonspherical shapes by Baule et al.
[37–39]. The present theory offers the possibility to take into
account the correlations neglected in [37] to build up a theory
of nonspherical particles from the bottom up. For instance,
2D packings of ellipses require a 1D model with orientations
[Fig. 4(a)]. The solution of such a model (named the “Paris car
parking” problem [40]) will lead to a prediction of RCP and
the optimal packing of elongated particles, an open theoretical
problem with implication for self-assembly of nanoparticles

FIG. 4. (Color online) Generalization of the model. (a) Mapping
contact ellipses to the Paris car parking model [40]. (b) Mapping
polydisperse contact disks to polydisperse rods. (c) Mapping mixtures
of disks and ellipses to a 1D model.

and liquid crystal phases. It is also possible to generalize
this model to polydisperse systems, by explicitly calculating
the dependence of the local coordination numbers with the
concentration of species [41], and mapping the problem to a
“car parking” problem of polydisperse cars [Fig. 4(b)]. Note
that in our experiments and simulations, we have introduced
a weak polydispersity to avoid crystalline order. Although
one usually neglects the packing fraction corrections of weak
polydispersities [36], we expect monodisperse theories to
become insufficient for systems with strong polydispersities.
Furthermore, the theory can be applied to mixtures of spherical
and nonspherical objects in search of new phases of jammed
matter [Fig. 4(c)].

Overall, the present formalism facilitates a systematic
investigation of correlations in packings, and paves the path to
a solvable model. The framework may be extended to predict
the optimal ordered and disordered packings over a set of
specified shapes, dimensions, and friction properties.
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APPENDIX A: CALCULATION OF ANGLES IN P(�)

We need n + 1 angles, (β,α1, . . . ,αn), to determine the
positions of Voronoi particles. According to the geometrical
relationships (Fig. 5), other angles and distances can be
calculated from these integration variables recursively as

σj = αj−2 − τj−2,

r1j =
√

r2
1,j−2 + 1 − 2r1,j−2 cos σj ,

τj = arcsin

(
r1,j−2

r1j

sin σj

)
, (A1)

ηj = arcsin

(
1

r1j

sin σj

)
,

γj = γj−2 + ηj ,

and

βj =
{
β2 − γj , if j = 4,6,8 . . .

β3 − γj , if j = 5,7,9 . . . ,
(A2)

FIG. 5. (Color online) An illustration of the geometrical relations
between angles and distances.
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with initial values,

σ2 = τ2 = η2 = γ2 = 0,

β2 = β,

r12 = 1,
(A3)

σ3 = τ3 = η3 = γ3 = 0,

β3 = α1 − β2,

r13 = 1.

APPENDIX B: A DISCUSSION ON THE KIRKWOOD-LIKE
DECOMPOSITION OF THE n-PARTICLE ANGULAR

CORRELATION FUNCTION

The Kirkwood-like decomposition Eq. (5) in the main text
is an approximation of the n-particle angular correlation func-
tion Gn(α1, . . . αn), which neglects higher-order correlations
between particles that do not share a common contact neighbor.
To see this, let us look at the simplest case when n = 2. An
expression of G2(α1,α2) is

G2(α1,α2) ∼
∫ L

γ1=0

∫ L

γ2=0
Q(α1,1)Q(γ1,1)

×Q(α2,1)Q(γ2,1)

×Q(L − α1 − γ1,z − 2)

×Q(L − α2 − γ2,z − 2)

×�(r34 − 1)�(r56 − 1)dγ1dγ2, (B1)

where L = 2π , and Q(L,z) is the partition function of 1D
rods (see below). The particles and angles are indicated in
Fig. 6. The Heaviside step functions impose the hard-sphere
constraints between particles 3 and 4, and between 5 and 6,
which are not in direct contact with any common neighbors
(compared to “direct” particles such as particles 2 and 3,
which share a common neighbor particle 1). If we neglect the
hard-sphere constraints between these indirect particles, and
only include correlations between direct particles, Eq. (B1)

FIG. 6. (Color online) An illustration of particles and angels in
Eq. (B1). There are z − 3 particles (not shown) between particles 3
and 5 (4 and 6).

becomes

G2(α1,α2) ∼
∫ L

γ1=0

∫ L

γ2=0
Q(α1,1)Q(γ1,1)

×Q(α2,1)Q(γ2,1)

×Q(L − α1 − γ1,z − 2)

×Q(L − α2 − γ2,z − 2)dγ1dγ2. (B2)

Because∫ L

γ1=0

Q(L − α1 − γ1,z − 2)Q(γ1,1)

Q(L − α1,z − 1)
dγ1 = 1, (B3)

(same for γ2), Eq. (B2) can be further written as

G2(α1,α2) ∼ Q(α1,1)Q(L − α1,z − 1)

×Q(α2,1)Q(L − α2,z − 1)

∼ G(α1)G(α2). (B4)

The above derivation shows that the two-particle angular
correlation function G2(α1,α2) can be approximated as a
product of single-particle angular correlation functions, if
higher-order correlations are neglected. The same analysis can
be extended to Gn(α1, . . . αn) when n > 2.

APPENDIX C: PARTITION FUNCTION OF 1D RODS

To simplify the notation, here we set the size of rods to
be the unit, l0 = 1. The full expressions (in the main text) are
recovered by adding a proper scaling factor 1/l0 to the distance
parameters, such as x and L. If we plug the potential Eq. (11)
in q(s) [Eq. (14)], we have

q(s) =
∫ a

1
e−sxdx = e−s − e−as

s
, (C1)

and the partition function becomes

Q(L,z) = 1

2πi

∫ γ+i∞

γ−i∞
esL

(
e−s − e−as

s

)z

ds

=
z∑

k=0

(−1)k
(

z

k

) {
1

2πi

∫ γ+i∞

γ−i∞

es[L−z−k(a−1)]

sz

}

=
� L−z

a−1 �∑
k=0

(−1)k
(

z

k

)
[L − z − k(a − 1)]z−1

(z − 1)!

×�(L − z)�(az − L), (C2)

where we have used the binomial expansion of ( e−s−e−as

s
)z.

APPENDIX D: THEORETICAL VALUES OF φ∞(z)

In Table I, we list the extrapolated values of φ∞(z) evaluated
from our theory (see Fig. 2).
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TABLE I. Theoretical values of φ∞(z).

z 3.0 3.3 3.5 3.7 4.0 4.5 5.0 6.0

φ∞ 0.67 0.76 0.81 0.83 0.85 0.88 0.89 0.91

APPENDIX E: COLLECTION OF EXPERIMENTAL DATA

The experiments involve an assembly of 1004 bidisperse,
photoelastic disks having a diameter of 11.0 mm and 15.4 mm
in equal concentration by number. Particles are composed of
photoelastic material (Vishay PhotoStress PSM-4) and are
birefringent under strain so that contact forces can be calcu-
lated. The granular monolayer rests on a nearly frictionless
surface of an air table and is confined by two immovable walls
and two pistons. The system is initially dilute and unjammed.
Two pistons biaxially compress the system through a series
of small quasistatic steps with a size corresponding to
�� = 0.0009. At each step, separate images are recorded to
measure the displacement and contact forces. We use only
data collected from jammed configurations over the range
of 0.7836 < φ < 0.7884. After the system has reached the
maximum desired φ, the pistons dilate and the system is mixed.
This cycle is repeated ensuring generation of independent
configurations. In this way, over 500 packings are obtained
and analyzed. More details of the experimental apparatus and
procedures are reported in a recent paper (Ref. [31]).

APPENDIX F: ANGULAR PAIR CORRELATION
FUNCTION g(θ )

The 2D angular pair correlation function g(θ ) is equivalent
to the pair correlation function in the 1D model, which is
the probability of finding a rod at a given distance θ from
another rod. g(θ ) is different from G(α) because other rods
are allowed to be inside θ . Due to the translational invariance,
we can choose any rod (rod 1 in this case) as the reference

point:

ρg(θ ) =
〈

z∑
k=2

δ(xk − x1 − θ )

〉

= 1

Q(L,z)

z∑
k=2

∫
· · ·

∫
0=x1<x2<···<xz<L

z∏
i=2

dxi

× exp[−βV (x1, . . . ,xz)]δ(xk − θ )

= 1

Q(L,z)

z∑
k=2

∫
· · ·

∫
0=x1<x2<···<xk=θ

k−1∏
i=2

dxi

× exp[−βV (x1, . . . ,xk−1)]

×
∫

· · ·
∫

θ=xk<xk+1<···<xz<L

z∏
i=k+1

dxi

× exp[−βV (xk, . . . ,xz)]

=
z∑

k=2

Q(θ,k − 1)Q(L − θ,z − k + 1)

Q(L,z)
, (F1)

where the number density ρ = z/L. From the last expression,
the angular pair correlation function g(θ ) can be written as

g(θ ) = 1

ρ

z−1∑
m=1

gm(θ ),

(F2)

gm(θ ) = Q(θ,m)Q(L − θ,z − m)

Q(L,z)
.

The function gm(θ ) is the probability density of finding two
contact particles at a relative angle θ , such that there are exactly
m − 1 contact particles between them. Equation (F2) is used
to calculate the theoretical g(θ ) in Fig. 3.

The normalization of g(θ ) is conventional:∫ L

0
ρg(θ )dθ = z − 1. (F3)
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