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Abstract
The collectivemotion of groups of animals emerges from the net effect of the interactions between
individualmembers of the group. Inmany cases, such as birds, fish, or ungulates, these interactions
aremediated by sensory stimuli that predominantly arise fromnearby neighbors. But not all stimuli in
animal groups are short range.Here, we considermating swarms ofmidges, which are thought to
interact primarily via long-range acoustic stimuli.We exploit the similarity in formbetween the decay
of acoustic and gravitational sources to build amodel for swarmbehavior. By accounting for the
adaptive nature of themidges’ acoustic sensing, we show that our ‘adaptive gravity’modelmakes
mean-field predictions that agree well with experimental observations of laboratory swarms.Our
results highlight the role of sensorymechanisms and interaction range in collective animal behavior.
Additionally, the adaptive interactions that we present here open a new class of equations ofmotion,
whichmay appear in other biological contexts.

1. Introduction

Collective behavior of groups of social animals is widespread in nature [1], and occurs on size scales ranging
from single-celled organisms [2, 3] such as bacteria [4–6] to insects [7–10] to larger animals such as birds [11, 12]
orfish [13–15]. Animals are thought to aggregate andmove cooperatively formany reasons; collective behavior
may, for example, reduce the risk of predation for an individual in a group [1, 16], promote efficientmating and
decrease inbreeding in dispersed populations [17], modulate the energetic cost ofmigration [18], or enable
enhanced sensing [15]. Because of both its ubiquity and the potentially advantageous properties it conveys for
groups, collective behavior has engaged a broad cross-section of scientists, ranging fromphysicists and applied
mathematicians who hope to tease out the general principles that drive the emergence of collective states in non-
equilibrium systems to engineers who hope to develop bio-inspired control strategies for distributedmulti-
agent systems.

Collective behavior therefore has a longmodeling history [1, 19, 20].Models are useful both as a check on
our fundamental understanding of the low-level interactions that lead to the emergent group properties and as a
stepping stone to the design of engineered systems that exploit them.Manymodels treat the group as a collection
of self-propelled agents that are in someway coupled [21, 22]. Building such an agent-basedmodel requires
several fundamental choices [23].Wemust specify the base-case, non-interacting behavior of each individual;
wemust choose a functional form for the interactions that couple the individuals; wemust decidewhether these
rules are uniform throughout the population and in time; andwemust decide which individuals interact. Each
of these choices can be difficult tomakewith certainty, and yet has significant ramifications formodel
performance andfidelity.
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Here, we focus on the last of thesemodeling assumptions: the choice of which individuals interact. From
passive observations alone, it is difficult to discern the correct interactions in a group of animals [8], since it
requires the solution of a challenging inverse problem. Thus, it is common to replace the difficult-to-measure
interaction networkwith themore straightforward proximity network [24]; that is, one assumes that the local
neighborhood (defined by, for example, eithermetric or topological distance [25, 26]) of an individual
dominates that individual’s behavior. This assumption is reasonable, and appears to be valid [13, 14, 25, 27, 28],
for dense groups of animals such as flocks of birds or schools offish that interact primarily through vision and
thatmove in a coordinated, directed fashion. But it is not always true; crowds of humansmoving toward goals,
for example, can show emergent collective behaviorwhile ‘interacting’with other individuals withwhom they
are likely to collide in the future rather thanwith thosewho are closest to them [29].

We consider here a canonical example of collective animal behavior—mating swarms offlying insects—
where local interactions do not clearly play amajor role and yet where the animals display group-level cohesion
[8]. Recently this systemhas also generated interest for possible indications of critical behavior [10, 30]. Previous
descriptions of insect swarms have accounted for the tight binding of individuals to the group either by
introducing a confining potential [9, 10] or by invoking external environmental cues [17]. Here, we instead
develop a swarmmodel inspired by the dominant sensorymechanismof the insects, and show that group
cohesion can emerge naturally instead of being externally imposed.

Swarming species of Chironomidmidges, such as thosewe consider here, are known to be very sensitive to
acoustic signals [31], and are thought to be attracted to swarms by the sound they produce.Motivated by these
observations, wemake the ansatz that swarmingmidges accelerate toward the sound produced by others; in
essence, we hypothesize that in addition to their knownpairwise function, acoustic interactions are the basis for
coordinating the large-scale collective behavior of the swarm. The exact structure of the acoustic field produced
by a freelyflyingmidge is not known.However, the acoustic field produced by otherflying insects (flies, for
example) has been found to have bothmonopole and dipole components [32]. Since themonopole field decays
more slowly compared to the dipole (and any highermultipole) component, in ourmodel we include only its
contribution; thus, ourmodel should be seen as a simplified representation of acoustic interactions that coarse-
grains overmany of the specific details of insect hearing. Themonopole sound intensity falls off according to an
inverse-square law, and so this hypothesis results in an effective gravity-like force that promotes group cohesion
while still allowing for complex individualmotion.We additionally account for the possibility that themidges’
sensory perceptionmay adapt to the overall sound level they experience. Ourmodel is thus not derived froman
underlying kinetic theory, as is commonly done inmodels of collective behavior [21], but rather is explicitly
long-range andmany-body.

We use in this work concepts and techniques from classicalN-body self-gravitating systems to explain the
collective swarming behavior of insects (midges). Althoughmodels of collective behavior abound in the
literature, they are not typically so tightly tied tomodels of other well knownphysical systems.Wefind two
features of themodel to be especially appealing. First, it is well known that gravity can produce very complex
behavior from simple interactions. Similar dynamics are expected to occur in collective behavior in biology. By
explicitlymaking a link between the two, we can drawon the intuition built up from studying gravity in how
these complex dynamics arise to gain insight into collective animal behavior. At the same time, we introduce a
new concept to the gravitational physics community that is taken frombiology, namely the adaptivity of the
sensorymechanism, ending upwith a new formof gravitational interaction that we term ‘adaptive gravity’.

To establish the plausibility of thismodel, we compare some of its predictionswith laboratory
measurements of swarms of the non-bitingmidgeChironomus riparius, andfind surprisingly good agreement.
Althoughwe certainly do not account for all of the details of acoustic signal transduction by the insects, we show
that our leading-order, coarse-grainedmodel performs surprisingly well when comparedwith the empirical
data. Given the long-range nature of ourmodel, our results suggest that themidgesmay processmore than just
local information, as has also recently been proposed for birdflocks [33].

2. Experimental setup

Before discussing ourmodel and its comparisonwith our empirical data, we describe our laboratory
experiments withmidge swarmsThe details of thesemeasurements have been discussed elsewhere [7, 8, 34], and
sowe only give a brief overview here.

Our self-sustaining colony ofC.ripariusmidges was originally established from egg sacs purchased from
Environmental Consulting andTesting, Inc. The colony ismaintained in a transparent cubical enclosure, 91 cm
on a side, at a constant 22 °C. Themidges are exposed to overhead light on a circadian cycle, with 16 h of light
and 8 h of darkness per day.When the overhead light turns on and off (corresponding to ‘dawn’ and ‘dusk’),
adultmales spontaneously form swarms. To promote swarmnucleation and to position the swarm in the
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enclosure, we use a black felt ‘swarmmarker’measuring 30×30 cm2 placed just above the development tanks.
Although themarker can affect the overall swarmmorphology for small swarms, we have shown that once the
swarm is relatively large its effect is veryweak [34]. Further details of our husbandry procedures are given
in [7, 8].

To quantify themotion of themidges, we recordmovies of swarming events with three hardware-
synchronized PointGrey Flea3 cameras at a rate of 100 frames per second.We have shown previously that this
data rate is sufficient to resolve even the acceleration of themidges [7]. The cameras are arranged in a horizontal
plane about 1mfrom the center of the swarmwith angular separations of approximately ◦30 and ◦70 . Prior to
recording data, the camera system is calibrated using Tsai’smodel [35]; subsequently, the two-dimensional
coordinates of eachmidge on each camera (found by simple image segmentation and intensity-weighted
averaging) can be combined tofind themidge positions in three-dimensional space. The sequences of time-
resolved positions are then linked into trajectories using a fully automatedmulti-frame predictive tracking
algorithm [36]. For various reasons, trajectoriesmay sometimes be broken; thus, in a post-processing stepwe
link trajectory fragments usingXu’smethod of re-tracking in a six-dimensional position-velocity space [37].
After trajectory construction, we compute accurate time derivatives (namely, velocity and acceleration) by
convolving the tracks with a smoothing and differentiating kernel [7]. Statistics of the velocity and acceleration at
different locations in the swarm are computed by averaging overmanymidges overmany swarming events to
obtain converged results.

For the results shown here, we analyzed data from128 swarming events. Although the number of individuals
was not uniform from swarm to swarm,we have shownpreviously that the swarms reach a statistical
‘asymptotic’ regime at surprisingly small population sizes [34]; here, themean number of individuals per swarm
was about 10. Finally, for reference below, we note that the body size of amaleC.ripariusmidge is about 7mm
in length. Typicalflight speeds of themidges are roughly 0.5 m s−1, and peak instantaneous accelerations are on
the order of 5 m s−2. The sound produced by amale’s beatingwings is broadband, but has a fundamental
frequency of about 575Hz, asmeasured in our experiments [38]. It is difficult tomeasure the sound amplitude
produced by a freely flyingmidge precisely; within a few body lengths of themidge, we havemeasured it to be
roughly 55dB.

In previous work, we have analyzed data from these swarms to characterize their dynamics [7, 8, 34, 39].
Without going into detail here, we briefly summarize our primary findings. Although ourmidge swarms remain
confined to a compact region of space with a statistically sharp boundary (in a way that appears to be self-
organized [34]), teasing out pairwise interactionswithin the swarm is very challenging [8, 39] and the swarms
shownonet internal order [7]. At amean-field level, the statistics of the swarms share some features of an ideal
gas in a harmonic trap [7, 8]. Thus, with ourmodel, we attempt to capture these primary effects: strong binding
of individuals to the swarm as awhole but no strong signature of pairwise interaction at themean-field level,
overall disorder inside the swarm, and complex individual trajectories.

3.Model

Aflying insect will produce sound by beating its wings. Typically, this fieldwill be complex, and composed of at
leastmonopole and dipole components [32]. Of the two, themonopole termwill decaymore slowly, and sowe
include only that component here.Midges detect sound from the bending of hairs on their antennae caused by
passing soundwaves [31, 40, 41]. To accomplish this detection, the soundwavesmust dowork on the hairs; thus,
to determine the rate at which the sound signal produced by a singlemidge decays in space, wemust consider the
decay of the energyflux. This flux can bewritten as the product of the pressure fluctuation and thefluid velocity
induced by the soundwave [42]. For amonopole source, the time average of this product falls off as r1 2, where r
is the distance from the emittingmidge.

Next, wemake the hypothesis that an individualmidge accelerates towards a neighbor via an effective ‘force’
that is proportional to the sound intensity. Given the estimates above, thismeans that the force between a pair of
midges i and j separated by a distance = -∣ ∣r r rij i j

 
will scale as r1 ij

2, just as the gravitational attraction between a
pair of pointmasseswould. At present, wemust treat this choice purely as an ansatz, as the details of the formof
any pairwise interactions betweenmidges is very difficult to access experimentally [8, 39]. However, the
assumption that themidge response to acoustic signals is an acceleration towards the sound source is the
simplest choice one canmake. Choosing the response to be at the velocity level would be somewhat un-natural,
since velocity cannot be directly controlled by the insects: changes to the velocitymust come from forces applied
by the insect, and therefore accelerations. Strong (albeit indirect) experimental support for this assumption
comes from the observation of a net linear restoring force acting towards the swarm center (figure 1(b)). The only
formof binary interactions that gives this linear restoring force towards the swarm center is an inverse-square
force relation.
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Formany animals, the perception of sound is not fixed, but rather adapts to the total sound intensity so that
acoustic sensitivity dropswhen there is strong background noise. This is a common feature of biological sensory
organs, preventing their damage and saturation.We thusmake a second ansatz: that in general themidges’
acoustic perception adapts to the overall sound level, and that specifically it follows the fold-change detection
mechanism [43], which is ubiquitous in nature. In that case, the effective force onmidge i due tomidge j is given
by

å å
=

- + -

-

- -
ˆ

∣ ∣ ∣ ∣
( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟F C r

r r

R

R r r

1
, 1

i

j
ij

i j k i k
eff 2

ad
2

ad
2 2


   

where ri

is the position vector formidge i, r̂ij is the unit vector pointing frommidge i tomidge j,C is a constant

with dimensions of ·mass length time3 2, and Rad is the length scale over which adaptivity occurs. In other
words, when a singlemidge is closer than Rad the sound it emits is strong enough that the receivingmidge needs
to adapt its sensitivity to reduce the perceived signal. Beyond this distance there is no need for such adaptivity for
the sound of a singlemidge. Note that there is no known relation between thewavelength of the sound emitted
by themidges and Rad.

Equation (1) constitutes the core of our ‘adaptive gravity’model (AGM) for the acoustic interactions of the
midges.We note that thismodel assumes that themidges can sense both the intensity and the direction of the
sound produced by others; it is thought, however, that the specialized Johnston’s organs ofmale swarming
insects are indeed able to do so [44]. Furthermore, it was recently demonstrated that themidges in a swarmdo
respond to the recorded sound produced by flyingmidges [38].We also note that we aremaking the simplifying
assumption that eachmidge is identical; although this assumption is certainly not fully accurate, it should allow
us tomake reasonablemean-field predictions.

With the assumption of adaptivity, the force felt by eachmidge is inherentlymany-body and cannot be
written as a sumof two-body interactions (equations (3) and (4)) due to the sumover all themidges that appears
in the denominator of the adaptivity factor (equation (1)). Thus, in this formulation, everymidge feels a force
that contains global, long-range information about the swarm, but this force cannot be parsed to distinguish the
effects of any single neighbor. Thus, in this AGM the force that binds individualmidges to the swarm is truly an
emergent, group-level property that arises naturally fromwithin the swarmwithout any appeal to external
effects.

To build intuition for the behavior of thismodel, let us consider two limits. For r N Rij ad (that is, when
the distance between a pair ofmidges far exceeds the range of adaptivity, andN is the number ofmidges in the
swarm), the effective force reduces to a purely gravitational interaction and becomes

å
-

ˆ
∣ ∣

( )F C r
r r

1
. 2g

i

j
ij

i j
tot, 2


 

In the opposite limit, when <r N Rij ad, the adaptive nature of the acoustic sensitivity becomes dominant. In
that case, the adaptivity simply reduces to a rescaling of the sound perceived by eachmidge by the total buzzing

Figure 1.Mean-field effective forces. (a)Calculatedmean effective force acting on amidgewithin a spherical swarm as a function of
the radial position r. The solid line shows the force due to adaptive gravity (equation (1)) for a swarmof uniformdensity and radiusRs,
compared to the case of pure gravity (dashed line).When the density has aGaussian profile (with spatial variance R 2s , equations (8)–
(10)), the adaptive-gravity interactions give rise to the force shownwith the dotted line. (b)Measuredmean acceleration as a function
of position for laboratory swarmswith different numbers ofmidges (shownwith different colors), showing the roughly linear behavior
near the swarm center.
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noise amplitude, and the effective force becomes

å


-·
ˆ

( )∣ ∣
F

C

R

r

N
, 3a

i j ij r r
tot,

ad
2

1

tot

i j
2  

where the total buzzing noise amplitude at ri

is proportional to å= - -(∣ ∣)N r r

j i jtot
2 
, the quantity wewill use

to represent that amplitude (despite the difference in units).
In pure gravity, the potential is additive, and the principle of superposition applies. Due to adaptivity,

however, this property is lost in ourmodel. That is, the effective potential felt by amidge due tomany other
midges is not the sumof two-body interactions using equation (S3) in the supplementarymaterial. This can be
seen by consideringmany interactingmidges. The effective force felt bymidge i due to the others (indices j) is
given in equation (1)which is not equal to the sumover two-body forces (see equation (S1) in the supplementary
material), whichwould be

å=
- + -

-

- -
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
   

Unlike in pure gravity, the forces onmidge i due to others are not additive and the superposition principle
does not apply, since the total buzzing noise termdoes not depend on direction. As a consequence, there are no
conservation laws in such a system (exceptmass conservation), and the sumof forces felt by all themidges within
an isolated swarmneed not vanish, as itmust in regular gravity. Thus, in thismodel the center ofmass of the
swarm can experience accelerations; so, even though the AGMnaturally leads to swarm cohesion, onemay need
to posit external effects to prevent drift of the swarm as awhole. Note thatwithout some kind of additional effect
such as self-propulsion or a short-range repulsive interaction, a purely attractive interaction like our AGM is
susceptible to collapse. In our analytical calculations below,we assumeuniform-density swarms, implicitly
assuming that some such collapse-preventionmechanism is present; and in our simulations of the AGM,we add
an additional short-range repulsive force,motivated by empirical observations [8].

Before describing the predictions of the AGM, let us briefly recapitulate ourmodeling approach, and its
expected range of applicability. Given thatwe expect that the primary interactionmodality between swarming
midges is acoustic, we consider a simplified representation for how the sound emitted by amidge is perceived by
its conspecifics, and assume that the perceived sound can be treated like an attractive force. In this framework,
we are of course oversimplifying the actual biology; we are, for example, neglecting the details of the acoustic
signal transduction, and the specific nature of the sound emitted by a potentially rapidlymaneuvering insect.
Thus, wewould not expect to be able to faithfully represent the specificflight trajectories of individualmidges,
norwouldwe anticipate being able to predict the instantaneous acceleration of eachmidge.Whatwe do expect
to be able to reproduce are the coarse-grained, statistical properties of the swarms, as awhole, as we describe
below.

4. Results

4.1. Effective spring constants: spherical swarms
Gauss’s law for gravity states that the gravitational flux through a closed surface is proportional to the enclosed
mass [45]. In our analogy, eachmidge has an effective unit ‘mass,’ and thereforeGauss’s law for the force in the
‘pure gravity’ regime (equation (2)) is

ò òp r= -
¶

· ( ) ( )F A C r rd 4 d , 5
V V

eff
3

  

whereV is a three-dimensional volume, ¶V is its boundary, Ad

is a surface element, and r ( )r


is the density of

midges.
We beginwith a spherical swarm centered at the origin of uniformdensity ρ and radius = á ñR rs (defined as

themean distance of amidge from the center of themass of the swarm). The characteristic value of the total
buzzing noise intensity at the origin is ~N N RStot

2, whereN is the number ofmidges. Thus, when
R N RS ad we are in the pure gravity regime. In this case, from the analog ofGauss’s law (equation (5)), the
force is restoring and linear with respect to the distance r


of amidge from the center of the swarm (figure 1(a)),

and is given by

p r
= - ( )F

C
r

4

3
. 6eff

 

Since this force is harmonic (that is, restoring and linear in r

), we can characterize its strengthwith an effective

‘spring constant’ p r=K C4 3.We stress that this behavior is unique for r̂ rij ij
2 interactions, assuming that the

motion arises only from interactions between themidges. Previously, we found that the average acceleration of
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midges in laboratory swarms also has this harmonic form [7], providing support for ourmodel. However, in
these laboratory swarms, the spring constants were found to depend on the swarm sizeRs (figure 1(b)), unlike in
pure gravity.

For swarmswith large numbers of individuals, however, ourmodel enters its adaptive regime, where
<R N RS ad. In this regime, the net force is still linear and restoring; but due to the adaptive terms in

equation (1), the spring constantKwill depend on the swarm sizeRs. To leading order in r Rs , themodel
predicts that µ -( )K R Rsad

2 1. This result is derived in the supplementarymaterial (equations (S4)–(S6)), and
also follows from equation (3) using simple dimensional analysis, since

òå  ~
- -

-( ) ( )
⎛
⎝
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⎞
⎠
⎟⎟

⎛
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d
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2

1
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2

0

3

2

1

ad
2 1

s

Whenwe examine the experimental data forKx andKy (where x and y are in the plane and z is vertical), we
find good agreement with themodel prediction that µ -K Rs

1 (figures 2(a) and (b)). This agreement is a
consequence of the roughly constant density in swarms of different sizes (except for small swarms of fewer than
∼10midges [34]), and gives a lower bound on R 45 mmad since the adaptive regime applies to the smallest
swarms ForKzwefind a decrease that is faster than predicted (figure 2(c)), as discussed further below.

These results are consistent with the adaptive regime as described above; thus, we cannot estimateRad for the
realmidges based on the results at hand.

Wenote that away from the swarm center the adaptive-gravity interaction gives rise to a restoring force that
deviates from the formof pure gravity even for a uniformdensity swarm (figure 1(a)). Thus, we also calculated
the force for a swarmwith aGaussian density profile, as was observed in experiments [7] (figure 1(a)), andfind
that it is roughly linear over the entire swarm size, but saturates at large radii.

The calculation of the adaptive force near the swarm center, for aGaussian density profile, is as follows.We
take aGaussian density profile withwidth ss, so that the density in cylindrical coordinates is given by

r x h
p s

=
- x h

s
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2
, 8

S
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2

where ξ is the polar radial coordinate and η is the coordinate along the axis of symmetry. The gravitational force
at an arbitrary point h h= 0 is then
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and the total buzzing noise is
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The integrals were solved numerically usingMathematica 9.0, andwere used to plot the dotted line infigure 1(a).
In additionwe note that away from the center the effects of adaptivity aremuchweaker, and the acceleration

to the swarm center persists even for large swarms, therebymaintaining their cohesion. Theweakening of the
accelerations at the swarm center for large swarmsmay possibly be related to the appearance ofmaximal size of
swarms, beyondwhich they become unstable and split.

Figure 2.Effective spring constants in the horizontal directions (Kx andKy) and the vertical direction (Kz) as a function of the average
swarm radiusRs, plotted on logarithmic axes. The black circles denote the raw data for each swarm, the red circles showbinned
averages, and the dashed lines denote the -Rs

1 scaling predicted by theAGM (equation (7)).We also plot the -Rs
2 scaling predicted for

cylindrical swarms (regular gravity, equation (S15) in the supplementarymaterial), which seems to fit the behavior of larger swarms
Note that in the vertical z-direction the data ismore scattered, whichmay be due to Earth’s gravity.
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To conclude this part, we find that the accelerations ofmidges near the swarm center follow the linear
relation expected from gravity-like interactions. Furthermore, the effective spring constant decreases with
swarm size, exactly as predicted by adaptivity. The effects of highermultipoles in the decay of the acoustic signal,
areminor compared to themonopole term for large swarms, as shown in the supplementarymaterial (equation
S8). The effects of non-spherical swarms are dealt with next.

4.2. Effective spring constants: ellipsoidal swarms
In themeasured swarms, the effective spring constant in the vertical (z) direction is consistently smaller than
those in the horizontal (x y, ) directions [7]; additionally, it is also observed to decrease faster with swarm size
than is predicted by ourAGM for spherical swarms (figure 2(c)). For real swarms, the z direction differs from the
x and y directions in several ways. First, along this directionmidges are affected by the Earth’s gravitational pull.
Additionally, swarms tend to formover visual features on the ground [34], which breaks the isotropic symmetry.
Empirically, all these differences tend to cause larger swarms to elongate along the z-axis [7, 34] (figure 3(a)). As
we calculate below (and show infigure 3(b)), for swarms that are elongated along the z-axis, ourmodel predicts
that the effective spring constant in the x y, -plane (K1,2 ) is larger than in the z-direction (K3).We therefore
attribute the observed smaller spring constant in the z-direction for larger swarms (figure 2) to the elongation of
the swarms along the vertical axis. Furthermore, we can calculate the scaling ofK3 with swarm size in the limit of
a highly elongated (cylindrical) swarm, such that it has afixed radiusR in the xy-plane and a variable length
L R along the z-axis. In this limit we find the scaling µ -K Rs3

2 (equation (S15) in the supplementary
material), as denoted in figure 2(c). Note that in this limit, we are beyond the perfect adaptivity regime, and the
scaling result forK3 is identical to that of pure gravity.

Infigure 4(a)we show the shape of a typical elongated swarm.We treat the swarm shape using an ellipsoidal
approximation to refine the analysis of the effective spring constants along the different directions.We assume
that the swarm is an ellipsoidwith semi-axes a, b, and c, where < <c b a (see figure 4(a)), along the
x y z, , -axes. The effective spring constants are then given by (see the supplementarymaterial, equations (S16)–
(S46))

òp r
b

=
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d
, 111

0 2
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0 2
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where b º + + +( ) ( )( )( )v a v b v c v2 2 2 and > >K K K1 2 3 since < <c b a. Equations (11)–(13) relate the
effective forces in the swarm to its overall shape. Themeasured values of the spring constants and shapes of the
swarms are summarized in table 1.We characterize the shapes by the ratios of themoments of inertia-tensor
eigenvalues h = I I1 1 2 and h = I I2 1 3. As part of our ellipsoid approximation, we assume that the inertia
eigenvectors are oriented along the principal axes of the ellipsoid and that each inertia tensor eigenvalue

Figure 3. (a)Observed average inertia eigenvalue ratio I I1 3 as a function of the swarm sizeRs (blue circles: raw data for each swarm,
red circles: binned average). For smaller swarms, the ratio is∼1which is the spherical limit, while for larger swarms this ratio is larger
than 1 due to the elongation of the swarm in the z-direction ( >I I3 1 ,figure 4(a)). (b)Calculated spring constant ratio K K1 3 for a
prolate, axisymmetric swarm, using equation (21), as a function of the aspect ratio ºp a c (solid line). For small p the behavior is
linear, as given in equation (22).
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corresponds to one of the axes. Let us assume that > >I I I1 2 3, without loss of generality. Then

p
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From equations (17) and (18), one can express the parameters of the ellipsoid as a function of h1 and h2:
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Figure 4. Swarm shape. (a)Example of the shape of a laboratory swarmofN=7midges, which is elongated along the vertical (z)
direction. Also shown is the ellipsoid that approximates the swarm shape, which by construction has the same ratios of inertia
eigenvalues. (b)The ratio of the effective spring constants K Kx y z, as a function of the swarm radiusRs, using the data in table 1.
Measured values are shown in blue, and those calculated from themodel are shown in purple.

Table 1.Experimental data for the dependence of themean swarm shape (given by the inertia
eigenvalues I I I, ,1 2 3) and effective spring constants along the principle directions, on the swarm
size given by the average radiusRs (binned averages).

Rs(mm) K1(1/sec
2) K2(1/sec

2) K3(1/sec
2) h = I I1 21 h = I I1 32

43.22 15.83 14.72 11.80 1.38 1.81

52.58 12.33 11.06 8.34 1.27 1.70

58.40 10.62 9.50 7.17 1.37 1.68

63.97 10.12 10.06 5.83 1.26 1.61

70.77 9.09 7.98 4.84 1.32 1.77

76.53 8.83 7.60 5.33 1.25 1.54

81.59 7.36 6.55 3.31 1.40 1.98

88.15 6.65 6.11 3.10 1.26 1.62

98.62 5.94 5.49 3.05 1.43 1.74

108.89 6.94 6.34 4.56 1.64 2.07

120.99 4.82 4.62 3.15 1.57 2.06
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and then the ratios K K1 2 and K K1 3 can be obtained from equations (11)–(13). Note that in this analysis (table 1)
the direction of eachKi can be different, as they are defined by their relative strength so that > >K K K1 2 3. In all
cases, however, the smallest effective spring constant is in the z direction ( =K Kz3 ), sincewe always observe that
swarms are stretched in the vertical direction (figure 3).

The ellipsoid parameters can be expressed in terms of the ratios of the inertia-tensor eigenvalues
(equations (14)–(20)), thereby relating the effective spring constant ratios K K1 2 and K K1 3 to themeasured
shape.We plot these ratios for bothmeasured swarms and for themodel infigure 4(b). For smaller swarms, we
find good agreement between the theoretical andmeasured values, where the discrepancies are primarily due to
misalignment of the inertia-tensor eigenvectors with the principal axes of the ellipsoid. For the largest swarms,
however, there is a significant deviation between the two. In those cases, the ellipsoidal approximationmay not
be valid, as we sometimes observed a tendency for these large swarms to split into amain body and satellite
swarm and thus violate the assumptions of themodel.

In the case of a prolate axisymmetric ellipsoid = <b c a, we have =K K2 3 and from equations (11)–(13)we
get
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where ºp a c. For small deviations from spherical symmetry = + p 1 , 1 we have
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This result is shown infigure 3(b).
To summarize the results of this part, our AGMexplains why the elongation of the swarms along the vertical

axis gives rise to lower effective spring constant that is observed in this direction, as well as to the different scaling
with the swarm size (figure 2).

4.3. The virial relation
Despite the fact that adaptivity prevents us from formulatingmany conservation laws, we can still develop an
analog to the virial theorem, based onmass conservation. In the supplementarymaterial we derive the
continuum tensor virial equations, while herewewrite its discrete analogues forN particles with equal (unit)
masses. Themoment of inertia tensor is

åº
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¯ ( )I
N

r r
1

, 23ij

n

N

n
i

n
j

1

where the bar denotes an average value permidge. Its derivative with respect to time can give us an indication for
deviations of the system from stationarity, namely

åº = +
=

¯ ¯
( ) ( )M
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t N
r v v r

d

d
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2
. 24ij

ij

n
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n
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n
j
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i
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1

Weuse upper indices for the quantities that are definedwith discrete summation, contrary to the lower indices
used in the supplementarymaterial for the continuous case. Infigure 5we show the values of M̄ij taken for

Figure 5.The six components of the tensor M̄ ij (equation (24)) that captures deviations from stationarity, as a function of the swarm
sizeRs.
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swarms of different sizes. Out of 126measured swarms, we consider in this section binned data from69 swarms
that consisted offivemidges ormore, since for swarmswith too fewmidges the average ismeaningless. In
additionwe take time averages of the quantities over roughly oneminute, so that the swarm is approximately in a
steady state. The average values of the different components of M̄ij are small compared to the typical angular
momentum,which is two orders ofmagnitude larger.We therefore conclude that themidge swarms are
stationary, andwe therefore expect that the virial relation (equation (S62) in the supplementarymaterial) should
hold.Deviations from stationaritymight occur due to influx or outflux ofmidges (negligible) or irreversible
processes. The small increase in the values of M̄ zz and M̄ yz for large swarmsmight be an indication for such an
irreversible process, such as fragmentation as a result of the elongation along the vertical direction.

Given the stationarity that we have found in the swarms, we now test the validity of the virial relation
(equation (S62) in the supplementarymaterial), using its discrete analogue. Themean kinetic energy tensor of a
midge in the swarm is

åº
=

¯ ( )T
N

v v
1

2
, 25ij

n

N

n
i

n
j

1

and

åº +
=

¯ ( )W
N

r F F r
1

2
26ij
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n
i

n
j

n
i

n
j

1

is its ‘potential energy’ tensor. This is not the usual potential energy since this systemdoes not have awell-
defined potential due to the adaptivity. Therefore the viral theorem is different from the usual form for power-
law potentials, as explained in the supplementarymaterial. The discrete virial equation is therefore (equation
(S62) in the supplementarymaterial)

+ + =¯ ¯ ¯ ( )T W S2 0, 27ij ij ij

where S̄ ij is the average surface (external) pressure on amidge.
It is easier to interpret and check the trace of the tensorial equation (27), namely the scalar formof the virial

equation

+ + =¯ ¯ ¯ ( )T W S2 0. 28

Here T̄ is themean total kinetic energy of amidge, W̄ is itsmean ‘potential energy’, and S̄ is themean isotropic
surface pressure on amidge. Infigure 6we show themeasured T̄ and-W̄ 2 for different swarm sizes, when
integrating over all themidges in the swarm.We can see that they are approximately constant as functions ofRs

and theirmean values are

á ñ =  ´
á- ñ=  ´

-

-

¯ ( )
¯ ( ) ( )

T

W

3.42 0.08 10 cm s ,

2 2.80 0.08 10 cm s . 29

2 2 2

2 2 2

Therefore, according to equation (28), the difference between the two gives themean surface pressure in the
swarm:

= -  ´ -¯ ( ) ( )S 1.24 0.14 10 cm s . 302 2 2

Figure 6.Themean kinetic energy T̄ (red) and half of themean ‘potential energy’-W̄ 2 (blue), as a function of the swarm sizeRs (as
defined in equations (25), (26) and (28)).
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This pressure is negative, indicating that the swarm is experiencing a stabilizing inwards effective pressure on its
surface. The origin of this pressure could arise from interactions of the swarmmidges withmidges outside the
swarm, and the ‘swarmmarker’. Such external stabilizing pressures are commonly found in astrophysical stellar
systems, such as globular clusters [46].

In order to confirm that the identification of themean pressure is correct, we consider each diagonal
component of equation (27) separately as is shown infigure 7. From themean values we get that

+ =  ´
+ =  ´
+ =  ´

-

-

-

¯ ¯ ( )
¯ ¯ ( )
¯ ¯ ( ) ( )

T W

T W

T W

2 0.42 0.03 10 cm s ,

2 0.46 0.04 10 cm s ,

2 0.38 0.03 10 cm s . 31

xx xx

yy yy

zz zz

2 2 2

2 2 2

2 2 2

Since these values are roughly equal it gives us a good confirmation for the isotropic origin of the pressure term in
the virial relation (up to geometric deviations from spherical symmetry). Note that the observation that W̄ is
independent of the swarm size when calculated over the observed density profile [7] of thewhole swarm is in
agreementwith a calculation done using regular gravity [47].

In additionwe see from figure 7 that themean values of kinetic and potential energies, which are related to
themovement in the z direction, are significantly lower than the x and y directions. This is a result of the external
gravitational force in this direction that enters the equations (see equation (S49) in the supplementarymaterial).
From the point of view of themidge, it seems that it ismore beneficial to respond to the effective pull of
neighboringmidges, rather thanwaste energymoving up and down against gravity.

The off-diagonal components of the tensors T̄ ij and W̄ ij are roughly null (compared to the diagonal ones) as
we show in figure 8. This is expected for a systemwithout dissipation, whichmaintains stationarity. Note that on
the ‘microscopic’ level of eachmidge, this system is obviously dissipative and out of equilibrium as themidge
consumes chemical energy to power itsflight. However, we find that on the coarse-grained scale of equivalent
particles and forces, the system is effectively dissipation-less. The off-diagonal terms of S̄ ij vanish for a
symmetrical swarm.

So far, we have not considered the adaptive nature of the interactions. Let us assume a uniformdensity
spherical swarm and first calculate the dependence onRswithout adaptivity. In order to calculate the behavior of
the potential energy withRs, we consider again the continuous version of themean ‘potential energy’

Figure 7.The diagonal components of the kinetic T̄ ii (red) and ‘potential’-W̄ 2ii (blue) energy tensors (as defined in equations (25)
and (26)).

Figure 8.The off-diagonal components of kinetic T̄ ij (red) and potential-W̄ 2ij (blue) energy tensors (as defined in equations (25)
and (26)).
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In the case of a uniform spherical symmetric swarmwe have
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In the case of gravitational interactionwithout adaptivity (equation (S4) in the supplementarymaterial), the
effective spring constant is

pr= ( )K C
4

3
, 36

and thenwe get a quadratic dependence onRs:
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The force with the adaptive correction is obtained by substituting equation (S5) in the supplementary
material into equation (3):
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where ºx r Rs .
Thus, for adaptive gravity in the purely adaptive regime, the ‘potential energy’ behaves as

µ∣ ¯ ∣ ( )W R . 40s

Wenow compare this result to the ‘potential energy’ contribution of themidges near the center of the
swarm,wherewe expect tofind the strongest effect of adaptivity.Whenwe include all themidges of the swarm,
the adaptivity is not significant since themidges with large radius ( >r Rs) and lowdensity dominate the
contribution to the total potential energy. For this purposewe calculated the ‘potential’ and kinetic energies of
the same swarms (more thanfivemidges) but this time the summationwas carried out only up to an upper cutoff
(Rs and R 2s ). Near the center of the swarm the density is roughly constant and high, so that the adaptive
calculation of equations (32)–(40) should apply. The results are presented infigure 9. Themean kinetic energy is
similar to the previous one (figure 6), i.e. independent ofRs, except for some under-sampling of the fastest
midges: á ñ =  ´<¯ ( )( )T 3.07 0.17 10r R

2
s

cm2 s−2. The ‘potential energy’ is not constant and it is increasing as a
function ofRs. Infigure 9(b)we show that as the center of the swarm is approached (i.e. r is constrained to
smaller values), the increase of W̄ withRs approaches a linear behavior, as we predict in equation (40). Note that
this is very different from the quadratic behavior for regular gravity (equation (37)). This observation therefore
constitutes an additional independent and strong source of support for our adaptive-gravity formof the
interactionswithin themidge swarm.

The virial relation also allows us to estimate the effect of the swarm size on themean distance of closest
approach between twomidges, whichwas found to decrease for increasing swarm size. This relation is given in
the supplementarymaterial (equations (S65)–(S72),figure S4).
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4.4. Particle-based simulations
So far, we have demonstrated that themean-field predictions of the AGMare in good agreementwith the
experimental results. To explore theAGM further, we performedmolecular dynamics-type, agent-based
simulations. To focus on the effects of the proposed adaptive-gravity interactions, we did not include in the
simulation any explicit noise terms. Thus, themotion of eachmidge arises purely from theirmutual
interactions. However, tomaintain numerical stability and cohesion of the swarm, it was necessary to augment
the basic AGM (equation (1)) in threeways.

First, we added a short-range repulsion betweenmidges. This repulsion prevents the fragmentation of the
swarm into small groups (such as pairs or triplets) that can become effectively isolated from the rest of the swarm
due to adaptivity-induced screening (equation (S73), figure S5 in the supplementarymaterial); additionally, we
previously found experimental evidence for this kind of short-range repulsion in real swarms [8].With this
repulsion, the effective force in equation (1) becomes
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Note that themidges in the simulations do not have afixed speed, although this is the customary description
of self-propelled particles. This ismotivated by the observation of awide distribution of speeds in the swarm [7].
However, to prevent runawaymidges and to be physically realistic, we also imposed amaximummidge speed
v .max If themidge speed exceeds this value, we re-scale it to that value

= ( )v v
v

v
. 42new

max 

And finally, we added an overall confining force to prevent the swarm fromdrifting in space, which simulate
the experimental ‘swarmmarker’. This force is significant only far from the swarm center, acts as an effective
reflection boundary condition for the simulations, and is intended tomodel the attraction to ground-based
visual features that localize natural swarms [34]. Therefore its exact functional form is not important. It is given
by

= - ( ) ( )F r
R

r R
12

, 43
i

i imarker
marker

marker
11




where themarker size is set by =R R1.5marker ad.We do not, however, impose any differences between the
vertical direction and the in-plane directions, and so our simulated swarms are statistically isotropic in space.
Note that removal of this confining potential does not change the statistics of the dynamics within the swarm, in
the swarm center-of-mass frame, as shown infigure S8 in the supplementarymaterial.

The initial conditions in the simulations are as follows. The spatial coordinates for eachmidge are expressed
in spherical coordinates r, θ, andj, and are initially randomvariables uniformly chosen between [0,Rmarker], [0,
π] and [0, p2 ], respectively. The initial velocities are all zero.We then update the locations and velocities of each
of the particles in time by solving the (Newton’s) equations ofmotion of the particles (that is,

= +v̇ F F
i i i

eff marker
  

) using Runge–Kutta integration. Note that, unlike in real life and unlike inmostmodels, the

Figure 9. (a)Themean kinetic T̄ (red) and ‘potential’-W̄ 2 (blue, constrained for <r R R2,s s frombottom to top) energies as a
function ofRs. (b) Log–log plot for the ‘potential energy’ in the center of the swarmwith a linear fit, constrained for < ¥r R R2, ,s s

(yellow, purple and blue respectively). The power-law slopes are (yellow and purple respectively):  1.16 0.12, 0.71 0.05.
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midges in these simulations do not have any intrinsic self-propelledmotion; rather, theirmotion arises purely
due to interactions, and can itself be viewed as an emergent property of the swarm.

A sample trajectory of a singlemidge froma simulated swarmofN=50midges, is shown infigure 10(a),
which qualitatively resembled an observed trajectory (figure 10(b)). The simulatedmean acceleration of amidge
towards the swarm center as a function of the distance from the center is shown in figure 10(c).We recover the
linear behavior near the swarm center, as expected, while the forces saturate near the swarm edge due to the
Gaussian density profile of the swarm (figure 1(b)). The slopes near the center define the effective spring
constants, and are found to decrease with the number ofmidges, just as they do in the experiments. In
figure 10(d), we plot the distribution ofmidge accelerations, and find that it displays the same qualitative features
found in the experiments [7]: the distributions are close toGaussian for very small accelerations, but showheavy,
exponential tails for large accelerations. And just as in the experiments, wefind that these distributions are
largely independent of the swarm size.

We also compared the velocity distributions from the simulations (figure 10(e)) as a function of the swarm
size, and again found the same trend observed in the experiments [7]: as the swarm size increases, the velocity
distributions also develop a long exponential tail. This behavior can be quantified by calculating the excess
kurtosis of the x-component velocity distribution as a function of the swarm size (figure 10(f)), which follows the
same qualitative behavior seen in experiments [34]. For very small swarm sizes, the excess kurtosis is slightly
negative (meaning that the tails of the velocity distribution are slightly sub-Gaussian), and becomes positive for
larger swarms. Finally, we also compare the calculated distribution of free-path lengths (defined along the
trajectories between sharp turns) to the observations [8].Wefind that our simulations recover very nicely the
exponential tail of this distribution (figure S7 in the supplementarymaterial).

Figure 10.Comparison of the adaptive-gravity simulations to experimental observations. (a)A sample simulated trajectory from a
swarmofN=50midges, as comparedwith (b) an observed trajectory in a swarmofN=25midges [34]. (c) Simulatedmean
acceleration along the x-axis as a function of position for swarms of various sizes ( =N 15, 25, 40, 90, from top to bottom). The top
right inset shows the simulated linear behavior near the swarm center, and the dependence of the slope on the swarm size (different
colors) is similar to the observed behavior shown infigure 1(a). (d)Observed acceleration distribution (left panel, [7]), compared to
the simulation results (right panel). Both display highly non-Gaussian tails. (e)Observed x-component velocity distribution (left
panel, [7]), compared to the simulation results (right panel). Both show that small swarms have a roughlyGaussian velocity
distribution, but large swarms develop heavy tails. This tendency is quantified in f, where the excess kurtosis is plotted as a function of
swarm size, and both observations (left panel, [34]) and simulations (right panel) indicate a negative excess kurtosis for small swarms
and a positive kurtosis (due to the roughly exponential tails in the distributions) for large swarms. All the simulationswere carried out
using = = =R R R R R10, 0.3 , 1.5 ,rad ad marker ad and =v 1max .
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The fact that our simulations, evenwithout explicit noise and self-propulsion, give a qualitative description
of the overall acceleration, velocity and spatial distributions in the swarms, provide strong support that the
dynamics of themidges are indeed dominated by the type of interactions that we propose in this paper, i.e. the
adaptive-gravity interactions due to acoustics. Ourmodel even recovers specific features of the trajectories, such
as the tendency ofmidges to form ‘orbiting pairs’ (figure S5 in the supplementarymaterial), whichwas recently
observed in experiments [39].

Let us note that in these simulationswe did notfit any parameters in an aim to reproduce the experimental
observations quantitatively. Rather, we focus here on exploring the qualitative features that arise due to the
adaptive-gravity interactions. It is quite satisfying that the distinctly non-Gaussian distributions of the
accelerations (figure 10(d)) and of the velocity (figures 10(e) and (f)) already appearwithin our simplemodel, as
well as the overall dependence of various features on swarm size.We anticipate that amore detailedmodel that
includes, for example, the stochasticmotion of an individualmidge in isolation [34] or the Earth’(s) gravitational
field,may be able to capture themean-field behavior of the swarms quantitatively aswell.

5.Discussion

Wehave presented here amodel of collective behavior in insect swarms that is based on theway thatmidges are
thought to sense their environment, i.e. through acoustic signals. TheAGMwe have constructed introduces
features that are not typically considered inmodels of collectivemotion, including long-range interactions and a
sensitivity to the global properties of the group (through adaptivity). Aswe have shown, these features combine
to produce group cohesion as a natural emergent property. Basic assumptions of themodel, such as the precise
relation between the received sound and the force produced by themidge await future direct experimentation,
by, for example, studying external acoustic perturbations of swarms [38]. However, by comparing the
predictions of themodel with detailed statistical data extracted from real insect swarmsmeasured in the
laboratory, we have demonstrated that ourmodel is able to capture not just the cohesion of swarms but also
many of theirmany-body dynamical properties. The excellent agreement between the AGMand the observed
behavior of both the spatial profile of the average forces within the swarm (figures 2 and 4) and the virial relation
(figure 9), gives strong support to themodel, and to its twomain features: long-range (gravity-like) r1 2

interactions and an adaptive response that renormalizes the effective forces according to the local noise
amplitude.This simplifiedmodel can serve as a basis for futuremodels that includemore details of themidge
physiology.

To conclude, thismodel opens the door for further tests of the large-scale behavior and stability of swarms
Intriguingly, the agreement between themodel and the empirical results raises the question of whether some of
thewell knownphenomena that occur in self-gravitating systems, such as the Jeans instability or gravitational
collapse [48, 49], can occur in this biological system aswell. This will be probed in future experiments, using
acoustic perturbations of the swarm [38]. From themore general physics point of view, we describe here some of
the richness introduced by considering adaptive interactions, which have unusual physical features andmay
apply aswell to other biological systems—for example in the context of chemical sensing, chemotaxis-driven
interactions between swarming cells (see for example [50]).
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