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Collective Gradient Sensing in Fish Schools

Abstract
Throughout the animal kingdom, animals frequently benefit from living in groups. Models of collective
behaviour show that simple local interactions are sufficient to generate group morphologies found in nature
(swarms, flocks and mills). However, individuals also interact with the complex noisy environment in which
they live. In this work, we experimentally investigate the group performance in navigating a noisy light
gradient of two unrelated freshwater species: golden shiners (Notemigonuscrysoleucas) and rummy nose
tetra (Hemigrammus bleheri). We find that tetras outperform shiners due to their innate individual ability to
sense the environmental gradient. Using numerical simulations, we examine how group performance depends
on the relative weight of social and environmental information. Our results highlight the importance of
balancing of social and environmental information to promote optimal group morphologies and performance.
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Collective gradient sensing in fish 
schools
James G. Puckett  , Aawaz R. Pokhrel & Julia A. Giannini

Throughout the animal kingdom, animals frequently benefit from living in groups. Models of 
collective behaviour show that simple local interactions are sufficient to generate group morphologies 
found in nature (swarms, flocks and mills). However, individuals also interact with the complex 
noisy environment in which they live. In this work, we experimentally investigate the group 
performance in navigating a noisy light gradient of two unrelated freshwater species: golden shiners 
(Notemigonuscrysoleucas) and rummy nose tetra (Hemigrammus bleheri). We find that tetras 
outperform shiners due to their innate individual ability to sense the environmental gradient. Using 
numerical simulations, we examine how group performance depends on the relative weight of social 
and environmental information. Our results highlight the importance of balancing of social and 
environmental information to promote optimal group morphologies and performance.

Collective animal behaviour arises from self-organising social interactions among individuals1,2. While the func-
tional form of these interactions is not trivial to determine from experiments3, models have shown that simple 
local social interactions consisting of rules such as repulsion, alignment, and attraction are sufficient to generate 
observed group morphologies, such as swarms, flocks, and mills4–9. However, in nature, individuals must balance 
social information with individually acquired environmental information10–12.

Social interactions benefit group members in diverse ways. Living in groups has been shown to increase for-
aging ability13,14 and reduce predation risk15 through collective vigilance16 or escape waves17. Individuals can also 
use social information to help navigate noisy environmental gradients18–20. In this case where individuals may 
benefit from pooling information to overcome inaccurate estimates, which is often called ‘wisdom of the crowd’21 
or the ‘many wrongs’ principle22–24. For each of these benefits, individuals combine social and environmental 
information which enhances information processing11, possibly leading to emergent collective intelligence20,25,26.

However, social benefits are weighed against possible downsides27,28, such as de-valued individual informa-
tion27 and decreased sensitivity to changing environments29. Individuals must weigh environmental informa-
tion gathered from their senses along with social information30 or become isolated and face a greater risk of 
predation9,31,32.

Despite the large number of studies on collective behaviour, how individuals integrate social and environ-
mental information across ecological contexts remains an open question. Previous work using mixed societies of 
artificial and natural agents has shown group decisions arise from nonlinear feedback between local interactions 
between individuals33. Using multi-robotic-fish systems34 and simulations35, studies have explored the evolu-
tionary mechanisms through which individuals use social information to better interpret noisy environmental 
information.

In a recent study, Berdahl et al. examined how a school of golden shiners (Notemigonus crysoleucas) collec-
tively navigated a noisy environment (a dynamic light field)20. While individual golden shiners could not detect 
the environmental gradient, the school was able to collectively swim toward darker waters. The emergent sensing 
arose from social interactions governed by a simple rule: golden shiners swim faster in bright regions and slower 
in dark regions. However, many animals, even those of microscopic scales such as bacteria36, are able to sense 
environmental gradients.

In this work, we investigate the interplay of social and environmental information and how it impacts group 
performance. Building on recent work by Berdahl et al.20, our study combines empirical data with numerical 
simulations to examine the performance of schools of fish in navigating dynamic light fields. We experimentally 
examined group gradient sensing ability in two different species of freshwater fish: golden shiners (Notemigonus 
crysoleucas) and rummy nose tetra (Hemigrammus bleheri). While we find golden shiners are not able to sense the 
environmental gradient but are able to collectively find darker regions using an emergent sensing as in agreement 
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with previous work20, the tetras out-performed the shiners for all group sizes, which can be attributed to tet-
ra’s ability to sense the light gradient individually. We propose a model based on the light intensity dependent 
speed-modulation proposed in the Berdahl-Couzin model20. Our model includes an additional gradient sensing 
term that can be tuned to investigate the interplay of environmental and social information and its effect on group 
performance.

Our results show that while an individual’s ability to sense gradients generally improves the group’s perfor-
mance, there are downsides. With greater weight given to environmental information, individuals rely less on 
social information leading to larger nearest neighbour distance, eventually fragmenting the school. However, by 
balancing social and environmental information, the nearest neighbour distance can be minimised, decreasing 
predation risk9,37,38 while keeping group performance near optimal. The relative gradient sensing weight that 
minimises nearest neighbour distance avoids relying too much on one source of information and produces sim-
ulations that agree with our experimental data for rummy nose tetras.

Results
Experimental results. We filmed schooling events of two freshwater species, golden shiners (Notemigonus 
crysoleucas) and rummy nose tetras (Hemigrammus bleheri), in a shallow tank (183 cm × 102 cm, 8 cm water 
depth). As shown in Fig. 1a, a projector located 226 cm over the experimental arena casts a dynamic light field at 
30 Hz onto the bottom of the tank. An IR camera placed 180 cm over the tank records images at 30 Hz as shown 
in Fig. 1. A cropped sample image of the light is shown in Fig. 1b, with an overlay of the silhouettes of tetras for 
scale. Each noise image is the sum of a circular dark spot with gaussian decay (with length scale 38.1 cm) to white 
and a noisy greyscale light field that varies spatiotemporally20,39. The dark spot moves with a constant speed of 
5.7 cm/s in random directions. The noise level η = 0.25 was held constant throughout the experiments. See the 
Supplementary Information and Berdahl et al.20 for further details on the light field.

We investigated the gradient tracking performance of schools of N =  16, 32, 64, and 128 individuals. For each 
species and group size, we conducted five replicate experiments with different random seeds used to generate the 
light fields. Each experiment consisted of fish navigating the dynamic light field for 5 minutes. Individual fish were 
tracked following a similar technique to Rosenthal et al.40 to obtain trajectories of individual’s positions. Velocities 
and accelerations were computed by convolving the position time-series with the first and second derivatives of 
a Gaussian, respectively41. More details on our experimental methods and husbandry procedures are given in the 
Supplemental Information.

To quantify group gradient tracking performance, we calculate the mean gradient tracking performance as, 
ψ = 〈〈1−L〉fish〉t, which averages the local light level first over all fish in each frame and then over all time20. This 
raw performance metric is then divided by the null performance, ψnull, which is defined similarly except by aver-
aging over the level of darkness of fish trajectories if they instead experienced the temporal average of the light 
field. The un-biased gradient tracking performance is then,

ψ ψΨ = ./ (1)null

The theoretical maximum performance for a single individual is obtained by minimising Ψnull while remaining 
in the dark patch for the entire trial. Averaging over all five light fields generated with different random seeds, 
we calculate Ψmax = 2.32 ± 0.72. While Ψmax gives a hard upper limit on group performance, this inaccurately 
assumes that fish can minimise Ψnull (fish have no knowledge of the temporal average of the light fields) and more 

Figure 1. (Left) A schematic of the apparatus showing the infrared camera and projector placed overhead the 
experimental tank. The tank is lit from below with several infrared lights. (Right) The silhouettes of a group 
of 32 tetras are superimposed on the dynamic light field through which they navigate. The image is cropped, 
showing only a small region of the larger tank to illustrate the scale of dark spot to the body length of a fish.
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importantly that fish occupy no volume. In Fig. 2a, we show the number density ρ = Agroup/(N⋅BL2) as a function 
of group size N for both shiners and tetras. In all our experimental statistical analysis, data was analysed with 
R version 3.4.3 using a generalised linear mixed model (GLMM) approach with gamma errors using the lmer4 
package42, where light field random seed and home tank were included as random factors to test for any effects 
with light field and group identity, respectively. There was no significant effect of group size on the number den-
sity ρ for both shiners (χ2 = 0.210, p = 0.647) and tetras (χ2 = 1.768, p = 0.184). The number density was ρ = 0.69 
for shiners and 1.28 for tetras, so the tetras are forming schools with roughly twice the number density as shiners.

In all our experiments, the radius of the circular dark spot is constant. Therefore, even if a school can perfectly 
track the spot, we expect that the group performance Ψ decreases for schools that are sufficiently large as some 
individuals will be beyond the radius of the dark spot. Note, however, that there are three factors which contribute 
to the area of the school: the number of fish N, the number density ρ and the size of fish BL. Firstly, the number 
density ρ for both shiners and tetras is intensive (does not depend on N) as shown in Fig. 2a, so increasing the 
number of fish N linearly increases the overall area occupied by the school. Secondly, schools with lower number 
density ρ occupy more area as the distance between each fish is larger. In Fig. 2a, we showed that a school of tet-
ras has roughly twice the number of density ρ compared to shiners, therefore, tetras are forming denser, smaller 
schools than shiners. Finally, for a given N and ρ increasing the size of the fish increases the overall area of the 
school. The average body length of our shiners (5.3 ± 0.5 cm) is about 50% longer than the tetras (3.4 ± 0.5 cm). 
Shiners are larger fish that are forming less dense schools, therefore, we expect the optimal group performance for 
shiners to be less than tetras for large N.

For both shiners and tetras, the level of performance, Ψ is shown as a function of group size in Fig. 2b. To 
quantify how school size effects optimal performance for shiners and tetras, we calculate Ψmax,S and Ψmax,T for a 
circle of area N times the average area occupied by a shiner or tetra, respectively. In Fig. 2b, we show how Ψmax,S 
and Ψmax,T depend on N given the average area of a school for each respective species. For small schools, Ψmax is 
large as the area of the school is smaller than the area of the dark spot. However, as N grows, Ψmax decays with N, 
albeit decaying faster for shiners than tetras due to their larger area schools for a given N.

The group performance of shiners was found to be independent of group size (χ2 = 1.833, p = 0.176), 
which did not agree with the result found by Berdahl et al.20. Since larger schools occupy greater area, larger 
group size decreases the optimal group performance of a given size school Ψmax,S. In Fig. 2b, note that the 
Ψ(N = 128) ≈ Ψmax,S(N = 128) showing that large schools of shiners are performing near optimally. The slightly 
larger size of our shiners compared to those used in Berdahl et al. (BL = 4.9 cm)20 is likely responsible for the small 
decrease in performance for large schools of shiners. Therefore, with smaller shiners (or a larger central dark 
spot), we expect our results to agree with Berdahl et al.

Additionally, we found that group performance for tetras decreased with increasing group size (χ2 = 4.620, 
p = 0.032). However, we note that the group performance for N = 128 is bounded by the decreasing optimal per-
formance Ψmax,T which is due to the increasing area of the school but constant radius of the dark spot. While larger 
school area limits the group performance at large N, we found that tetras outperform shiners for small group 
sizes where the area of the school is small compared to the area of the central dark spot. We examine correlations 
between individual’s acceleration to uncover the mechanism for the greater performance of tetras over shiners.

We investigated the mechanism for the increase in gradient tracking performance of tetras over shiners by 
examining the correlation between individual’s acceleration and the social and environmental vectors. We esti-
mate a social vector S which is calculated using neighbours within seven body lengths of the focal individual,

∑=
−

| − |
.

∈ ≠
S

x x
x x (2)

i
j r j i

j i

j i,s

Figure 2. (a) The average number density ρ = Agroup/(N⋅BL2) shown for shiners (blue circles) and tetras (orange 
triangles) as a function of the group size N. (b) The group gradient tracking performance, Ψ, is shown as a 
function of group size N for both shiners (blue circles) and tetras (orange triangles). The error bars represent 
the standard error of the group performance over replicates. The thick lines represent maximum group 
performance of a group of N individuals with the average area per individual for shiners and tetras.
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The direction of the social vector indicates the direction of social attraction and its length is a proxy for the 
strength of the attraction. While Fig. 3 uses seven body lengths to find S, our results do not qualitatively change 
if the interaction range rs is between five and nine body lengths, as shown in Supplemental Figures S4 and S5.

We take the environmental vector Gi to be the negative gradient of the light field L evaluated at the position 
xi of each fish,

= − ∇ |LG (3)i x i

The environmental vector Gi points in the direction of steepest descent toward darkness and its length is the 
rate of change of the light field in that direction. To calculate the response of an individual fish to its social and 
environmental vectors, we calculate the correlation between the direction of the corresponding vector and the 
direction of the fish’s acceleration with the following,

= 〈 ⋅ 〉^ ^C S a (4)i isocial

= 〈 ⋅ 〉. ^C G a (5)i ienvironmental

Using Csocial and Cenvironmental, we determine whether the motion of individuals is more strongly correlated with 
social or environmental information.

In Fig. 3a, we show Csocial and Cenvironmental for shiners as functions of the magnitude of the social vector S. 
Since, G is independent of S we use the Cenvironmental as a baseline to check the significance of Csocial. For shiners, we 
find that Csocial ≈ Cenvironmental when the magnitude of the social vector is less than 3, signifying that an individual’s 
acceleration is poorly correlated with the social vector. Note that the social vector’s magnitude is determined by 
the number of individuals in the range and their spatial distribution. The magnitude of the social vector |S| is 
small when either few neighbouring fish are located within the interaction range or neighboring fish are located 
uniformly around the focal fish. We do not expect shiners to respond strongly to the social vector in these situ-
ations. The magnitude of the social vector |S| is large when several neighbouring fish are located in a consistent 
direction. In Fig. 3a, when |S| > 3, we find that Csocial > Cenvironmental and Csocial grows linearly with the magnitude of 
the social vector, signifying that the shiner’s accelerations are correlated with the social vector.

In contrast, as shown in Fig. 3b, Cenvironmental ≤ Csocial for all magnitudes of the environmental vector, suggesting 
that individual shiners may not be able sense the environmental gradient, in agreement with recently reported 
results20. When the magnitude of the environmental vector is very large, the uncertainty in Cenvironmental and Csocial 
grows rapidly as the data is sparse and individual behavior is more variable.

Figure 3. Correlations between accelerations of shiners and the social and environmental cues (y-axis) are 
shown as functions of the magnitude of the social (a) and environmental (b) vectors (x-axis), respectively. 
Similarly, correlations between social and environmental vectors and the accelerations of tetras are shown as 
functions of the magnitude of the social (c) and environmental vectors (d), respectively. For all subfigures, 
the correlation between the accelerations and social vector are dark (blue) and between the accelerations and 
environmental vector are light (orange). All shaded regions denote twice the standard error.
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In contrast to the data reported for shiners, we find that the accelerations of tetras are not strongly correlated 
with the social vector as shown in Fig. 3c, as Csocial < Cenvironmental. However, as shown in Fig. 3d, tetras respond 
strongly to the light gradient as Cenvironmental > Csocial and Cenvironmental increases with the magnitude of the environ-
mental vector. Note that this does not imply that tetras do not respond to social forces, only that their accelera-
tions are more strongly correlated with the environmental vector.

While our results for shiners show that individuals are more strongly influenced by social information, tetras 
appear to exhibit the opposite trend and are more strongly influenced by the environmental gradient, as shown 
by Cenvironmental > Csocial shown in Fig. 3d. This result clarifies the findings in Fig. 2b, where tetras outperformed 
shiners in navigating the dynamic light field toward darker regions. This stark contrast in performance between 
tetras and shiners in solving the same problem is due to the different gradient sensing mechanisms. Shiners rely 
strongly on social cues which leads to an emergent group level gradient sensing20, but tetras can individually sense 
the environmental gradient.

Simulation model. As we have seen, different species of fish vary in the degree to which they base their 
movement on social and environmental information. To investigate this relationship, we explore how group per-
formance depends on the relative weighing of environmental and social information via a tunable weight param-
eter, w.

We propose a new model, built on the recently proposed agent based Berdahl-Couzin model6,20,43, to which we 
augment with an environmental gradient sensing for each individual. Individuals interact socially via the canon-
ical Couzin model where motion is determined via repulsive, aligning, and attractive interactions that depend on 
distance to neighbours. The direction given by social cues is dsocial. Explicit details of the calculation of dsocial are 
outlined in the Supplemental Information. We calculate the gradient of the noisy light field = −∇ |Ld xenvironmental i

.
The updated direction of each individual is given by

= + wd d d , (6)social environmental

where w is the relative weight and dsocial and denvironmenteal are unit vectors corresponding to the social and envi-
ronmental vectors, respectively. To determine the velocity of each individual, we then normalise d and multiply 
by the speed s,

= sv d (7)

To determine the speed of individuals, we follow the Berdahl-Couzin model using a light intensity dependent 
speed-modulation proposed by Berdahl et al.20, where individuals slow down in dark regions and speed up in 
bright regions. The speed grows linearly with the brightness, given by s = smin + L(smax − smin). Note, the speed 
modulation is the basis for the shiner’s emergent sensing. Further details and a flowchart for our model algorithm 
are given in the Supplementary Information.

In the limit that w → 0, social interactions entirely determine individual behaviour and our model reverts to 
the Berdahl-Couzin model20. In the opposing limit where w → ∞, individuals lose all social information and 
respond only to their local environmental gradient. We investigate the group performance as a function of group 
size N = [8, 16, 32, 64, 128, 256], the weight given to gradient information w is 32 log-spaced values between 10−2 
and 103, and the noise level of the environment η = [0.10, 0.25, 0.40]. We performed 20 replicate simulations for 
each weight and noise level. Each simulation was run for 104 time steps and data was recorded every 100th time 
step. In all our simulations presented in the main text, the parameters used for the Couzin model6 remained fixed 
throughout the simulations and were: zone of repulsion 0.5; zone of orientation 3.0; zone of attraction 5.5; field 
of perception 270 degrees; turning rate 100 degrees; social error 0.01 radians; time step increment 0.125. These 
values correspond to the parameters fit for golden shiners as previously reported by Berdahl et al.20.

Simulation results. In Fig. 4a, we show the group performance Ψ of our simulation as a function of the 
weight w with a noise level η = 0.25. The shape of Ψ(w) is sigmoidal. We find that increasing w (the gradient sens-
ing weight) greatly increases Ψ of the group. In this limit, individuals follow the gradient eventually finding the 
moving dark region. However, inside the dark region denvironmental = 0, since the gradient is zero, and the motion 
of individuals is determined by social interactions. Increasing group size N decreases the maximum Ψ, which 
is due to the increasing size of the school. Therefore, larger group sizes do not benefit from large gradient sens-
ing weight as much as smaller groups. To quantify this effect, we calculate the max gain in group performance 
ΔΨ = max(Ψ) − Ψ(w = 0). In Fig. 4b, we show ΔΨ as a function of group size, N for three different noise levels 
η = 0.10,0.25, and 0.40. We find that ΔΨ decreases monotonically with increasing N and decreases with increas-
ing η, showing that larger groups benefit less from an individual’s ability to sense the gradient regardless of the 
noise level of the environment.

The group performance decreases with increasing noise level η at large w, as shown in Fig. 4c. In more noisy 
environments, individuals who strongly rely on gradient sensing benefit less, as they respond to local variations 
in light level instead of large scale features.

Another trend of increasing η is the shifting of the sigmoidal Ψ(w) toward smaller w. The sigmoid reaches half 
the max, Ψ = Ψ = + ΔΨw( 0)1/2

1
2

, at w0 as shown in Fig. 4c. In Fig. 4d, we show the shifting of the group perfor-
mance Ψ toward smaller w by showing w0 as a function of N and η. The weight at half-max, w0, decreases with 
increasing environmental noise level η. We also find a maximum of w0 for groups of N = 32, demonstrating that 
small (and large) group benefit more from smaller weights w than intermediate group sizes.

Up to this point, our study did not account for the ubiquitous presence of error in individual environmental 
gradient sensing. To introduce this effect, we include a gaussian random error with standard deviation σw which is 
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added at each timestep to the local gradient direction. As shown in Fig. 5, for small w, the amount of error added 
to the gradient direction is nullified as individuals base their direction on social interactions. For large weights, 
w > 100, increasing the amount of error σw destroys the individual ability to sense the gradient and turns the 
simulation into non-interacting random walkers.

While increasing w increases the group performance Ψ, large w destroys social information. To quantify this 
effect, we calculate the nearest neighbour distance dnn. For all group sizes N, nearest neighbour distance decreases 
with increasing w to a minimum dmin( )nn

N . We find that dnn decreases for increasing group size N, corresponding 
to the increasing density of the group near the dark spot. Note that dnn < 0.5BL for N ≥ 128 which is due to over-
crowding in the dark spot and low time resolution. With shorter Δt for the simulation, the repulsive social inter-
action would prohibit such overcrowding and should yield a minimum dnn ≥ 0.5BL. For large w, we find that dnn 
increases, as long range attractive social interactions weaken and individuals follow local transient gradients away 
from the school.

Figure 4. (a) Group performance shown as a function of weight w for group size N = 8, 16, 32, 64, 128, and 256. 
(b) The performance gain ΔΨ = Ψmax(w) − Ψ(w = 0) shown as a function of group size for different noise scales 
η = 0.10,0.25 and 0.40. (c) Gradient tracking performance Ψ shown as a function of weight w for different η and 
N = 32. The dashed vertical line shows w0 the weight at which Ψ reaches half maximum, where Ψ = Ψ(w = 0) 
+ 0.5ΔΨ. (d) The w0 shown as a function of N for different noise scales η.

Figure 5. The gradient tracking performance Ψ is shown for N = 128 as a function of weight w for different 
gradient sensing error σw.



www.nature.com/scientificreports/

7Scientific RePoRtS |  (2018) 8:7587  | DOI:10.1038/s41598-018-26037-9

We propose that nature selects the weight w which balances individually acquired gradient information with 
social information such that nearest neighbour distance dnn is minimised for all group sizes. Smaller nearest 
neighbour distance reduces predation risk9,37,38. We find the weight which minimises the sum of the squared dif-
ference of dnn for group sizes N = 16, 32, 64 and 128 to be = .∼w 31 6min , and is shown in Fig. 6a. Therefore, by 
weighing their individually acquired gradient information around thirty times stronger than social interaction, 
individuals can optimise both Ψ and dnn. However, we emphasise the granularity of w due to computational cost. 
Using = ∼w wmin, we show the group performance Ψ as a function of N in Fig. 6b. We find good agreement between 
our model and experimental data for the rummy nose tetras. In Fig. 6b, the shaded region represents the Ψ for the 
range of w that minimise dnn in simulations for each group size N, w = 14.7 to 68.1. Therefore, to further improve 
the model’s ability to match the tetra’s behaviour, one could optimise ro, ra and w to better replicate the behaviour 
of the tetra, however, given the large error bars on the simulated group performance and the good agreement with 
experimental data, parameterising the data for the tetras may be of limited value. We find that the weight which 
minimises dnn also minimises the root mean square error (RMSE) in group performance for experimental data of 
the tetras. For groups N = 128, the group performance for Ψ for the tetras falls below the range predicted by our 
simulation. attribute this disagreement largely to distraction of individual fish with the edge of the tank.

Note that the simulations are not parametrised to fit the schools of tetra. In all the numerical results, we fixed 
the repulsion, orientation and attraction zonal distances to match those reported for golden shiners previously 
reported20. We use the simulations to display a generic behaviour of self-propelled particle models which sup-
ports our experimental observations that tetras have some innate environmental gradient sensing ability. In the 
Supplemental Information Fig. S8, we show that the minimum of the RMSE between the tetras and the perfor-
mance for our model using w = 0 (Berdahl-Couzin) gives a smaller interaction range (ro,ra), but the RMSE is 
several times larger than that reported for the shiners20. Furthermore, using this ro and ra, we conduct a parallel 
analysis as in the main text and find that the agreement with the experimental data was not as good as results 
reported in the main text in Fig. 6b. We refer the reader to the Supplemental Information for further discussion.

Discussion
This work presents experimental and numerical studies on group performance of fish schools navigating a spatio-
temporally varying light field. First, we experimentally investigated the collective gradient tracking performance 
of two freshwater species: golden shiners (N. crysoleucas) and rummy nose tetras (H. bleheri). Our results agree 
with previous findings that the motion of shiners is based strongly on social interactions and is not correlated 
with the light gradient20. However, our results show that tetras outperform shiners at this task for all group sizes, 
which is due to the individual ability for tetras to sense the gradient of the light field. The emergent collective 
sensing (shiners) and collective enhanced individual sensing (tetras) are distinct gradient sensing mechanisms.

Second, we used these observations to propose an agent-based model based on the Berdahl-Couzin model6,20, 
where we included a gradient sensing ability which is weighted against social information for each individual. 
In our simulations, we find that group performance increases with increasing dependence (weight) on gradient 
sensing information, which is robust to group size N and noise scale η as shown in Fig. 4a,c. However, when 
individuals rely too much on their individual information, social information is lost, nearest neighbour distance 
increases and the school fragments.

To balance the benefits of social information and group living9,31 with individually acquired environmen-
tal information, we proposed that individuals adjust the relative weight attributed to environmental (gradient) 
or social information to minimise the average nearest neighbour distance dnn. This adaptation is important, as 
decreasing nearest neighbour distance reduces risk of predation9,37,38. Using the gradient sensing weight which 
minimises the nearest neighbour distance, we found good agreement with our experimental data for tetras. 
Furthermore, we found that the minima in the dnn depends on N, which suggests that it may be advantageous for 

Figure 6. (a) Nearest neighbour distance of simulated schools is shown as a function of the weight w for group 
sizes N. The dashed vertical line is the weight ∼wmin which minimises dnn for all N. (b) Gradient tracking 
performance of the numerical results for = ≈∼w w 32min  (dark green squares), where the shaded region shows 
the range of Ψ corresponding to simulated weights from w ≈ 14 to 64. These weights are those which minimise 
dnn for N = 256 and 16 respectively. The experimental results are overlaid for the rummy nose tetras (orange 
triangles) and shiners (blue circles).
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individuals to dynamically adjust the weight based on group size. A dynamic tuning based on the situation would 
allow individuals to optimise their performance based on the situation or quality of information. For example, a 
dynamic tuning would allow individuals to favour individually acquired environmental information, when the 
environment is less noisy or the magnitude of the environmental vector is large. By contrast, if the magnitude of 
the social vector is large or the environment is noisy44, individuals can benefit from decreasing the weight and 
relying more on social information.

Dynamic and adaptive behavioural rules have been experimentally investigated in groups of fish exposed to 
alarm or food cues. Under predatory cues, x-ray tetras slow down and increase in density45 and bluegill sunfish 
form more highly polarised schools46. Fish swim faster and decrease in density when exposed to food45,47,48. While 
individual differences in physical ability and sensing can have large implications on decision making49 and the 
fitness of the group50, social benefits may pressure individuals to ignore private information and conform51. In 
these situations, individuals adjust their social interactions via rapid feedback loops in order to conform to the 
group50,52,53.

For rummy nose tetras, we found group performance decreases with group size, which is due to geometrical 
constraints as size of the school exceeds the size of the dark spot. Our results show that tetras can maximise their 
benefit in smaller groups. In some contexts, larger groups may improve the group performance20 and facilitate fast 
and accurate decisions where there are predatory cues49, though larger groups can increase confidence without 
increasing decision accuracy54,55 and in some cases deteriorate obstacle avoidance capabilities56. As often seen 
in nature2,31, individuals may maximise their benefit in small to intermediate sized groups with increased deci-
sion accuracy from inherent noise and less detrimental feedback from correlated information (present in larger 
groups)55. In P. longicornis ants where the food is collectively transported, the collective response is maximised for 
intermediate group sizes where criticality facilitates the flow of new information56. In a similar experiment to the 
one in the text and Berdahl et al.20, however using humans, collective sensing was maximised in smaller groups, 
where collective sensing strategies were learned in minutes57.

In summary, our model shows the disadvantages of extreme behavioural rules, where either relying too 
strongly on either social information (w = 0) produces in poor group performance or relying too strongly on 
individually acquired environmental gradient information (w → ∞) destroys valuable social information and 
fragments groups. Our results show that individuals can balance their individually acquired environmental infor-
mation with social information, which promotes group performance and strong cohesion. Our experimental 
results show two freshwater species using distinct gradient sensing mechanisms: emergent collective sensing 
(shiners) and collective enhanced individual sensing (tetras). These interaction rules evolved under distinct eco-
logical and social conditions35. In new environments, individuals value social information more than their indi-
vidually acquired environmental information (w < 1) which is due the need to conform49. Therefore, it is likely 
that individuals also adjust their weighing of social and environmental information w. An extension of this work 
would explore the extent to which individuals tune w to conform with the group or if w depends on the environ-
mental noise level.

Methods
Husbandry. We studied the gradient sensing performance of schools of golden shiners (Notemigonus cryso-
leucas) and rummy nose tetras (Hemigrammus bleheri) in a laboratory. While both are freshwater fish that prefer 
to school in dark shallow water, shiners (a cyprinid found in cool waters of eastern North America) and tetras 
(a characin found in the tropical waters of Amazon Basin of Brazil and Peru) require different water chemistry.

The golden shiners N. crysoleucas were acquired from Anderson Minnows. We kept approximately 500 
juvenile shiners in three 30 gallon home tanks (≈150 in each tank) using de-chlorinated, aerated, and filtered 
tap-water kept at 21 °C. Water changes of 30% were done twice weekly. Shiners were 5.3 ± 0.5 cm in length.

The rummy nose tetras, H. bleheri, were acquired from Cichlid Exchange. We kept approximately 200 tetras in 
two 40 gallon home tanks (100 in each) at a constant temperature of 27.0 ± 0.5 °C in a 1:3 de-chlorinated tap water 
to reverse osmosis water that was aerated and filtered. The RO water diluted the pH and gH of the tap water to 
6.8 ± 0.2 and 100 ± 20 ppm, respectively. Water changes of 20% were done once a week. Tetras were 3.4 ± 0.5 cm 
in length.

The home tanks for both species were illuminated with 12 h of light and 12 h of darkness per day. Both were 
fed a mix of crushed TetraMin flakes, Hikari brine shrimp, micro pellets, and freeze-dried blood worms four 
times a day. Before each experimental trial, fish were gently netted from their home tanks an hour after their 
first feeding and transferred to the experimental tank. We ensured that fish were not used in experiments on 
consecutive days by using a rotating schedule to select which home tank to gather fish. Fish were appropriately 
acclimatised to the water in the experimental tank before experiments took place. Further husbandry details are 
outlined in the Supplementary information.

Ethics. All experiments were conducted in accordance with federal and state regulations and were approved 
by the Gettysburg College Institutional Animal Care and Use Committee.

Experimental setup. We conducted experiments with golden shiners and rummy nose tetra in a quasi 
two-dimensional acrylic tank (183 × 102 cm, 8 cm water depth). Videos of schooling events were captured via a 
USB3 Point Grey camera mounted 180 cm above the tank which was back-lit by 850 nm infrared LEDs positioned 
beneath the tank. The videos were captured in 2048 × 1280 px at 30 frames per second by the camera which was 
hardware triggered to synchronise with the projected light field. The dynamic light field of 940 × 540 px were 
generated by a projector positioned 226 cm above the experimental tank at 30 frames per second. As shown in 
Supplemental Figure S2 and zoomed in Fig. 1, the projected field consisted of a single dark spot which moved ran-
domly around the tank at a constant speed and was overlaid on a noisy background which varied both spatially 
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and temporally, identical to the method detailed in a previous work20. Measured light levels at the surface of the 
tank ranged from 10 lux (approximately twilight) to 500 lux (sunrise on a clear day), corresponding to the natural 
environment of the fish in the morning or evening.

For each species (tetra and shiner) and group size N = 16, 32, 64 and 128, we recorded five replicate experi-
ments for 5 minutes. We used four different seeds to generate each projected video at a medium level of environ-
mental noise (η = 0.25), and added a 50 pixel white border to the light field to discourage fish from interacting 
with the sides of the arena. Each experimental run was followed by a 10 minute rest period under neutral lighting 
(0.5 lux, deep twilight). See Supplementary information for further experimental details.

Fish Tracking. Our algorithm was implemented in Python using the OpenCV library, and followed a similar 
approach to SchoolTracker40. Individual fish are located using detected line-segments in background subtracted 
frames of video. We then track fish from frame to frame by linking their two-dimensional positions over time 
using a Kalman filter. Due to the large number of fish, occlusions are frequent and the detection/tracking algo-
rithm can fail to locate and track a fish over multiple frames. The tracks are spliced together by linking tracks in a 
four-dimensional position-velocity space58. Our tracking algorithm recovers 90% of trajectories for N = 128 and 
92% for N = 16. Since our focus in this paper does not rely on us maintaining identities for long periods of time, 
we have sufficient data to calculate velocities and accelerations.

Once the time-resolved trajectories are known, we compute velocities and accelerations by convolving the tra-
jectories with a Gaussian smoothing and differentiating kernel41,59. Derivatives computed using this convolution 
method are less noisy than what would be obtained from a simple finite difference scheme. For the data presented 
here, the convolution kernel was chosen to have a standard deviation of 1.5 frames, and the position information 
from 11 frames was used to calculate each derivative.
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