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Abstract: The theoretical prospects for quantum electrodynamics with Lorentz-violating operators
of mass dimensions up to six are revisited in this work. The dominant effects due to Lorentz and CPT
violation are studied in measurements of magnetic moments of particles confined in Penning traps.
Using recently reported experimental results, new coefficients for Lorentz violation are constrained
and existing bounds of various coefficients are improved.

Keywords: lorentz violation; CPT violation; penning trap

1. Introduction

The recent measurements of the proton and antiproton magnetic moments have reached record
sensitivities of ppb levels by confining the particles in electromagnetic fields using a Penning
trap [1,2]. For the electron magnetic moment, a similar Penning-trap experiment has also been
carried out in an impressive precision of ppt level [3]. Experiments measuring the positron magnetic
moment are currently under development to aim for a comparable precision as that of the electron
[4,5]. These highly precise measurements in Penning-trap experiments offer a great way to study
fundamental symmetries, including Lorentz and CPT invariances, the foundation of Einstein’s theory
of relativity. It has been shown that tiny deviations from relativity could naturally emerge in
a fundamental theory unifying gravity with quantum physics at the Plank scale MP ∼ 1019 GeV,
such as strings [6,7]. In recent years, many high-precision tests of relativity in various subfields of
physics have been performed to search for Lorentz- and CPT-violating signals [8], including the
spectroscopic studies of particles confined in Penning traps.

Any tiny violation effects arising from a large unknown energy scale are well described by effective
field theory. The comprehensive framework describing Lorentz violation in the context of effective
field theory is given by the Standard-Model Extension (SME) [9–11], which is constructed by adding
all possible Lorentz-violating terms into the action of General Relativity and the Standard Model.
Each of the terms is formed from a coordinate-independent contraction of a Lorentz-violating operator
with the corresponding controlling coefficient. In the context of effective field theory, CPT violation
is accompanied by the breaking of Lorentz symmetry [9,10,12], so the SME also describes general
CPT-violating effects. The SME provides a general framework to study possible effects due to Lorentz
and CPT violation and the parameters in any specific model characterizing these violations can be
matched to a suitable subset of the SME coefficients.

The minimal SME contains Lorentz-violating operators of mass dimensions up to four, which is
power-counting renormalizable in Minkowski spacetime. Lorentz-violating operators of larger mass
dimensions can be viewed as corrections at higher orders to the low-energy limit. Study of the
nonminimal SME is of interest in many different contexts of physics, such as the causality and
stability [13,14], the pseudo-Riemann–Finsler geometry [15–18], the mixing of Lorentz-violating operators
of different mass dimensions [19], Lorentz-violating models in supersymmetry [20], and noncommutative
Lorentz-violating quantum electrodynamics [21–23].
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In a Penning-trap experiment, the measurable effects due to Lorentz and CPT violation given
by the minimal SME include the charge-to-mass ratio and the magnetic moment of the confined
particle [24,25], through the changes in the anomaly and cyclotron frequencies. The published work on
studying the minimal-SME effects involves comparison of the anomaly frequencies of the electron and
positron [26], sidereal-variation analysis of the electron anomaly frequency [27,28], and measurements
of cyclotron frequencies of the H− ion relative to that of the antiproton [29,30].

In the nonminimal SME, additional Lorentz- and CPT-violating effects beyond the minimal SME
can be generated by the interaction between the confined particle and the electromagnetic fields in the
trap. The general theory of quantum electrodynamics with Lorentz- and CPT-violating operators of
mass dimensions up to six has been constructed in Ref. [31]. Recently, this treatment was generalized to
include operators of arbitrary mass dimension using gauge field theory [32]. In this work we focus on
further studies of Lorentz- and CPT-violating effects in the nonminimal sector of the SME by using the
recent Penning-trap results, which include the sidereal-variation analysis of the anomaly frequencies
for electrons [28] and the comparison of magnetic moments for both protons and antiprotons [1,2],
to obtain new and improved constraints on the SME coefficients. The results from this work are
complementary to existing studies of Penning-trap experiments [31], the muon anomalous magnetic
moment [33,34], clock-frequency comparison [35], and spectroscopy of hydrogen, antihydrogen,
and other related systems [36].

This work is organized as follows. In Section 2, we review the theory of quantum electrodynamics
with Lorentz- and CPT-violating operators of mass dimensions up to six. We use perturbation theory
to obtain the dominant shifts arising from Lorentz violation to the energy levels of the trapped
fermion, and then derive the contributions to the cyclotron and anomaly frequencies. The discussion of
coordinate transformation is given at the end of this section. We next turn in Section 3 the experimental
applications related to Penning traps and use the reported results to extract new limits on various SME
coefficients, including some that were not constrained in the literature. The constraints on the SME
coefficients obtained in this work are summarized in Section 4.

2. Theory

The theoretical prospects of Lorentz- and CPT-violating quantum electrodynamics in Penning-trap
experiments have been studied in Ref. [31]. In this section, we review the main results.

For a Dirac fermion field ψ of charge q and mass mψ confined in an external electromagnetic field
specified by potential Aµ, the conventional gauge-invariant Lagrange density L0 takes the form

L0 = 1
2 ψ(γµiDµ −mψ)ψ + h.c., (1)

where the covariant derivative is given by the minimal coupling iDµ = (i∂µ − qAµ) and h.c.
means Hermitian conjugate. The general Lorentz-violating Lagrange density that preserves U(1)
gauge invariance for the Dirac fermion field ψ can be constructed by adding contraction terms of
Lorentz-violating operators with the corresponding SME coefficients [9,10],

Lψ = 1
2 ψ(γµiDµ −mψ + Q̂)ψ + h.c., (2)

where Q̂ is a general 4× 4 spinor matrix involving the covariant derivative iDµ and the electromagnetic
field tensor Fαβ ≡ ∂α Aβ − ∂β Aα. The hermiticity of the Lagrange density (2) guarantees that Q̂ satisfies
condition Q̂ = γ0Q̂†γ0. In the limit of the free Dirac fermion with Aα = 0, Ref. [37] has studied the
propagation of the fermion field ψ at arbitrary mass dimension. A similar analysis of the quadratic
terms in the photon sector at arbitrary mass dimension has been presented in Ref. [38], as well as
extensions to other sectors, e.g., nonminimal neutrino [39] and gravity [40].

In this work we focus on the dominant Lorentz-violating effects including the photon-fermion
interaction beyond the minimal SME and restrict our attention to operators in the Lagrange density (2)
with mass dimensions up to six. The related full Lagrange density (2) can then be expressed as
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two parts, the conventional Lagrange density L0 plus a series of contributions L(d) according to the
mass dimension of the operators, presented in Ref. [31]. We note that the nonminimal operators in
the Lagrange density (2) generate a new type of SME coefficients with subscript F which control
the sizes of interactions involving the fermion spinors ψ and the electromagnetic field strength Fαβ.
For example, the dimension-five terms in the Lagrange density (2) contain a contribution involving
b(5)µαβ

F Fαβψγ5γµψ.
In the Lagrange density (2), the presence of Lorentz-violating operators modifies the conventional

Dirac equation for a fermion in electromagnetic fields and generates corrections δH to the Hamiltonian.
Since no Lorentz violation has been observed so far, any corrections must be tiny. We thus can treat
δH as a perturbative contribution and apply perturbation theory to obtain the dominant Lorentz- and
CPT-violating shifts in energy levels,

δEn,s = 〈χn,s|δH|χn,s〉, (3)

where En,s are unperturbed eigenstates of nth level and s is the spin state taking values of +1 and −1
for spin up and down, respectively.

From the modified Dirac equation given by the Lagrange density (2)

(p · γ−m + Q̂)ψ = 0, (4)

the exact HamiltonianH can be defined as

Hψ ≡ p0ψ = γ0(p · γ + m− Q̂)ψ, (5)

where p0 is the exact energy. The exact perturbative Hamiltonian δH can then be identified as

δH = −γ0Q̂. (6)

It is challenging to construct δH directly as terms proportional to higher powers of momentum
appear in Q̂ and these terms in general contain the perturbative Hamiltonian H itself. However,
any contributions to δH due to the exact Hamiltonian H are at second or higher orders in the SME
coefficients. To obtain the leading-order corrections, one thus can evaluate p0 in Q̂ at the unperturbed
eigenstates En,s,

δH ≈ −γ0Q̂|p0→En,s
. (7)

In a Penning-trap experiment the primary observables of interest are transition frequencies
generated by the energy shifts due to the electromagnetic fields in the trap. Among the key frequencies
are the Larmor frequency for spin precession νL ≡ ωL/2π and the cyclotron frequency νc ≡ ωc/2π.
The difference of the two frequencies gives the anomaly frequency νL − νc = νa ≡ ωa/2π [41].
The measurements of the magnetic moment and the related g factor of a particle confined in the trap
can then be determined by the following ratio,

νL
νc
≡ ωL

ωc
=

g
2

. (8)

The above frequencies can be shifted in the presence of Lorentz and CPT violation, as the energies
are modified by Equation (3). To show the explicit results of the shifts, we choose the apparatus frame
with cartesian coordinates xa ≡ (x1, x2, x3) so that the magnetic field B = Bx̂3 points at the positive x3

direction and fix the electromagnetic potential gauge to be Aµ = (0, x2B, 0, 0). For a confined particle
of fermion-flavor w = e, p for electrons and protons, and of charge polarity σ = +1, −1 for carrying
positive and negative charges, there is no leading-order contribution from Lorentz and CPT violation
to the cyclotron frequencies,

δωw
c = δEw

1,σ − δEw
0,σ ≈ 0. (9)
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The dominant Lorentz- and CPT-violating contributions appear in the shifts to the
anomaly frequencies,

δωw
a = δEw

0,−σ − δEw
1,σ = 2b̃3

w − 2b̃33
F,wB, (10)

where the tilde quantities are defined by

b̃3
w = b3

w + H12
w −mwd30

w −mwg120
w + m2

wb(5)300
w + m2

wH(5)1200
w −m3

wd(6)3000
w −m3

wg(6)12000
w ,

b̃33
F,w = b(5)312

F,w + H(5)1212
F,w −mwd(6)3012

F,w −mwg(6)12012
F,w .

(11)

Here the superscripts (d) of the nonminimal SME coefficients in the tilde quantities (11) denote
the mass dimensions of the corresponding coefficients.

For the Lorentz- and CPT-violating shifts to the cyclotron and anomaly frequencies of the
corresponding antifermion of flavor w, a similar analysis can be carried out by reversing the signs of
the CPT-odd SME coefficients in Equations (9) and (10). As with the fermion case, the leading-order
contributions to the cyclotron frequencies vanish,

δωw
c = δEw

1,σ − δEw
0,σ ≈ 0, (12)

and the shifts to the anomaly frequencies are given by

δωw
a = δEw

0,−σ − δEw
1,σ = −2b̃∗3w + 2b̃∗33

F,wB, (13)

where the two sets of starred tilde coefficients are defined as

b̃∗3w = b3
w − H12

w + mwd30
w −mwg120

w + m2
wb(5)300

w −m2
w H(5)1200

w + m3
wd(6)3000

w −m3
wg(6)12000

w ,

b̃∗33
F,w = b(5)312

F,w − H(5)1212
F,w + mwd(6)3012

F,w −mwg(6)12012
F,w .

(14)

The index pair 12 in the tilde quantities (11) and (14) is antisymmetric and transforms under
rotation like a single 3 index, thus the shifts (10) and (13) in the anomaly frequencies for both fermions
and antifermions depend on only the x̂3 direction, as expected from the cylindrical symmetry of
the trap.

The above results (10) and (13) show that the dominant contributions in the anomaly frequencies
for a trapped fermion and antifermion of flavor w in a Penning trap are given by the four tilde
combinations b̃3

w, b̃33
F,w, b̃∗3w , and b̃∗33

F,w. The results are valid in the apparatus frame, in which the
magnetic field is aligned with the positive x̂3 axis. However, this apparatus frame is noninertial due
to the Earth’s rotation. The standard canonical frame adopted in the literature to compare results
from different experiments searching for Lorentz violation is the Sun-centered frame [42,43], with the
cartesian coordinates X J ≡ (X, Y, Z). In this frame, the Z axis is aligned with the rotation axis of the
Earth and the X axis points towards the vernal equinox in the year 2000. The Sun-centered frame is
approximately inertial in a typical time scale for an experiment. To relate the SME coefficients from the
Sun-centered frame to the apparatus frame, we introduce a third frame called the standard laboratory
frame with cartesian coordinates xj ≡ (x, y, z). The z axis in this frame points towards the local zenith
and the x axis is aligned with the local south. The choice of the positive x̂3 axis in the apparatus
frame to be aligned with the direction of the magnetic field may result in a nonzero angle to the ẑ axis,
so the transformation xa = Rajxj relating (x, y, z) in the standard laboratory frame to (x1, x2, x3) in the
apparatus frame involves a rotation matrix Raj specified in general by suitable Euler angles α, β, and γ,

Raj =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1


 cos β 0 − sin β

0 1 0
sin β 0 cos β


 cos α sin α 0
− sin α cos α 0

0 0 1

 . (15)
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Neglecting boost effects, which are at the order of 10−4, the relationship xj = RjJ x J between
(X, Y, Z) in the Sun-centered frame and (x, y, z) in the standard laboratory frame can be obtained by
applying the following rotation matrix [42,43]

RjJ(T⊕) =

 cos χ cos ω⊕T⊕ cos χ sin ω⊕T⊕ − sin χ

− sin ω⊕T⊕ cos ω⊕T⊕ 0
sin χ cos ω⊕T⊕ sin χ sin ω⊕T⊕ cos χ

 , (16)

where ω⊕ ' 2π/(23 h 56 min) is the sidereal frequency of the Earth’s rotation, T⊕ is the local sidereal
time, and the angle χ specifies the laboratory colatitude.

To relate the time T in the Sun-centered frame to the time t in the standard laboratory frame, it is
often convenient to match the origin of t with the local sidereal time T⊕, by defining its origin at the
moment when the y axis in the standard laboratory frame lies along the Y axis in the Sun-centered
frame. For a laboratory with longitude λ in units of degrees, this choice offsets t from T by an integer
number of the Earth’s sidereal rotations plus an additional shift

T0 ≡ T − T⊕ '
(66.25◦ − λ)

360◦
(23.934 hr). (17)

The above discussion shows that the relationship between (X, Y, Z) in the Sun-centered frame
and (x1, x2, x3) in the apparatus frame is given by

xa(T⊕) = RajRjJ(T⊕)X J . (18)

The transformation (18) generates the dependence on the sidereal time of the SME coefficients
observed in the apparatus frame. To show the explicit dependence of the shifts to the anomaly
frequencies (10), consider a fermion of flavor w confined in a Penning trap with the magnetic field
aligned with the local zenith and located at colatitude χ, applying the transformation matrix (16) yields
the results

b̃3
w = b̃Z

w cos χ + (b̃X
w cos ω⊕T⊕ + b̃Y

w sin ω⊕T⊕) sin χ, (19)

and

b̃33
F,w = b̃ZZ

F,w + 1
2 (b̃

XX
F,w + b̃YY

F,w − 2b̃ZZ
F,w) sin2 χ + (b̃(XZ)

F,w cos ω⊕T⊕ + b̃(YZ)
F,w sin ω⊕T⊕) sin 2χ

+
(

1
2 (b̃

XX
F,w − b̃YY

F,w) cos 2ω⊕T⊕ + b̃(XY)
F,w sin 2ω⊕T⊕

)
sin2 χ,

(20)

where the parenthesis around two indices (JK) in the tilde coefficients means symmetrization and
is defined as (JK) = (JK + KJ)/2. Similar results for the shifts to the anomaly frequencies (13) of
antifermions can also be derived by substituting the tilde coefficients with the starred tilde coefficients.
In more general cases with the magnetic field pointing a generic direction, information on the Euler
angles α, β, γ in Equation (15) are needed to obtain the explicit results.

The results given above show that the physical observables in a Penning-trap experiment
involving electrons, positrons, protons, and antiprotons are the 36 independent tilde quantities b̃J

w, b̃∗J
w ,

b̃(JK)
F,w , and b̃∗(JK)

F,w in the Sun-centered frame. Performing a sidereal-variation analysis of the anomaly

frequencies can give access to 28 of the coefficients as the other 8 contributions proportional to b̃Z
w,

b̃∗Zw , b̃ZZ
F,w, and b̃∗(ZZ)

F,w are independent of sidereal time. A comparison of the results from two different
Penning-trap experiments is therefore required to study these 8 combinations of coefficients for Lorentz
violation that produce constant shifts to the anomaly frequencies.
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3. Experiment

3.1. Harvard Experiment

The recent measurement of the electron g factor performed at Harvard University has reached
a precision of 0.28 ppt [3]. A sidereal-variation analysis of the anomaly frequencies for the electron
was performed to search for variations in the sidereal time of the Earth’s rotation [28]. The data was
analyzed for oscillations over time and was fit by a five-parameter sinusoid model at the sidereal
frequencies of ω⊕ and 2ω⊕, yielding a 2σ limit in the amplitudes of the harmonic oscillation of
|δνe

a| ∼< 0.05 Hz. This result corresponds to |δωe
a| ∼< 2× 10−25 GeV in natural units with c = h̄ = 1.

The magnetic field adopted in the experiment is B = 5.36 T in the local upward direction and the
geometrical colatitude of this experiment is χ = 47.6◦. Taking one sidereal oscillation at a time
places bounds((

b̃X
e − (2× 10−15 GeV2)b̃(XZ)

F,e

)2
+
(

b̃Y
e − (2× 10−15 GeV2)b̃(YZ)

F,e

)2
)1/2

∼< 2× 10−25 GeV (21)

in the first harmonic and((
10−15 GeV2(b̃XX

F,e − b̃YY
F,e )
)2

+
(

10−15 GeV2b̃(XY)
F,e

)2
)1/2

∼< 2× 10−25 GeV (22)

in the second harmonic, respectively. The above results not only lead to a factor of four improvement
compared to the existing constraints obtained by a similar analysis of the Penning-trap experiment
searching for first-harmonic variation at the University of Washington [27,31], but also produce
the first-time bounds on tilde coefficients b̃(XX)

F,e − b̃(YY)
F,e and b̃(XY)

F,e as they only appear in the second
harmonic of the sidereal oscillation.

The experiments to measure the magnetic moment of a trapped positron are currently under
development at Harvard University and Northwestern University [4,5]. Performing a similar
sidereal-variation analysis of the anomaly frequency would offer not only the first-time limits on the
starred tilde coefficients b̃∗J

e , b̃∗(JK)
F,e , but would also constrain the CPT-odd coefficients in Equations (11)

and (14) by comparing with measurements of the electron. The constant parts in the sidereal variations
of the tilde coefficients b̃J

e , b̃(JK)
F,e , b̃∗J

e , and b̃∗(JK)
F,e could also be studied by this comparison.

3.2. BASE Experiments at Mainz and CERN

The BASE collaboration has recently measured the proton magnetic moment at a record sensitivity
of 0.3 ppb using a Penning trap located at Mainz [1], improving their previous best result [44] by
a factor of 11. A precision of 1.5 ppb of the antiproton magnetic moment measurement has also
been achieved by the same group using a similar Penning trap located at CERN [2]. A study of
sidereal variations of the anomaly frequencies for both protons and antiprotons is currently being
performed at BASE and this could, in principle, provide sensitivities to various tilde coefficients b̃J

p,

b̃(JK)
F,p , b̃∗J

p and b̃∗(JK)
F,p . Another version of this experiment is planned to be performed at CERN by

the BASE collaboration to measure the magnetic moments for both protons and antiprotons using
quantum logic readout [45], which will allow rapid measurements of the anomaly frequencies for the
proton and antiproton. This would offer an excellent opportunity to conduct the sidereal-variation
analysis, as well as to constrain the constant parts in the harmonics of the above coefficients through
a direct comparison of the two measurements.
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Here we combine the published results from the two recent BASE experiments [1,2] to obtain
constraints on the SME coefficients in the Sun-centered frame. A comparison between the two
measured g factors for protons and antiprotons gives

gp

2
−

gp

2
=

ω
p
a

ω
p
c
− ω

p
a

ω
p
c
=

2

ω
p
c ω

p
c

(
Σω

p
c ∆ω

p
a − ∆ω

p
c Σω

p
a

)
, (23)

where the differences and sums of the cyclotron and anomaly frequencies are defined as

∆ω
p
c ≡ 1

2 (ω
p
c −ω

p
c ),

Σω
p
c ≡ 1

2 (ω
p
c + ω

p
c ),

∆ω
p
a ≡ 1

2 (δω
p
a − δω

p
a ),

Σω
p
a ≡ 1

2 (δω
p
a + δω

p
a ).

(24)

For the proton magnetic moment measured at Mainz, the experiment is located at χ ' 40.0◦

and the applied magnetic field B ' 1.9 T points θ = 18◦ from local south in the counterclockwise
direction, generating a cyclotron frequency ω

p
c = 2π × 28.96 MHz [1]. For the antiproton magnetic

moment measurement at CERN, the trap is located at χ∗ ' 43.8◦ and the magnetic field B∗ ' 1.95 T
points θ∗ = 120◦ from local south in the counterclockwise direction, producing a different cyclotron
frequency ω

p
c = 2π × 29.66 MHz [2]. Since the measurements of the frequencies for both experiments

were performed over an extended time period, any sidereal variations could be plausibly assumed
to be averaged out, leaving only the constant parts in the tilde coefficients. Therefore, applying the
general transformation (18) together with the related experimental quantities yields the following
expressions for the time-independent parts in ∆ω

p
a and Σω

p
a ,

∆ω
p
a = b̃3

p − b̃33
F,pB + b̃∗3p − b̃∗33

F,p B∗

= −b̃Z
p cos θ sin χ− b̃∗Zp cos θ∗ sin χ∗

− 1
2 (b̃

XX
F,p + b̃YY

F,p)B(cos2 θ cos2 χ + sin2 θ)− 1
2 (b̃
∗XX
F,p + b̃∗YY

F,p )B∗(cos2 θ∗ cos2 χ∗ + sin2 θ∗)

−b̃ZZ
F,pB cos2 θ sin2 χ− b̃∗ZZ

F,p B∗ cos2 θ∗ sin2 χ∗,
Σω

p
a = b̃3

p − b̃33
F,pB− b̃∗3p + b̃∗33

F,p B∗

= −b̃Z
p cos θ sin χ + b̃∗Zp cos θ∗ sin χ∗

− 1
2 (b̃

XX
F,p + b̃YY

F,p)B(cos2 θ cos2 χ + sin2 θ) + 1
2 (b̃
∗XX
F,p + b̃∗YY

F,p )B∗(cos2 θ∗ cos2 χ∗ + sin2 θ∗)

−b̃ZZ
F,pB cos2 θ sin2 χ + b̃∗ZZ

F,p B∗ cos2 θ∗ sin2 χ∗.

(25)

Substituting expressions (25) into the difference (23) and adopting the numerical values of the
experimental quantities given above, the reported results for the measurements of g factors from both
BASE experiments give the following 2σ limit∣∣∣b̃Z

p − 0.6b̃∗Zp + (2× 10−16 GeV2)(b̃XX
F,p + b̃YY

F,p) + (2× 10−16 GeV2)b̃ZZ
F,p

+(2× 10−16 GeV2)(b̃∗XX
F,p + b̃∗YY

F,p ) + (7× 10−17 GeV2)b̃∗ZZ
F,p

∣∣∣ ∼< 8× 10−25 GeV.
(26)

4. Sensitivity

To get some intuition for the scope of the constraints (21), (22), and (26), a common practice is to
assume only one individual tilde coefficient is nonzero at a time. Considering no Lorentz and CPT
violation has been observed so far, this procedure offers a reasonable measure of the estimated limits
on each tilde coefficient by ignoring any cancellations among them. We list in Table 1 the resulting
constraints on the tilde coefficients from this work and include the previous limits obtained in Ref. [31],
as well as recent improved results presented in Ref. [2], for a direct comparison. In the electron sector,
Table 1 shows that not only a factor of four improvement for the limits on the tilde coefficients b̃X

e ,
b̃Y

e , b̃(XZ)
e , and b̃(YZ)

e has been achieved, but also that new coefficients b̃(XY)
F,e and b̃∗XX

F,e − b̃∗YY
F,e have
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been constrained. In the proton sector, the limits on the tilde coefficients have been improved by
factors of up to three compared to the existing results [2]. The constraints on the tilde coefficients
that are not sensitive to the corresponding work are left blank in Table 1. Please note that only
18 out of the 36 coefficients for Lorentz violation related to Penning-trap experiments have been
constrained so far. A sidereal-variation analysis for the measurements of the magnetic moments of
protons and antiprotons would permit access to other various components of the tilde coefficients in
the proton sector.

Table 1. New and improved constraints on the SME coefficients.

Coefficient Previous Constraint in [31] Recent Result in [2] This Work

|b̃X
e | < 6× 10−25 GeV < 1× 10−25 GeV

|b̃Y
e | < 6× 10−25 GeV < 1× 10−25 GeV

|b̃Z
e | < 7× 10−24 GeV

|b̃∗Ze | < 7× 10−24 GeV

|b̃XX
F,e + b̃YY

F,e | < 2× 10−8 GeV−1

|b̃ZZ
F,e | < 8× 10−9 GeV−1

|b̃(XY)
F,e | < 2× 10−10 GeV−1

|b̃(XZ)
F,e | < 4× 10−10 GeV−1 < 1× 10−10 GeV−1

|b̃(YZ)
F,e | < 4× 10−10 GeV−1 < 1× 10−10 GeV−1

|b̃∗XX
F,e + b̃∗YY

F,e | < 2× 10−8 GeV−1

|b̃∗XX
F,e − b̃∗YY

F,e | < 4× 10−10 GeV−1

|b̃∗ZZ
F,e | < 8× 10−9 GeV−1

|b̃Z
p | < 2× 10−21 GeV < 1.8× 10−24 GeV < 8× 10−25 GeV

|b̃∗Zp | < 6× 10−21 GeV < 3.5× 10−24 GeV < 1× 10−24 GeV

|b̃XX
F,p + b̃YY

F,p| < 1× 10−5 GeV−1 < 1.1× 10−8 GeV−1 < 4× 10−9 GeV−1

|b̃ZZ
F,p| < 1× 10−5 GeV−1 < 7.8× 10−9 GeV−1 < 3× 10−9 GeV−1

|b̃∗XX
F,p + b̃∗YY

F,p | < 2× 10−5 GeV−1 < 7.4× 10−9 GeV−1 < 3× 10−9 GeV−1

|b̃∗ZZ
F,p | < 8× 10−6 GeV−1 < 2.7× 10−8 GeV−1 < 1× 10−8 GeV−1

5. Summary

In conclusion, we present in this work the general theory for quantum electrodynamics with
Lorentz- and CPT-violating operators of mass dimensions up to six and study the dominant effects
arising from Lorentz and CPT violation in Penning-trap experiments involving confined particles.
Recently reported results of magnetic moments of the confined particles are used to improve existing
bounds on various SME coefficients, and to constrain new coefficients as well. The results obtained in
this work are summarized in Table 1. The methodology we outline in this work using Equation (23)
to derive these constraints can be used as a generic way to study Lorentz and CPT violation
involving comparisons of results from different Penning-trap experiments. The high sensitivities
of the measurements in current and forthcoming experiments offer strong motivation to continue the
efforts of studying Lorentz and CPT violation with great potential to uncover any possible tiny signals.
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