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Similarities between insect swarms and isothermal globular clusters
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Previous work has suggested that disordered swarms of flying insects can be well modeled as self-gravitating
systems, as long as the “gravitational” interaction is adaptive. Motivated by this work, we compare the predictions
of the classic, mean-field King model for isothermal globular clusters to observations of insect swarms. Detailed
numerical simulations of regular and adaptive gravity allow us to expose the features of the swarms’ density and
velocity profiles that are due to long-range interactions and are captured by the King model phenomenology,
and those that are due to adaptivity and short-range repulsion. Our results provide further support for adaptive
gravity as a model for swarms.

DOI: 10.1103/PhysRevResearch.2.013271

I. INTRODUCTION

Insect swarms are a canonical example of collective animal
behavior [1,2], displaying group-level cohesion and stability
even in the presence of environmental noise [3–8]. But while
in many other forms of collective animal motion, such as
flocking, schooling, and herding [2], the movement of individ-
uals is coordinated, swarms are distinguished by their lack of
globally aligned motion and the swarm state is not described
by any order parameter.

It is thought that many swarming insect species such as
Chironomus riparius, the midge species we consider here,
interact predominantly via long-range acoustic sensing [9]. In-
deed, a theoretical model that assumes that midges accelerate
toward the sounds produced by other individuals has produced
nontrivial results that are in good agreement with empirical
observations [10,11]. The acoustic field produced by flying
insects has a monopole component whose intensity falls off
according to an inverse-square law [12], a scaling that is
similar to the way the gravitational pull between objects falls
off with distance. Dipole and other higher-order multipole
components decay more rapidly, and are thus weaker than the
monopole component. It is therefore tempting to speculate,
as Okubo [3] and then Gorbonos et al. [10] did, that midge
swarms are analogous to N-body self-gravitating systems,
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where cohesion originates from the gravitational pull between
the bodies compromising the system. A key contribution from
Ref. [10] was to incorporate the adaptive gain of typical
biological sensors, which leads to results that are different
from Newtonian gravitation but are in good agreement with
empirical measurements of swarms.

This adaptive-gravity model was shown in Ref. [10] to
capture many global features of midge swarms. For example,
it correctly reproduces the linear radial dependence of the
mean acceleration of midges toward the swarm center, the
scaling of this acceleration with the swarm size, and the virial-
like relation between the mean kinetic and potential energies
of the whole swarm.

The analogy between swarms and self-gravitating systems
is further appealing because it is well known that grav-
ity can produce complex dynamical behavior from simple
interactions—just as is thought to be the case for collective
animal behavior [13]. Thus, by making a link between these
two distinct systems, we can draw on the intuition built up
from studying gravity to gain insight into collective animal
behavior.

In this paper, we examine this analogy more closely by
studying the spatial variation of the number density and the
velocity of individuals. We compare to the classic King model
for the mass distribution in isothermal globular clusters [14]
(see Appendix A). Although we find some similarities with
the observed swarms, there are also significant differences.
These discrepancies reveal the limitations of a pure gravi-
tational model for swarms. Furthermore, we aim to explore
which of the observed global features of the midge swarm
arise from the long-range nature of the interactions and
which depend also on the property of adaptivity. Long-range
interactions are of course a feature of regular gravity, and
therefore also appear in globular clusters, which are well
described by the King model. We would then expect that
features that are crucially dependent on adaptivity, which
is not present in regular gravity, will be missing from a
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King-model description of the swarm. We find that the addi-
tion of adaptivity, which we can introduce only using numeri-
cal simulations, together with short-range repulsion, produces
mass distributions and dynamics that capture all the main
features of the midge swarm data. Thus, our results provide
significant further support for adaptive gravity as a model for
the swarm behavior.

II. DENSITY PROFILES

A. Density profiles: King’s model and midge swarms

We begin by considering the mass distributions predicted
for regular gravity (such as in globular clusters) by the original
King model. This model has been well studied previously.
Chavanis et al. [15], for example, described the solution space
for globular clusters by fixing the cluster mass and varying the
other system parameters, such as temperature, cluster radius,
energy, and so forth. To adapt this model for swarms, we
use a fixed inverse temperature β, which describes isothermal
globular clusters. In addition to being simple to implement
(see Appendix A), this choice is motivated by the observation
that swarms of different sizes empirically display roughly the
same amount of kinetic energy per midge [16,17]. For large
globular clusters, a King model with fixed temperature gives
a roughly constant kinetic energy per particle, independent
of system size (Fig. 4). With this assumption, we compute
the density profiles predicted by the King model [Figs. 1(a)
and 1(b)], using Eqs. (A15) and (A16). Note that for easier
comparison between the different models, we plot the density
profiles for all the models in Fig. 1, and the corresponding
quantitative measures in Fig. 2.

The King model predicts two distinct branches of solu-
tions, which are clearly observed when we plot quantita-
tive measures of the distributions such as the total mass M
[Fig. 2(a), where we assume that all midges have the same
mass], the density at the center ρ0 [Fig. 2(b)], and the kurtosis
[Fig. 2(c)] as functions of the overall swarm size Rs. Here, Rs

is defined as the mean distance of a midge from the center of
mass of the swarm: Rs ≡ ∫ ∞

0 r3ρ(r)dr/
∫ ∞

0 r2ρ(r)dr, where
ρ(r) is the density profile. The two branches are termed
stable and unstable [shown in blue and red, respectively, in
Figs. 2(a)–2(c)], and are distinguished by the sign of the heat
capacity (positive or negative, respectively) of the cluster in
the canonical ensemble [15]. It is found empirically that glob-
ular clusters reside on the unstable branch [15], presumably
due to the strong destabilizing effects of “slingshots”—that is,
anomalously high acceleration events that arise due to close
encounters.

In Figs. 1(c) and 1(d), we plot the empirical density
profiles measured for laboratory midge swarms. Details of
the laboratory setup and measurement protocols are given
in Refs. [4,18]. The primary difference between the data in
Figs. 1(c) and 1(d) is that the swarms in Fig. 1(c) were
observed in a cubical laboratory enclosure measuring 91 cm
on a side, while the enclosure for the swarms in Fig. 1(d)
measured 122 cm on a side.

Qualitatively, the density profiles from the swarms are
similar in many aspects to those computed from the King
model, though the agreement is not exact. To illuminate these
similarities and differences further, we computed the same

FIG. 1. (a), (b) Two families of density profiles computed from
the King model [Eqs. (A15) and (A16)] for different initial condi-
tions, with shapes that are qualitatively similar to results from real
swarms (c), (d). (a) corresponds to the unstable branch and (b) to the
stable branch (see the discussion in the text). (c), (d) Two families of
density profiles measured in real swarms in two different laboratory
setups (see text). (e) Density profiles of simulated swarms using
the adaptive gravity model. Simulations were run using N = 12 and
Rs = 16.2 (blue), N = 24 and Rs = 11.8 (red), N = 32 and Rs =
11.5 (green), and N = 48 and Rs = 12 (black). (f) Density profiles
of simulated swarms including adaptivity and short-range repulsion.
Simulations were run using N = 12 and Rs = 6 (blue), N = 24
and Rs = 6.7 (red), N = 32 and Rs = 8.2 (green), and N = 48 and
Rs = 8.1 (black).

distribution measures for the swarms as for the King model,
shown in Figs. 2(d)–2(f). The density at the center of the
midge swarm (ρ0) was obtained in Figs. 2(e), 2(h), and 2(k) by
fitting a Gaussian to the density profile near the center of mass.
We see in Fig. 2(e) that ρ0 slightly decreases with increasing
swarm size, which qualitatively fits the stable branch of the
King model (where this decrease is much steeper). The total
number of midges (as a proxy for the total mass) increases
slowly with the swarm radius, a feature exhibited by the
unstable branch of the King model (the stable branch has the
opposite relation).

The kurtosis of the midge swarms falls in a range of
values between the King model branches and is significantly
larger (i.e., the swarms have heavier tails than they would if
they were Gaussian) than the density profiles along the King
model stable branch (which are very close to Gaussian). Note
that the kurtosis is a standard measure to quantify simple
but non-Gaussian distribution shapes (as long as they are
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×

×

×

FIG. 2. (a)–(c) Total mass M (a), density at the center ρ0 (b),
and kurtosis (c) as a function of the swarm size Rs for a series
of King model solutions. The blue line corresponds to the stable
branch in the canonical ensemble and the red one to the unstable one.
The kurtosis of a Gaussian distribution in three dimensions, 5/3, is
denoted by the horizontal dashed line. (d)–(f) The same quantities
computed from the measured data for real swarms. (g)–(i) The same
quantities computed for simulated swarms with adaptivity. (j)–(l)
The same quantities computed for simulated swarms with adaptivity
and short-range repulsion.

monotonically decreasing functions, as shown in Fig. 1).
Thus, it provides an interpretable way of comparing the
different models, and highlights discrepancies between the
midge swarms and the King model behavior. Furthermore,
the density profiles for standard gravity (King’s model) are
non-Gaussian.

B. Density profiles: Modified gravity models

To attempt to reconcile the model predictions with the
empirical results for real swarms, we consider two modifica-
tions to normal Newtonian gravity. First, since particles in the
simulations have a strong tendency to develop anomalously
high accelerations due to slingshots and thus to evaporate
from the cluster, it is common to include a softening parameter
ε (with units of length) to the gravitational force [19], so

�F i
ε,g = C

∑
j

r̂i j
1

|�ri − �r j |2 + ε2
, (1)

where C is a constant with units of (force × length2), �ri is
the position vector for midge i, and r̂i j is the unit vector
pointing from midge i to midge j. This “epsilon” gravity
modifies the force at short distances, up to |�ri − �r j | = O(ε).
We chose a value of ε = √

15 � 3.87, so it is smaller than the
mean swarm size Rs (Figs. 1 and 15) but is still effective in
preventing slingshots and maintaining a stable swarm.

In addition, we simulated our previously introduced
adaptive-gravity model [10]. In this case, the effective force
felt by midge i due to midge j is given by

�F i
eff = C

∑
j

r̂i j

|�ri − �r j |2 + ε2

R−2
ad

R−2
ad + ∑

k (|�ri − �rk|2 + ε2)−1
.

(2)

The logic underlying this model is that the strength of the
signal received by each midge should be renormalized by
the total buzzing noise due to all the other midges, to mimic
the typical adaptive gain of biosensors [20]. We define a
length scale, Rad, over which this adaptivity occurs, and when
ri j � √

NRad, such that the distance between a pair of midges
is much larger than the adaptive range, the model reduces
to epsilon gravity (which itself reduces to Newtonian gravity
when ε = 0). Within the range of adaptivity, where the midges
are close to each other compared to Rad, the term R−2

ad is
negligible in the denominator of the second factor in Eq. (2),
and we see that the vectorial sum of the first factor is simply
divided by the scalar sum in the second factor. This gives rise
to what we term perfect adaptivity, where the response does
not depend on the absolute intensity of the background signal.

Finally, we also simulated the adaptive-gravity model with
an additional short-range repulsion between the midges. This
effect was empirically observed and measured in real swarms
[21], and was implemented in an earlier simulation scheme
[10]. This type of effective interaction arises due to midges
avoiding collisions while flying. Here we use a repulsive force
with a cutoff to capture this effect, given by

�F i
rep =

{
C

∑
j

(
1

L2
c

− 1
|�ri−�r j |2

)
r̂i j |�ri − �r j | < Lc

0 |�ri − �r j | � Lc,
(3)

where we take Lc ≈ 0.2 Rad. We chose this value as it was
the minimal value for Lc that produced a noticeable effect
on the qualitative features of the swarms, as compared with
those without repulsion (see below). Larger values of Lc

would make the repulsion force dominant in small, finite-size
swarms, and we wanted to stay in the regime where the
long-range gravitylike interactions play the dominant role for
the large-scale organization of the swarm. In the simulations,
we worked in the regime where Rs/Lc ∼ 4, which is within
the range observed in the experiments Rs/Lc ∼ 4 − 16 [21].

With these interaction laws, we considered several different
swarm sizes Rs, as defined above. We used Rad = 10 ≈ Rs,
placing us in the regime where adaptivity affects the vast
majority of the midges in the swarm. Unlike for regular
gravity, where we can use the coarse-grained King model,
for adaptive-gravity we do not have at present an equivalent
coarse-grained description. Therefore, to explore the spatial
distribution of mass in the adaptive gravity model, we turned
to numerical simulations. We used a scheme for perform-
ing N-body dynamics originally developed by Aarseth (see
Appendix 4.B of Ref. [22]), which allows for accurate nu-
merical integration using fourth-order equations of motion.
A complete description of the numerical method is given in
Ref. [19]. The acceleration of each mass in the simulation is
computed by the direct summation of the forces due to the
other N − 1 bodies following the form of the force law. The
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FIG. 3. Mean speed as a function distance from the center of
the swarm, normalized by the speed at the center. Data are shown
for (a) real laboratory swarms, (b) epsilon-gravity, (c) adaptive
gravity, and (d) adaptive gravity with short-range repulsion. The
brown curves in (b) correspond to a family of King model solutions
[Figs. 1(a) and 1(b), computed numerically according to Eq. (A23)].
In (d), we truncated the plot at r ∼ 2 Rs since outside this radius the
particles are not part of the cohesive region (i.e., the swarm) (see
Fig. 12).

scheme was designed to work efficiently for up to N = 50,
well within the range of typical midge swarms [4,18]. For
further details about the simulation see Appendices B, F,
and G. Initially, particles were placed randomly in a simula-
tion box of varying side lengths to control the kinetic energy
of the system. This was achieved (except for the epsilon-
gravity system; see below) by varying the initial conditions of
the simulations until the kinetic energy per particle was within
10% of the desired value in the long-time limit (Fig. 13).
The initial velocities were zero, but under the influence of
the forces the particles accelerated and eventually reached
a quasistationary state (Figs. 5–7) that exhibits the distinct
non-Gaussian velocity statistics (Fig. 8) observed in real
swarms [4]. Note that we do not include explicit noise in the
simulations, and the trajectories become ergodic due to the
natural tendency of N-body gravitating systems to be chaotic.

We now compare the same quantitative features of the den-
sity profiles computed from the numerical simulations to those
from the King model and the empirical swarm measurements.
Note that the theoretical calculations of the King model and
the simulations are done in arbitrary units of length, while
the experimental measurements have an inherent length scale
(Figs. 1 and 2). Wherever possible we normalized the axes to
become dimensionless (such as in Figs. 3, 10, and 11), but it
is not always obvious how to do so.

We start with the epsilon-gravity interaction [Eq. (1), using
ε = 3.8, which was much smaller than the swarm size Rs;
Fig. 15]. Not surprisingly, some measures [Figs. 15(b) and
15(c)] seem to agree well with the stable branch of the King
model [Figs. 2(a)–2(c)], since close-encounter slingshots are
greatly suppressed by the softened gravity. Other similarities
include a decrease in the size Rs and sharp decrease in ρ0 for
larger swarms.

Comparing to real midge swarms, we find that the decrease
in ρ0 for larger swarms in epsilon-gravity [Fig. 15(c)] is
qualitatively similar, though somewhat stronger [Fig. 2(e)].
This similarity suggests that this feature arises from the long-
range character of the interactions between the midges and
that adaptivity only acts to weaken it (see below). The epsilon-
gravity-force law does not agree very well with another ob-
served feature of the midge swarms [Fig. 2(d)], where the
size increases with the number of particles. Note that for
epsilon gravity, we were not able to keep the kinetic energy
per particle constant when changing the overall number of
particles in the swarm (Fig. 14).

Figures 1(e) and 2(g)–2(i) show the results from adaptive-
gravity simulations [Eq. (2), using Rad = 10]. Note that the
swarms cover a much smaller range of sizes (Rs), compared
to the real [Figs. 1(c), 1(d), and 2(d)–2(f)] or epsilon-gravity
swarms (Fig. 15). This is due to the sharp increase in the
density at the center when the number of particles increases
combined with the fixed kinetic energy per particle, thereby
maintaining a roughly constant Rs. We find that ρ0 decreases
with increasing Rs, similar to the observations in real swarms
(as well as epsilon-gravity and the stable branch of the King
model). The kurtosis is similar to the values seen in the real
swarms, and in standard gravity [King’s model, Fig. 2(c)].
We therefore conclude that the long non-Gaussian tails in the
density profiles arise from the long-range interactions and do
not require the adaptivity property.

However, just as for epsilon gravity and the stable branch
of the King model, the biggest discrepancy with the real
swarms is the relation between the number of particles
(midges) and Rs, which we find in the simulations to be a
decreasing function [Fig. 2(g)] even though it is increasing
in real swarms [Fig. 2(d)].

We therefore also tested the addition of a short-range re-
pulsion [Eq. (3)] to the adaptive-gravity simulation [Figs. 1(f)
and 2(j)–2(l)]. This additional ingredient makes ρ0 roughly
independent of Rs while not changing the kurtosis signifi-
cantly. Both measures are in reasonable agreement with the
real swarm data, considering the small range of swarm sizes
in the simulations. The primary change as a result of the short-
range repulsion is the appearance of an overall increasing
relation between the number of particles and swarm size
[Fig. 2(j)]. This feature, which is observed in the real swarms
[Fig. 2(d)], is absent from all the simulations that contain
only long-range attractive interactions. This model therefore
captures qualitatively all the main features of the density
profiles of the midge swarms.

These results allow us to clearly delineate the properties
of the midge swarm that are due to the long-range (adaptive)
gravity interactions, namely, the large kurtosis (heavy tails)
and a slow decrease of the density at the swarm center for in-
creasing swarm sizes. The short-range repulsion is responsible
for inflating the size (Rs) of swarms with increasing number of
midges, which is counter to the behavior of purely long-range
interactions (both epsilon and adaptive gravity).

III. VELOCITY PROFILES

So far, we have considered the spatial density distribution
of the swarm. We now turn to the spatial distribution of the
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velocities of the particles in the swarm, as another way to
distinguish between the different models and compare to the
observations from real swarms. We therefore computed the
average speed of midges as a function of the distance r away
from the center of mass of the swarm using the dataset from
the larger midge enclosure [18]. As shown in Fig. 3(a), these
speeds are essentially independent of position (as also noted
in Ref. [17]). Thus, the mean kinetic energy of a midge is also
statistically uniform in space [Fig. 11(a)].

The simulated speed profile for epsilon-gravity is shown
in Fig. 3(b). We see that the velocity decreases rapidly with
increasing radius from the swarm center, in good agreement
with the profiles calculated from the King model but contrary
to the data for real swarms. By contrast, the velocity profile
computed using adaptive gravity [Fig. 3(c)] is rather flat, with
a small increase of speed for small r, presumably because
the potential is too strongly softened in the swarm center.
The velocity profile becomes even smoother when short-range
repulsion is included [Fig. 3(d)], and is similar to the empirical
results for real swarms. We find similar results for the standard
deviation of the speed (Fig. 11).

The uniformity of the velocity profile across the swarm
(Figs. 3 and 11) serves as strong support for the adaptive-
gravity model. Note that the midges do not move at constant
instantaneous speed when flying through the swarm, and that
the global velocity distribution has long (nearly exponential)
tails (see Ref. [4] and Fig. 8), so it is not obvious a priori
that there would not be some radial dependence in the local
velocity distribution. Therefore, the novel observation of a flat
velocity distribution [shown in Figs. 3(a) and 11(a)] in midge
swarms is a challenge that must be met by any theoretical
model. We demonstrate that this property does not arise in the
simplest gravitational model (King model) and so it is not a
consequence of long-range interactions alone. The additional
property of adaptivity, however, recovers this characteristic,
and we therefore view this as strong support for this model.

Finally, we considered the relation between mean accel-
eration and speed for swarms of different sizes (Fig. 10)
[17]. We find that epsilon-gravity fails to reproduce the ob-
served collapse of the curves for all swarm sizes, while the
adaptive gravity captures this relation extremely well. This
agreement gives added support to the adaptive-gravity model.
It demonstrates that this model accounts for this observa-
tion, and there is no need for additional (velocity-dependent)
interactions [17].

IV. CONCLUSION

Taken together, our results provide further evidence that
the interactions in insect swarms are well described by the
adaptive-gravity framework, together with a short-range re-
pulsion. This highlights that two key ingredients—long-range
interactions and adaptivity—are essential. This model natu-
rally captures many of the unusual properties of swarms, some
of which have surprising similarities to globular clusters.
Adaptivity, however, also induces additional effects. When the
binding to the swarm is adaptive, the forces on one midge due
to the other midges are not additive, and as a consequence the
sum of the forces felt by all of the midge need not vanish,
as it must for Newtonian gravity [10]. The center of mass

of the swarm can therefore experience accelerations [23].
Such fluctuations have the potential to change fundamentally
the characteristics of individual flight patterns; for example,
Reynolds and Ouellette [23] showed that center of mass
fluctuations allow for the emergence of Lévy flight patterns.
Center-of-mass movements may also help to stabilize insect
swarms against environmental perturbations [24].

These results suggest that it may be fruitful in the future
to consider modifications of the interactions within the King
model as a general framework for describing the behavior of
active systems with long-range interactions, whatever their
form. The proper analytical treatment of a King model aug-
mented with an adaptive-gravity interaction law remains a
challenge for future studies. Finally, future work on swarm
modeling in particular should explore the effects of adding
self-propulsion and stochasticity (noise), both of which are
absent from the current models but certainly present for real
insects. This kind of more realistic description of the motion
of individual midges may also be required for the theory
to describe the response of the midge swarm to external
perturbations [7,8], and in particular the dynamics of this
response.

ACKNOWLEDGMENTS

We thank Tsvi Piran, Sverre Aarseth, and Tal Alexander for
useful discussions. The research at Stanford was sponsored by
the Army Research Laboratory and accomplished under Grant
No. W911NF-16-1-0185. The views and conclusions in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S. Gov-
ernment. K.v.V. acknowledges support from an Early Postdoc
Mobility fellowship from the Swiss National Science Foun-
dation, and M.S. acknowledges support from the Deutsche
Forschungsgemeinschaft under Grant No. 396632606. The
work at Rothamsted forms part of the Smart Crop Protection
(SCP) strategic program (No. BBS/OS/CP/000001) funded
through the Biotechnology and Biological Sciences Research
Council’s Industrial Strategy Challenge Fund.

APPENDIX A: THE KING MODEL

Most globular clusters are well fit by the King model
[14], as it captures their basic structure and main observed
features [15]. This model is one of a series of models that
assume a Maxwell–Boltzmann distribution of the velocities,
although it is well-known that a self-gravitating system cannot
actually be in thermodynamic equilibrium. This fact is a
result of the long-range nature of the interactions and the
Boltzmann entropy, which has no maximal value in an un-
bounded domain. Therefore, self-gravitating systems, as part
of their out-of-equilibrium nature, have a strong tendency to
evaporate over time. Since evaporation is a slow process, the
system can be considered to be in a quasistationary state for
times that are much shorter than the evaporation time, and
the Maxwell–Boltzmann distribution can therefore serve as a
good approximation.

To write a quasistationary expression for the distribution
f (�r, �v) (that is, as a function of position and velocity but not
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of time) we start from the collisionless Boltzmann equation,

�v · ∇ f = ∇V · ∂ f

∂�v , (A1)

where V = V (r) is a spherically symmetric gravitational po-
tential. The density is defined by

ρ =
∫

f d3�v, (A2)

and it determines the gravitational potential through the Pois-
son equation


V = 4 π C ρ, (A3)

where C is a constant with dimensions of mass ×
length3/time2 which for the gravitational force is the gravi-
tational constant. A simple solution to this set of equations
[Eqs. (A1) and (A3)] is given by the Maxwell–Boltzmann
distribution with a singular power-law behavior in the spatial
part,

f (�r, �v) ∼ e− β �v2

2

r2
, (A4)

where β is a positive constant which is identified with the
inverse temperature.

This solution is singular at the origin, unbounded, and has
infinite mass since

M(r) ∝ r. (A5)

The singularity at the origin can be fixed by introducing
regular boundary conditions:

V (0) = const, V ′(0) = 0, (A6)

but this does not fix the asymptotic behavior. Numerical
solutions of equations [Eqs. (A1) and (A3)] with boundary
conditions Eqs. (A6) are solutions of isothermal spheres
(since β is constant). Far from the center at r � (C ρ(0) β )−

1
2

the isothermal sphere solutions approach the singular solution
Eq. (A4). Although the solution is not singular at the center,
it is still unbounded and has infinite mass (see, for instance,
Ref. [25], pp. 480–484).

The steady-state mass distribution that solves the Poisson-
Boltzmann equations is singular, proportional to ρ(r) ∝ 1/r2.
To find physical solutions, it is necessary to introduce a cutoff.
The assumption in the King model is that a cluster cannot
keep stars whose velocity exceeds a finite escape velocity.
Therefore, the velocity distribution should drop to zero at a
finite limiting velocity. As a result, the cluster has a finite
radius. Different cutoffs in the velocity distribution give differ-
ent limiting radii. Observationally, the finite boundary is set by
the tidal forces of the galaxy with which the globular cluster
is associated, which become dominant at a certain distance
from the cluster center. The resulting velocity distributions
are simply the Maxwell–Boltzmann distributions minus a
constant. Let us assume the following form at the origin:

f (0, �v) =
{

α
(
e− βv2

2 − e− βve (0)2

2
)

v � ve

0 v > ve,
(A7)

where α is a positive constant. This way, the fastest particles
v > ve(0) are subtracted from the distribution. The distribu-
tion of the velocities at r = 0 is defined by two parameters: β

(which determines the width of the distribution) and ve(0), the
escape velocity.

According to Jeans’s theorem, any steady-state solution
of the collisionless Boltzmann equation is a function of the
integrals of motion (see, for instance, Ref. [26], p. 220).
Since energy is the integral of motion in a star cluster, the
distribution function can be written as a function of the
energy E :

f (�r, �v) = f (E ). (A8)

We express the cutoff as an escape energy Ee such that f =
0 for E � Ee. The escape energy corresponds to an escape
velocity at a point r through

Ee = ve(r)2

2
+ V (r). (A9)

f (E ) =
{

α eβ(V (0)−Ee )[e−β(E−Ee ) − 1], E < Ee

0 E � Ee,
(A10)

where α is a positive constant.
Substituting the distribution function into Eq. (A2) and

changing variables gives us

w ≡
(

β

2

) 1
2

v, (A11)

χ (r) ≡ β(Ee − V (r)). (A12)

Thus, we get

ρ =
{

4 π α e−χ (0)
(

2
β

) 3
2 I (χ ), r < Re

0 r � Re,
(A13)

where

I (x) ≡
∫ √

x

0

(
ex−w2 − 1

)
w2 dw, (A14)

and Re is the radius of the cluster such that ve(Re) = 0, and
χ (Re) = 0. In other words, any star that succeeds in reaching
Re escapes the cluster and is no longer a part of the cluster.

When we substitute the density Eq. (A13) in the Poisson
Eq. (A3), we get the fundamental equation of the King model,

1

ζ 2

d

dζ

(
ζ 2 dχ

dζ

)
= − I (χ )

I (k)
, (A15)

with the boundary conditions

χ (0) = k, χ ′(0) = 0, (A16)

where the rescaled dimensionless distance is

ζ ≡ r(4 π C β ρ(0))
1
2 . (A17)

The set of King solutions for the density is a one parameter
family of solutions which are conveniently parameterized by
k, the rescaled potential at the center.

Using the expression for the density Eq. (A13) and the
fundamental Eq. (A15), we can write the mass in the following
way:

M(r) = 4 π

∫ r

0
ρ(r′) r′2 dr′

= −(4 π ρ(0))−
1
2 (β C)−

3
2 ζ 2χ ′(ζ ). (A18)
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FIG. 4. The average kinetic energy (per particle) as a function of
Rs for a series of King solutions. The blue and red lines stand for the
stable and unstable branches in the canonical ensemble, respectively.
Note that in the limit of large clusters, the average kinetic energy is
approximately independent of the cluster size.

Note that here too, in the limit k → ∞, the singular solution
Eq. (A4) is recovered (see Ref. [15]).

In Fig. 4, we give the average kinetic energy (per unit mass)
as a function of Rs for various King solutions. The average
kinetic energy (per unit mass) 〈Ek〉 is given by

〈Ek〉 = 1

2
〈v2〉 = 1

2

∫∫
v2 f (�r, �v)d3�r d3�v (A19)

when f (�r, �v) is normalized, so∫∫
v2 f (�r, �v)d3�r d3�v = 1. (A20)

In the case of an isotropic distribution of velocities and
spherical symmetry, we get

v2(r) =
∫ ve(r)

0
v4 f (r, v) dv

/ ∫ ve(r)

0
v2 f (r, v) dv. (A21)

Substituting Eq. (A10) and changing variables according to
Eqs. (A11) and (A12), we obtain

v2(r) = 2

β

∫ √
χ

0

(
eχ−w2 − 1

)
w4 dw/I (χ ). (A22)

for r < Re. Integration by parts gives us

v2(r) = 6

5β

J6(χ (r))

J4(χ (r))
, (A23)

where

Jn(x) ≡
∫ √

x

0
wn e−w2

dw. (A24)

Repeating the steps in Eqs. (A21)–(A23) with additional
integration over the spatial directions gives the average kinetic
energy:

〈Ek〉 = 1

2
〈v2〉 = 3

5β

∫ Re

0 r2dr eχ (r)J6(χ (r))∫ Re

0 r2dr eχ (r)J4(χ (r))
. (A25)

FIG. 5. The half-mass radius (normalized by its mean value) as a
function of simulation time for a swarm with adaptivity (Rad = 5) and
50 individuals. The half-mass radius is defined as the minimal radius
that bounds half of the individuals in the swarm. Over the sampled
time period, the swarm seems to be stable for the randomly chosen
initial conditions, which means that the evaporation takes place on a
longer timescale.

In Fig. 4, 〈v2〉 is given for a series of solutions of Eq. (A15)
with different values of k. For simplicity, we take β = 3/5 in
this figure.

The local velocity dispersion of a spherically symmetric
distribution function is defined by [15]

σ 2(r) = v2(r)

3
. (A26)

The average velocity is given by

〈v〉 =
∫ Re

0 r2 dr
∫ ve(r)

0 v3 f (r, v)dv∫ Re

0 r2 dr
∫ ve(r)

0 v2 f (r, v)dv
, (A27)

FIG. 6. The size of the swarm (normalized by its mean value) as
a function of simulation time for the same swarm as in Fig. 5, where
the size is defined as the mean distance from the center of the mass
of the swarm.

013271-7



DAN GORBONOS et al. PHYSICAL REVIEW RESEARCH 2, 013271 (2020)

FIG. 7. The size of the swarm (normalized by its mean value) as a
function of simulation time for a swarm with adaptivity (Rad = 5) and
50 individuals. Here, in this example, different initial conditions lead
to evaporation at earlier times than the previous example in Fig. 6.
In the examples that we considered in this paper, we did not include
time segments similar to this one that showed significant evaporation.

and then we can write the dispersion normalized by the
average velocity:

σ (r)

〈v〉 = 4

3
√

5

√
J6(χ (r))

J4(χ (r))

/∫ Re

0 r2dr eχ (r) J5(χ (r))∫ Re

0 r2dr eχ (r)J4(χ (r))
. (A28)

APPENDIX B: THE TIME EVOLUTION OF THE SWARM
IN THE SIMULATION

Here we show a typical oscillatory behavior as a function
of time of the half-mass radius (Fig. 5) and the size of the
swarm (defined as the mean distance from the center of the
swarm) in Fig. 6 for initial conditions that do not cause
evaporation (over the time segment that is presented here).
In Fig. 7, we show that the same swarm with different initial
conditions evaporates over the same time segment (Fig. 7).
Such cases were not considered as stable in this paper and
were ignored.

FIG. 8. The distribution of the x component of the velocity
normalized by its standard deviation for different simulated swarms
with adaptivity (Rad = 5). A reference Gaussian curve is shown in
black.

FIG. 9. The distribution of the x component of the acceleration
normalized by its standard deviation for different simulated swarms
with adaptivity (Rad = 5). The acceleration distribution is bounded
and cannot reach values that are too far from the average value.
This is a result of the addition of the adaptivity and the softening
parameter ε to the simulation, which are needed to slow down the
evaporation of the swarm. A reference Gaussian curve is shown in
black.

APPENDIX C: THE VELOCITY AND ACCELERATION
DISTRIBUTIONS

The distribution of a single component of the velocity in
the simulation is given in Fig. 8 for various swarm sizes. In
Fig. 9, we give the similar distribution of a single component
of the acceleration. The structure of the tails is similar to the
distributions that were obtained from the laboratory data [4].

FIG. 10. The mean value of a single component of the accel-
eration versus the speed (normalized by the average speed) of the
left hemisphere (blue), right hemisphere (red), and both hemispheres
(black). The overall acceleration (black lines) is close to zero, as
required by symmetry. Data are shown for (a) ε gravity for different
values of Rs (with Rs = 16.23, 3.16, 19.53, 18.37, 30.10 from top to
bottom), (b) adaptive gravity, (c) adaptive gravity with repulsion, and
(d) observational data.
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FIG. 11. The standard deviation of the speed (σU ) normalized
by the average speed in the swarm as a function of the distance
from the center of mass normalized by the swarm size Rs. Data are
shown for (a) laboratory observations, (b) simulation of ε-gravity
[note that the brown curves correspond to a family of King solutions
computed numerically according to Eq. (A28)], (c) adaptive gravity,
and (d) adaptive gravity with repulsion.

APPENDIX D: THE RELATION BETWEEN MEAN
ACCELERATION AND SPEED

It was observed in Ref. [17] that if we take the mean accel-
eration of the right or left hemisphere of the swarm separately,
its absolute value is a monotonically increasing function of
the speed. The observational data from Ref. [17] for various
sizes of swarms is reproduced here in Fig. 10(d), where the
speed is normalized with respect to its mean value. Comparing
with the simulation results [for ε gravity in Fig. 10(a), adap-
tivity in Fig. 10(b), and adaptivity with short-range repulsion
in Fig. 10(c)] for swarms of different sizes, we see that
in the cases with adaptivity (with and without repulsion),
all the graphs collapse at low velocities to have approximately
the same acceleration, whereas in the ε-gravity case there are
various values of acceleration at low velocities that do not
agree with the observational data in Fig. 10(d). One can also
see that with repulsion there is more noise at high velocities.

FIG. 12. (a) Mean speed (normalized by the speed at the swarm
center) and (b) its standard deviation (normalized by the average
speed) as functions of the distance from the swarm center for
simulations with adaptvity and repulsion. For r > 2 Rs, the velocities
can become up to two times larger and the standard deviation can
become two times lower. At the same time, the density is less than
10−5 of the density at the center (Fig. 1). Therefore, this regime
likely describes particles that were repelled out of the swarm at high
velocities (higher than the escape velocity).

FIG. 13. The kinetic energy as a function of the size of the swarm
Rs for cases with adaptivity (Fig. 2). Here the size of the swarm does
not change much but the number of individuals changes from 12 to
48 (Fig. 2).

The agreement that we see here between adaptivity and the
observational data suggests that adaptive gravity naturally
explains the dependence of the acceleration on the mean
velocity, without the need to invoke any additional explicit
velocity-dependent forces [17].

APPENDIX E: THE STANDARD DEVIATION OF THE
SPEED IN THE SIMULATIONS AND THE

LABORATORY MEASUREMENTS

In addition to the uniformity of the average velocity across
the midge swarm in the observational data (Fig. 3), we observe
the same uniformity for the standard deviation of the speed
(Fig. 11). The addition of adaptivity to the model recovers this
behavior, as seen in Fig. 11.

In Fig. 12, we see the full range of velocity profiles and
standard deviations of the speed for the simulations that in-
clude adaptivity and repulsion. For r > 2 Rs, the velocities are
found to increase to very high values and the density is very
low. This region corresponds to particles that were expelled
out of the swarm at high velocities due to the short-range

FIG. 14. The kinetic energy as a function of the number of
individuals N in the simulation for the cases without adaptivity
(Fig. 15).
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FIG. 15. (a) Density profiles of simulated clusters with the softened-gravity (“epsilon gravity”) model. Data are shown for cases with
N = 48, Rs = 9.29 (black), N = 27, Rs = 26.08 (green), N = 16, Rs = 30 (red), and N = 12, Rs = 16.4 (blue). (b)–(d) The total number of
midges, the density at the center, and the kurtosis as functions of the size of the swarm for the “epsilon gravity” model (using ε2 = 15).

repulsive interactions. We therefore do not consider this
regime to be meaningful with respect to the properties of
swarms.

APPENDIX F: KINETIC ENERGY IN THE SIMULATION

The kinetic energy of each midge in the laboratory mea-
surements is approximately constant and does not depend on
the density or the size of the swarm. In the simulations, since
we are interested only in the mutual forces, we do not require
constant speed for the particles, and therefore the kinetic
energy per individual is different for various numbers of par-
ticles and initial conditions. We chose initial conditions that
give us approximately the same kinetic energy per individual
in the case of simulations with adaptivity and adaptivity with
repulsion (within about 10%, see Fig. 13). Without adaptivity,
we could not significantly change the kinetic energy by vary-
ing the initial conditions, and so it was determined mainly by
the number of particles in the simulation (Fig. 14).

APPENDIX G: THE SIMULATION WITH SOFTENED
GRAVITY (“EPSILON GRAVITY”)

To avoid high accelerations due to close encounters (“sling-
shots”) and thus evaporation of the cluster, we included a
softening parameter ε to the gravitational force [Eq. (1)]. The
particles in the simulation still developed high accelerations in
close encounters relative to simulations with adaptivity since
adaptivity itself contributed to the decrease of accelerations
by ε2/(R2

ad + ε2), and to compare the simulations in the two
cases (with and without adaptivity) we have to reduce the
accelerations in the “ε-gravity” case by this constant factor.
The results in Fig. 15 were obtained in this way. In Fig. 15(a),
density profiles for various sizes of clusters are given (where
ε2 = 15) and in Figs. 15(b)–15(d) we show three character-
istic quantities of the clusters: the number of particles, the
density at the center, and the kurtosis. Here and throughout
the paper we truncated the tails at r ∼ 3 Rs in the calculation
of the kurtosis.
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