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Abstract 

Quantitative understanding of biomolecular electrostatics, particularly involving multivalent ions 

and highly charged surfaces, remains lacking. Ion-modulated interactions between nucleic acids 

provide a model system where electrostatics plays a dominant role. Using ordered DNA arrays 

neutralized by spherical Cobalt3+ Hexammine and Mg2+ ions, we investigate how the interstitial 

ions modulate DNA-DNA interactions. Using methods of ion counting, osmotic stress, and x-ray 

diffraction, we systematically determine thermodynamic quantities including ion chemical 

potentials, ion partition, DNA osmotic pressure/force, and DNA-DNA spacing. Analyses of the 

multi-dimensional data provide quantitative insights into their inter-dependencies. The key 

finding of this study is that DNA-DNA forces are observed to linearly depend on the partition of 

interstitial ions, suggesting the dominant role of ion-DNA coupling. Further implications are 

discussed in light of physical theories of electrostatic interactions and like-charge attraction. 

Statement of Significance 

Precise and predictive knowledge of biomolecular electrostatics is a long-sought goal of 

molecular biophysics. A primary challenge stems from the ionic, aqueous physiological 

environment that strongly modulates electrostatic forces between biomolecules. Understanding 

the roles of ions and water, despite significant advances, has been impeded by the lack of direct 

physical measurements of ions and water in the act of modulating electrostatic interactions. 

Interrogating the model system of ordered DNA arrays condensed by multivalent ions, our study 

makes an important contribution through first combination of multiple biophysical techniques 

(e.g., x-ray diffraction, ion counting, osmotic stress). Thus obtained comprehensive 

mailto:xqiu@gwu.edu
mailto:kandrese@gettysburg.edu
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thermodynamic data provide new key physical sights into long-standing questions in 

biomolecular electrostatics and instruct both theoretical and experimental studies in the future. 

Introduction 

Charges are prevalent in major classes of biomolecules such as nucleic acids, proteins, and 

lipids. Precise understanding of electrostatic interactions is thus a prerequisite for predictive 

knowledge of biomolecular behaviors (1). Nucleic acids exemplify the rich phenomena and 

critical roles of electrostatics in biology, ranging from RNA folding to DNA packing in viruses and 

sperm to chromatin assembly. In particular, nucleic acids helices (e.g., DNA/RNA duplex or 

triplex), with their high charge densities and atomically defined structures, make excellent model 

systems for physical studies of biomolecular electrostatics in aqueous ion solutions.(2) Early 

physical insights have come through the mean-field Poisson-Boltzmann (PB) formulation and 

the concept of counterion condensation, and later refinements of PB-based models were shown 

to quantitatively describe nucleic acids electrostatics in monovalent salts (3). However, as cation 

valence increases, the mean-field ansatz begins to break down, marked by its stark failure to 

explain multivalent-cation-mediated attraction (MCMA) between like-charged helices (4), e.g., 

duplex DNA condensation by trivalent cations or higher (5) and triplex DNA by divalent cations 

or higher (6). While it is clear that further considerations must be made, the exact physical origin 

of MCMA remains unclear (4). 

To explain MCMA, subsequent theoretical efforts focused on non-mean-field behaviors of 

multivalent cations, whose discrete nature and high valence result in strong correlations 

between charged surfaces and cations (i.e., ions bound near the surface) (7) and in-between 

cations (i.e., ion-ion correlations) (8). While one key physical insight is that strong electrostatic 

correlation can induce like-charge attraction, these theories often disagree on the exact 

mechanism, with competing models such as Wigner-lattice or 2D-gas like ions (8, 9), ion 

bridges (10), charge density waves (11), and tightly bound ions (12). It has also been argued 

that non-electrostatic ion binding in the grooves, coupled with the periodic helical structures, 

promotes zipper-like DNA-cation correlation and DNA-DNA attraction (13). Moreover, in 

observation of the retention of hydration at the free energy minimum and the universal inter-

DNA force-spacing dependencies, hydration force has been proposed as the effective form of 

inter-DNA interactions at close spacings (14, 15). Meanwhile, computer simulations made it 

possible to examine the full atomic details of the biomolecule-ion-water system otherwise 
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difficult for analytical theories or experiments. For example, point-charge cations are shown to 

induce attraction via positional correlation (16) and line-charge cations likely through bridging 

(17). Furthermore, studies of DNA vs RNA condensation revealed the importance of helical 

geometry and suggested externally bound cations (i.e., not in the grooves) as the most effective 

for mediating attraction (18, 19). Only recently have hexagonal DNA arrays been simulated at 

all-atomic levels, revealing the importance of packing geometry, as well as deficiencies of force 

fields (20). It is worth noting that the first hydration analysis of computer simulations highlighted 

the substantive role of solvent restructuring and solvent energetics (21, 22). Altogether, the 

existence of a singular mechanism becomes increasingly unlikely, and comprehensive analyses 

of the multi-component system are required to unravel the interplay of steric, charge, hydration, 

and entropic interactions in biomolecular electrostatics. 

In contrast with the increasingly detailed theoretical insights, experimental knowledge of the 

DNA-ion-water condensates is rather limited, especially concerning the physical nature of 

cations at the core of competing MCMA models. Early experiments mainly examined cation 

characteristics in the uncondensed phase, such as the critical bulk ion concentrations for DNA 

condensation (23), the spatial profile and the numbers of ions around freely dispersed DNA (24-

27). But very little is known about the physical properties of the counterions in the interstitial 

space within the condensed DNA phase. There only exist a few studies of the interstitial cations 

such as the concentration of polyamines in DNA condensates (28) and the binding of mono- 

and di-valent cations in DNA fiber (29). We recently measured the partitions of two competing, 

point-like cations (Mg2+ and Cobalt3+ Hexammine, or CoHex) in spontaneously condensed DNA 

arrays (30). Variations of ion partitions were found to solely depend on a reduced variable, 

[CoHex]2/[Mg2+]3, which prompted the proposition of an ion binding model based on entropy 

alone. Nonetheless, much more is unknown about the interstitial cations, e.g., how they are 

spatially positioned and how they modulate DNA-DNA forces. 

In this study, we aim to elucidate the relationship between the partition of interstitial ions (CoHex 

and Mg2+) and the DNA-DNA forces they mediate, by combining DNA force and ion counting 

measurements for the first time. Specifically, using the model system of condensed DNA arrays, 

we first vary DNA osmotic pressure (via osmotic stress) and ion chemical potentials (via buffer 

equilibration), and subsequently determine DNA-DNA spacing (via x-ray diffraction) and ion 

partitions within the array (via ion counting by atomic emission spectroscopy). Physical models 
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are then used to analyze the inter-dependencies between these thermodynamic quantities to 

gain mechanistic insights, for example, hydration force formulism for the DNA force-spacing 

relationship and an entropy-based ion binding model for the ion partition-chemical potential 

relation. Remarkably, the DNA-DNA force exhibits a linear dependence on the composition of 

interstitial ions or, in other words, interstitial ions modulate DNA-DNA forces additively and 

independently. This lack of ion-ion cooperativity suggests a prominent role of ion-DNA coupling 

(e.g., in contrast with ion-ion correlation) and the importance of local DNA electrostatic fields. 

Methods 

Preparation of ordered DNA arrays. Double-strand DNA of genomic origin was used as a 

model system of random-sequence B-form DNA. Salmon testes DNA from SigmaTM was 

dialyzed against 1 M NaCl solution followed by ethanol precipitation to remove contaminants. 

The DNA precipitate was dried and then suspended in 1×TE buffer (10 mM Tris 1 mM EDTA pH 

7.5) at ~10 mg/ml concentration as the main stock. Chloride salts of CoHex and Mg2+ were 

prepared in low buffers of 2 mM pH 7.5 Tris to minimize competition from monovalent ions. 

Polyethylene glycol of 8000 Dalton (PEG8k) was used as a neutral polymeric osmolyte. Ordered 

DNA arrays were obtained by precipitating ~300 µg DNA with PEG8k and CoHex/Mg2+ salts, 

noting that the mixed salts were used for DNA precipitation to expedite equilibration during the 

subsequent osmotic pressure and ion chemical potential changes. The arrays in pellet form 

were then equilibrated against excess bath solutions with specific CoHex, Mg2+, and PEG8k 

concentrations (weight/weight), so as to vary the ion chemical potentials and DNA osmotic 

pressure in the array. Two to three changes of the bath solution with a minimum incubation time 

of four weeks were done to ensure equilibrium.  

Measurement of DNA-DNA spacing. X-ray diffraction (XRD) was used to measure the DNA-

DNA spacing of the ordered DNA phase. Our in-house x-ray scattering instrument comprises a 

Copper micro-focus x-ray source (Genix 3D, Xenocs) with multilayer optics, two sets of 

scatterless slits (×4) for beam collimation to a size of 0.8×0.8 mm, and an online 2D image plate 

detector (mar345, marXperts). Each DNA pellet was loaded to our home-made sample cell 

together with equilibrating solution. All samples were measured at room temperature and x-ray 

exposure time ranged from 30 to 60 minutes. Data analyses were carried out with home-written 

Matlab scripts. These x-ray samples were macroscopically sized and gave isotropic scattering 

intensities due to random packing of ordered DNA arrays. Radial integration was performed to 

obtain 1D scattering curves, and statistical errors were computed from the group of pixels 
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integrated together for a single data point. As the salt conditions in this study spontaneously 

condense DNA, all samples exhibited high degrees of DNA ordering. Well-defined XRD Bragg 

peaks were thus measured, enabling the determination of DNA-DNA spacings within 0.1 Å 

precision via peak fitting.  

Counting the numbers of ions and phosphates. After XRD measurement, each DNA sample 

was dissolved in 1.5 M NaCl buffer for atomic emission spectroscopy analysis to determine the 

elemental concentrations of P, Co, and Mg as established in our previous study (30). Briefly, a 

Perkin Elmer Optima 7300DV (Perkin Elmer, Waltham, MA) was used to measure the numbers 

of Co, Mg, and P (from the DNA); all measurements were made in the Axial mode. Samples 

were diluted to provide replicate measurements and allow for measurement in the linear regime. 

Six independent measurements utilizing two independent controls were averaged. Each control 

consisted of six linearly spaced samples that spanned the entire range of concentrations. 

Measurements were averaged and the standard error of the mean was calculated. 

Results 

Multidimensional measurements and inter-dependencies of the thermodynamic states of 

DNA arrays. Probing the system of DNA arrays interspersed with ions and water, our 

integrative approach measures the following quantities: ion chemical potential, ion partition (the 

relative fractions of CoHex and Mg2+ ions within the DNA arrays), DNA-DNA spacing, and DNA-

DNA force in terms of DNA osmotic pressure. Among them, it is intuitive to consider DNA-DNA 

spacing and ion chemical potential as independent variables that uniquely determine the DNA-

DNA force and ion partition. An illustration of such multidimensional data is given in Fig. 1, with 

each curve under constant ion chemical potentials of CoHex and Mg2+ (i.e., constant ion 

concentrations in the bath solution). 

The DNA-DNA force-spacing curves, also referred to as the DNA osmotic equation of state, are 

shown in Fig. 1a with the force given as pressure. Under a constant [CoHex] of 1 mM and 

varied [Mg2+] between 0-20 mM, DNA spontaneously condenses, resulting in finite DNA-DNA 

spacings at zero DNA-DNA force/pressure. DNA-DNA force rises from zero upon being pushed 

to closer spacings by the osmolyte PEG8k, giving a convex curve on the log-linear scale. In 

Mg2+ only solutions where DNA-DNA interaction is always repulsive, the force-spacing curve 

extends to infinity because zero force can only be achieved at infinite DNA-DNA spacing, as 

shown for 20 mM Mg2+ in Fig. 1a. Overall, the measured force-spacing curves exhibit the 
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hydration force characteristics studied in detail by Parsegian, Rau, and coworkers (14, 31). One 

salient feature is a dominant short-range, repulsive hydration force at the closest spacings (e.g., 

<26 Ǻ), which is an exponential force with a universal decay length ~2.4 Ǻ (14). Other force 

terms, necessarily of longer range, become discernable at larger spacings if present. CoHex-

mediated attraction is manifested as an attractive hydration force with twice the decay length of 

the short-range hydration repulsion (15). Non-condensing ions typically give an additional 

electrostatic repulsion, while the Mg2+-only force curve here shows negligible residual 

electrostatic repulsion beyond the short-range hydration repulsion. With hydration forces as the 

predominant contributions to all measured forces in this study, DNA osmotic pressure can be 

described by Π(𝑑) = Π𝑅𝑒
−𝑑/𝜆 + Π𝐴𝑒

−𝑑/2𝜆, where d is the DNA-DNA spacing, λ the decay length 

~2.4 Ǻ, and ΠR and ΠA the magnitudes of the hydration repulsion and attraction respectively 

(see Ref. 14 for details). This double-exponential form is used to fit the curves with ΠR and ΠA 

as fitting parameters; excellent agreements are obtained (Fig. 1a). 

The partitions of interstitial ions (ions within the condensed arrays; in this work CoHex and Mg2+) 

are shown in Fig. 1b as the charge ratios between each ion and DNA phosphate, fCo (3×nCo/nP) 

and fMg (2×nMg/nP), noting that the ion numbers here  (nCo and nMg) are absolute numbers of 

interstitial ions rather than the differences from the bulk.  Therefore fCo and fMg essentially give 

the fraction of DNA charges neutralized by each ion. As expected from charge neutrality of the 

macroscopic DNA array, their sum fCo+fMg remains unity for all samples (Fig. 1b). This also 

indicates the exclusion of Cl- ions or CoHex-Cl- ion pairs from the array, which simplifies the 

composition of interstitial ions for quantitative analysis. Note that our experiments aimed to 

minimize the effect of CoHex-Cl- ion pairing by choosing a relatively low bath [CoHex] of 1 mM 

and [Mg2+] between 0 and 20 mM. Mechanistically, the competition between CoHex and Mg2+ 

for the interstitial space can be rationalized in terms of electrostatics and entropy. Because of 

stronger CoHex-DNA electrostatic attraction than Mg2+-DNA, fCo/fMg ratio is much larger than the 

[CoHex]/[Mg2+] ratio in the bath and the ratio increases with decreasing DNA-DNA spacing due 

to the intensifying DNA electrostatic field. At a given inter-DNA spacing, fCo and fMg vary strongly 

with the bath [CoHex]/[Mg2+], evidencing significant entropic contributions (see the model below). 

Consequently, the partition of interstitial CoHex and Mg2+ results from an equilibrium between 

two ion phases: the dilute bulk phase in the bath solution and the interstitial phase within the 

array.  
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A phenomenological model based on ion entropy and electrostatics to describe the 

dependencies of ion partitions. We next aim to explain the CoHex vs Mg2+ two-phase 

equilibrium at a phenomenological level. The ion chemical potentials in the free bulk phase are 

dominated by the entropies of mixing, mathematically represented as ln[CoHex] and ln[Mg2+], 

while both ion entropies and electrostatic energies are important for the interstitial phase. As the 

spatial organization of interstitial ions is still unknown, we consider a simplified case of random 

CoHex/Mg2+ distribution, regardless of being continuous or site-bound. Ion entropies are then 

taken as ln(nCo/V) and ln(nMg/V), where nCo (nMg) is the number of interstitial CoHex (Mg2+) ions 

given by λfCo/3 (λfMg/2) with λ as the linear charge density of DNA, and the interstitial volume V 

for a 2D hexagonal cell of unit length is given by √3𝑑2/2 − 𝜋𝑟0
2 with d as the inter-axial spacing 

and r0 the DNA radius of 10 Å. For ion electrostatic energies, it is difficult to estimate their 

absolute values without a quantitative theory of MCMA, and a fitting parameter for the 

electrostatic energy difference is used as described below. As in our previous study (30), we 

consider a virtual exchange of 2 CoHex and 3 Mg2+ ions between the two phases as dictated by 

charge neutrality. When at equilibrium, the total free energy is unchanged over this virtual 

exchange, resulting in the following equation,  

3ln(nMg/V) – 2ln(nCo/V) + ΔE = 3ln([Mg2+]) - 2ln([CoHex])= ln([Mg2+]3/[CoHex]2) (1). 

Here ΔE (kT) includes the difference in ion electrostatic energies ΔEDNA-ion caused by the ion 

exchange and the difference in reference-state chemical potentials ΔE0 (e.g., due to different ion 

spatial organizations and entropies between the two ion phases). Though the reference state for 

the bath ion phase is invariant, the interstitial phase changes substantially with DNA-DNA 

spacing which modulates both DNA-ion interactions and ion distribution. ΔE thus strongly 

depends on DNA-DNA spacing. Conversely, ΔE is expected to remain constant if DNA-DNA 

spacing stays constant. Indeed we observe that DNA-DNA spacing is largely independent of the 

bath ion concentrations (see Suppl. Fig. S3) under a constant osmotic pressure. We then fit the 

ion partitions vs bath ion concentrations under a given osmotic pressure with ΔE as the only 

fitting parameter. Good agreements are obtained for all curves as shown in Fig. 2 (see Suppl. 

Fig. S4 for additional fits), noting that the free [CoHex] in the bath phase is corrected for the 

Co3+Hex-Cl- ion pairing with a binding constant of 20 mM (30). Consistent with our previous 

observation under zero osmotic pressure (30), the changes of ion partitions in the interstitial 
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space can be accounted for solely by the changes in ion entropies, provided that the DNA-DNA 

spacing does not change significantly.  

Furthermore, as expected from the strong dependence of ΔE on DNA-DNA spacing, the fitted 

ΔE values increases noticeably with decreasing DNA-DNA spacing (i.e., increasing osmotic 

pressure), by ~2.1 kT from ~28 to ~24 Å (corresponding to an increase of [PEG8k] from 0% to 

40% weight/weight). This can be attributed to stronger DNA-ion electrostatic coupling with 

closer DNA-DNA spacing, which favors CoHex over Mg2+ and yields a larger ΔE. For this 

reason, Equation 1 with ΔE as constant fails to describe the ion partition vs. DNA-DNA spacing 

relations (see Suppl. Fig. S2). A holistic analysis of the dependence of ion partition on both 

DNA-DNA spacing and ion chemical potentials would require a detailed model of MCMA in 

order to calculate ΔE. In lieu of such theoretical model, this phenomenological model is 

instructive in showing that ideal mixing behaviors can characterize ion entropies in the interstitial 

space in counter to ion-ion correlations beyond mean-field considerations. Furthermore, the 

variations of fitted ΔE values may provide a quantitative measure of ion-DNA coupling to guide 

theoretical developments.    

Additive modulation of DNA-DNA forces by interstitial ions. Evident from the distinctive 

force-spacing curves in Fig. 1, the partition of interstitial CoHex and Mg2+ ions strongly 

modulates DNA-DNA forces. With parameterization in the form of double exponentials, each 

force curve is reduced to two parameters, ΠR and ΠA, the magnitudes of the short-range 

repulsion and medium/long-range attraction respectively. For the two asymptotic cases, the 

force curve with CoHex only (i.e., fCo=1 with 0 mM [Mg2+] in the bath) gives ΠR of 418.4 GPa and 

ΠA of -1.3 GPa, and the curve with Mg2+ only (i.e., fMg=1 with 0mM [CoHex] in the bath) gives ΠR 

of 201.8 GPa and ΠA of -0.3 GPa. The slightly negative ΠA for Mg2+ may appear unexpected, but 

consistent with a recent study of DNA phase transition reporting a universal medium-range 

attraction even in monovalent salts (32). It is worth noting that the CoHex-only curve gives 

larger ΠR than the Mg2+-only curve, which likely originates from stronger hydration or larger size 

of CoHex ions enhancing short-range repulsion. The stronger repulsion and attraction with 

CoHex than Mg2+ result in an interesting crossover between the two curves at DNA-DNA 

spacing d~25.5 Å, i.e., an isobaric spacing independent of ion partitions which can be discerned 

in Fig. 1a and in Suppl. Fig. S1. In Fig. 3a, we show the force magnitudes ΠR and ΠA as 

functions of the bath [Mg2+] (with [CoHex] at a fixed 1 mM for all), noting that each force curve 



 

9 

 

was measured under constant [CoHex] and [Mg2+] in the bath. Both ΠR and ΠA change 

monotonically as expected and, interestingly, both appear to exhibit a linear dependence on 

[Mg2+]. The linear dependency prompts us to examine the relation between the force 

magnitudes and ion partitions. Due to the variations of ion partitions along each force curve 

(Suppl. Fig. S2), the representative fCo values (i.e., 1-fMg) at 30% PEG8k (d~26 Å) are used as 

the x-axis in Fig. 3b.  Using fCo as x-axis also makes it possible to plot results from force curves 

in higher [Mg2+] or zero [CoHex] salts that do not condense DNA spontaneously. Fig. 3b shows 

that linear relations hold for both ΠR and ΠA across the full range of fCo, and the linear trends are 

independent of the choice of representative fCo values for the curve (see Suppl. Fig. S5). It 

should be noted that this observation is subject to the limitations of experimental uncertainties 

and the finite number of data points. Taken together, these observations reveal that DNA-DNA 

forces are linearly dependent on the partition of interstitial ions. In other words, interstitial ions 

modulate DNA-DNA forces additively and each ion appears to act independently of other ions. 

Significant ion-ion coupling in DNA-DNA attraction would result in super-linear dependence on 

the CoHex fraction, e.g., a convex shaped curve towards fCo=1 for negative ΠA values in Fig. 3b 

which is noticeably absent. 

 

Additive modulation of DNA-DNA forces by interstitial ions gives rise to an interesting outcome 

that, with the knowledge of any two force-spacing curves and their ion partitions, one can 

predict all other force-spacing curves with different ion partitions. As the experimental data were 

collected under the same grids of osmotic pressures, a useful test is to compare measured and 

predicted DNA-DNA spacings. Specifically, with the experimental values of osmotic pressure Π 

and ion partition fCo, the predicted DNA spacing d is obtained via an iterative search to satisfy 

Π(d,fCo) = fCo×Π(d,fCo=1)+(1-fCo)×Π(d,fCo=0), where Π(d,fCo=1) and Π(d,fCo=0) are the double-

exponential fits of the force-spacing curves with asymptotic ion partitions (i.e., with CoHex or 

Mg2+ only). Fig. 4 shows the comparison between such predicted spacings and experimental 

values, noting that this prediction method allows the use of exact fco value for every data point 

rather than the average. While good agreements are observed in short ranges d<28Å (i.e., high 

pressure), the predicted d-spacings appear to be slightly greater than the measurements under 

lower pressures. One likely cause is that the DNA array takes on salt-dependent structure 

phases under lower pressures (32) (see Suppl. Fig. S6 for further explanations), such as a 



 

10 

 

disordered hexagonal phase with Mg2+ and a more ordered hexatic phase with CoHex, which 

complicates the prediction under lower pressures.  

Discussion 

In summary, we have combined x-ray diffraction (for DNA-DNA spacing), osmotic stress (for 

DNA-DNA pressure), and atomic emission spectroscopy (for ion partition) to interrogate the 

system of ordered DNA arrays bathed in a series of CoHex and Mg2+ ion solutions. These multi-

dimensional thermodynamic measurements, being the first to our knowledge, not only yield 

systematic experimental data for theoretical advancement but also provide new physical 

insights on biomolecular electrostatics. Measured force-spacing relations are congruent with the 

hydration force formulation of double exponentials, while it is noted that our subsequent 

analyses are not contingent on the hydration force theorem and the form of double exponentials 

largely serves as a way to parameterize the force curves. The variations of ion partitions with 

respect to the ion chemical potentials (i.e., bath ion concentrations) are described reasonably 

well by a phenomenological model based on ion entropies. However, this model fails to explain 

the dependence of ion partitions on DNA-DNA spacing, for which more sophisticated treatise of 

electrostatic energies would be required. Most importantly, our multi-dimensional measurements 

allow for the first examination of how DNA-DNA forces depend on the compositions of interstitial 

ions. This leads to a remarkable observation that ions mediate DNA-DNA forces additively, 

suggesting that ions are predominantly coupled with DNA rather than with other ions.  

On the premise of dominant ion-DNA coupling, one direct consequence is that the atomic 

structure of DNA is expected to be an important factor in addition to the extensively studied ion 

valence and structure, as both the structural and electrostatic details of DNA surface necessarily 

modulate the distribution and dynamics of ions and consequently the interaction between DNA 

helices. This proposition is supported by recent studies of the role of DNA sequence and 

modifications in DNA-DNA interactions. For example, homopolymeric A:T duplexes give 

stronger inter-DNA attraction than random sequences due to stronger ion binding into the major 

grooves, and methylation of Cytosine would weaken the electrostatic attraction due to 

hampered groove binding (33). Moreover, the A-form double helix of RNA represents a 

significant departure from the canonical B-form helix by sequestering ions within its deep 

grooves and surprisingly suppressing attraction (18). Such modulations of nucleic acids 

interactions, albeit weak at the single base level, are quickly multiplied by the length of the 
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sequence, giving rise to the notion of structure-directed regulation of nucleic acids behaviors 

such as transcription factor binding (34). It is also conceivable that multiple repeats of a specific 

sequence motif at the genomic scale could develop enough multivalency to shape chromosome 

structure and function. Physical understanding of nucleic acids interactions at the atomic 

resolution is thus much needed to illuminate their functional roles. 

Furthermore, the multi-component nature of the system calls for synergistic approaches 

integrating experiments, theories, and simulations to dissect and quantitate the contributions 

from DNA, ions, and solvent. In particular, all measured quantities in this study, being 

thermodynamic in nature, can be readily extracted from all-atom MD simulations of DNA arrays 

such as in Ref. 22, and detailed comparisons should be powerful for validating simulations and 

gaining mechanistic insights. Altogether, the results from this multi-pronged systematic study 

make an important step towards physical understanding of ion-modulated nucleic acids 

interactions, and efforts are under way to probe the role of DNA and ion structures. 
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Figure Captions 

Fig. 1. Illustrations of DNA-DNA forces and ion partitions as functions of the DNA-DNA spacing. 

(a) Representative measured force-spacing dependencies are shown as symbols in bath salts 

of 1 mM CoHex and [Mg2+]s of 0 (□), 5(○), 10(), and 20 (◊) mM, as well as in 0 mM CoHex 20 

mM Mg2+ (). Each corresponding curve fit with the double-exponential hydration force 

formalism is plotted as a solid line of the same color, and the difference between the data and fit 

is given in the same symbol with an offset below. (b) Representative measured ion partitions as 

functions of DNA-DNA spacing are shown as symbols linked by lines as guide to the eye. The 

same symbol is used for the three values (fCo, fMg, and fCo+fMg) under each bath ion condition: 1 

mM CoHex and [Mg2+]s of 2 (□), 7 (○), and 17 () mM. The different trends exhibited by the 

three values aid their distinction: fCo decreases, fMg increases, and fCo+fMg is largely constant ~1. 

Data below a DNA-DNA spacing of 24.5 Å are discarded because of incomplete dissolvation of 

DNA pellets in 1M NaCl leading to abnormally low P atomic concentrations. The full sets of 

force-spacing curves and ion partition-spacing relations are provided in the Supplementary 

Information (Figs. S1 and S2). 

Fig. 2. The partition of CoHex (fCo) as a function of bath [Mg2+] under constant osmotic 

pressures given by the legend in weight/weight [PEG8k]s. Symbols are the measured fCo values 

and lines are the fits with the phenomenological model described by Equation 1. Separated 

panels are used here to avoid cluttering of the curves, and the results under additional osmotic 

pressures are shown in Suppl. Fig. S4.  

Fig. 3. The force magnitudes of repulsion (ΠR, □) and attraction (ΠA, ○) from fitting the force-

spacing curves with double exponentials described in Equation 1. (a) The magnitudes are 

shown as functions of the bath [Mg2+]. (b) The magnitudes are shown as functions of the 

representative ion partition fCo values at an intermediate DNA-DNA d-spacing ~26 Å. 

Fig. 4. Comparison between experimental and predicted DNA-DNA spacings. The force-space 

relations Π(d,fCo) under bath salts of CoHex only (fCo=1) and Mg2+
 only (fCo=0) are used to 

predict the d-spacings under mixed bath salts as described in the main text. A total of 9 series 

are shown in respective symbols for the bath salts of CoHex 1 mM and Mg2+ 2 (□), 5(○), 7(), 

10 (◊), 12 (Δ), 15 (◁), 17 (▽) and 20 (✩) mM.  The dashed line gives the y=x curve. 
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