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Description
Innate immunity is crucial in the response and defense against pathogens for invertebrates and vertebrates
alike. The soil nematode Caenorhabditis elegans is a useful model to study the eukaryotic innate immune
response to microbial pathogenesis. Prior research indicates that the protein receptor FSHR-1 plays an
important role in the innate recognition of intestinal infection due to pathogen consumption. Determining
what genes are controlled by FSHR-1 may uncover an unknown pathway that could increase not only the
comprehension of the C. elegans immune system but also innate immunity generally. To characterize the
function of FSHR-1, four candidate pathogen response genes that appear to be regulated by FSHR-1 were
evaluated in worms infected with Pseudomonas aeruginosa. Although intestine specific RNA interference of
these four genes did not show immunity phenotypes, quantitative PCR suggests that FSHR-1 regulates the
basal and/or infection-induced expression of three of the four genes. To explore this FSHR-1-dependent
transcriptional induction, fluorescent transgenic reporters were constructed for the three candidate FSHR-1
target genes. The spatial expression of one putative pathogen response gene was characterized in transgenic
worms under both control and pathogenic conditions. RNA interference was performed to assess the FSHR-1
dependency of this expression pattern.
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Abstract 

Innate immunity is crucial in the response and defense against pathogens for invertebrates 

and vertebrates alike. The soil nematode Caenorhabditis elegans is a useful model to study the 

eukaryotic innate immune response to microbial pathogenesis. Prior research indicates that the 

protein receptor FSHR-1 plays an important role in the innate recognition of intestinal infection 

due to pathogen consumption (Powell et al. 2009). Determining which genes are controlled by 

FSHR-1 may uncover an unknown pathway that could increase not only the comprehension of 

the C. elegans immune system but also innate immunity generally. To characterize the function 

of FSHR-1, four candidate pathogen response genes that appear to be regulated by FSHR-1 were 

evaluated in worms infected with Pseudomonas aeruginosa. Although intestine-specific RNA 

interference of these four genes did not show immunity phenotypes, quantitative PCR suggests 

that FSHR-1 regulates the basal and/or infection-induced expression of three of the four genes. 

To explore this FSHR-1-dependent transcriptional induction, fluorescent transgenic reporters 

were constructed for the three candidate FSHR-1 target genes. The spatial expression of one 

putative pathogen response gene was characterized in transgenic worms under both infected and 

un-infected conditions. RNA interference was performed to assess the FSHR-1 dependency of 

this expression pattern. 

Introduction 

Host-pathogen interactions involve multiple molecular recognition events that are 

required both for effective infection by a pathogen and for resistance against infection by a host 

(Medzhitov 2007). Understanding this complex conversation between host and pathogen has 

become a major research focus in the biomedical sciences. The innate immune system is crucial 

in the response and defense against pathogens for invertebrate and vertebrate animals alike. The 



innate immune response in C. elegans was originally described as a non-specific, first line of 

defense against infection, serving to detect pathogens and initiate a neutralizing response 

(Shivers et al. 2008; Akira et al. 2006). However, recent studies suggest a greater specificity than 

was initially anticipated, in that various gene classes such as lysozymes, CUB-domains, lectins, 

ShK-like toxins, and histones are transcribed at different levels depending on the pathogen 

(Shivers et al. 2008). In jawed vertebrates, innate immunity stimulates the adaptive immune 

system (Medzhitov 2007). Invasion of a pathogen is detected through host pattern recognition 

receptors (PRRs) which activate signaling pathways in order to upregulate antimicrobial 

molecules to combat infection.  

 Genetic analysis of pathogen resistance has revealed that immune mechanisms are highly 

conserved among diverse hosts. The nematode Ceanorhabditis elegans is an attractive model to 

study the effects of microbial pathogens on the eukaryotic innate immune system. In a natural 

environment, C. elegans lives in the soil and feeds on bacteria; due to this constant contact with 

soil microbes, it is hypothesized that C. elegans developed immune responses to combat 

potential pathogens. It is this close evolutionary relationship with soil microbes and the 

simplicity of the organism that makes C. elegans a useful model to study innate immunity 

(Alegado et al. 2006). C. elegans is easily maintained in the laboratory and, being transparent, 

can be viewed using simple microscopy (Schulenberg et al. 2004). Nematodes are propagated on 

lawns of attenuated Escherichia coli strains and survive for approximately three weeks in the 

laboratory. To assess pathogen virulence and host innate defense mechanisms, C. elegans can be 

fed pathogenic bacteria or fungi relevant to human infection (Kim 2006). The sequencing of the 

C. elegans genome has allowed for the recent development of molecular techniques important to 

the study of innate immunity. While there are many homologies between the innate immune 



systems of invertebrates and vertebrates, the mechanism for the defense pathway in C. elegans is 

largely unknown.  

Toll-like receptors (TLRs) function as transmembrane PRRs in mammals and Toll 

signaling mechanisms are evolutionarily conserved across species, from organisms such as C. 

elegans and Drosophila to mammals (Akira 2006). Interestingly, the ligand-binding domain of a 

majority of PRRs, including mammalian TLRs, is made up of multiple leucine-rich repeats 

(LRRs). While the role of the only C. elegans TLR homolog (TOL-1) as a PRR is unclear, 

Powell et al. (2009) has found that the LRR-containing G protein coupled receptor FSHR-1 

functions in the C. elegans response to pathogens. Interestingly, GPCRs are known to be 

important for many aspects of development; however, few have been associated with infection 

recognition (Kudo et al. 2000). FSHR-1 is critical to the C. elegans innate immune response in 

the intestine, a major site of infection in worms due to pathogen consumption. FSHR-1 has been 

shown to act in parallel to both the insulin and p38 MAPK pathways known to contribute to the 

innate immune response in C. elegans. It is unclear what role FSHR-1 plays in innate immunity: 

whether FSHR-1 plays a regulatory role – by generally enhancing intestinal ability to respond to 

infection – or functions as a pathogen receptor responsible for sensing initial intestinal infection 

(Powell et al. 2009). 

 As a putative receptor for the C. elegans innate immune system, FSHR-1 may regulate 

the expression of pathogen response genes, or genes that give rise to antimicrobial molecules that 

work to neutralize infection. In order to define some of these pathogen response genes, 

microarray analysis experiments have been performed. A full-genome microarray analysis of C. 

elegans gene expression specific to Pseudomonas aeruginosa (PA14) infection demonstrated a 

robust transcriptional response. Specifically, 304 genes were upregulated and 114 genes were 



downregulated more than two-fold in worms responding to Pseudomonas infection compared to 

worms fed non-pathogenic E. coli (OP50) (Troemel et al. 2006). To explore the targets of the 

infection receptor FSHR-1, Powell et al. (2009) performed Pseudomonas-specific microarrays on 

fshr-1 null mutant worms compared to wild type (N2) worms. Interestingly, 179 genes were 

found to be upregulated in wild type worms but were not upregulated in fshr-1 mutants, 

suggesting that these genes are induced by FSHR-1 in worms infected with Pseudomonas and 

are thus targets of the FSHR-1 pathway. Through the use of quantitative real-time polymerase 

chain reactions (qRT-PCR), Powell et al. (2009) were able to quantify the transcriptional 

induction of ten of these identified putative FSHR-1 mediated pathogen response genes.          

Several gene families are overrepresented among known pathogen-response genes, 

including the CUB-like gene family. It has previously been shown in C. elegans that genes from 

the CUB-like gene family have induced expression in the presence of bacterial pathogens 

(Sharpira et al. 2006). The CUB domain, named based on the first three identified proteins of the 

family (complement C1r/C1s, Uegf, Bmp1), is a 110 amino acid domain that suggests an anti-

parallel β-barrel structure similar to those of immunoglobins (Bork 1993). CUB is found in a 

number of extracellular and plasma membrane-associated proteins, many of which are proteases. 

CUB containing proteins are known to function in a multitude of processes, including 

development, cell communication and signaling, angiogenesis, fertilization, inflammation, 

neurotransmission, and tumor suppression (Blanc et al. 2007). 

Interestingly, both the Pseudomonas- and fshr-1-specific microarrays identified a number 

of pathogen response genes that encode for proteins with a CUB-like domain, including 

paralogous genes C17H12.8 and C17H12.6. Powell et al. (2009) quantified the FSHR-1 



mediated upregulation of CUB-like gene C17H12.8 and showed that its expression was 10-fold 

less in fshr-1 mutant worms than wild type worms.  

Of the pathogen response genes identified from the microarray, four genes were chosen 

for further study that had especially high induction levels on the microarray: C17H12.6 (CUB), 

F55G11.5 (dod-22), C05A9.1 (pgp-5) and T24B8.5 (ShK). The immune phenotypes of gene 

knockdowns were assessed through the use of RNA interference. Basal and induced expression 

levels of the four genes were determined through the use of quantitative PCR. To further 

examine the expression patterns of these candidate pathogen response genes, transcriptional 

reporters were constructed. Due to the observed transcriptional expression of CUB-like genes in 

infected worms, we have begun to characterize the expression of C17H12.6. The expression 

patterns of C17H12.6 were observed through the microinjection of C17H12.6pr::GFP into wild-

type worms to produce transgenic lines. C17H12.6pr::GFP tissue specificity, basal expression 

and infection-induced expression patterns were observed via fluorescence microscopy in wild-

type transgenic worms and in those lacking the FSHR-1 receptor.  As there is strong evidence for 

the evolutionary conservation within the CUB-like gene family, characterizing the expression 

patterns of CUB-like C17H12.6 could lead to a greater understanding of the role CUB-like 

proteins play as antimicrobial effectors and to what extent they are regulated by FSHR-1. 

Uncovering the FSHR-1 pathway has the potential to increase the comprehension not only of the 

C. elegans immune system but also innate immunity generally. 

 

 

 

 



Materials and Methods 

Worm Synchronization 

Worms were maintained at 20°C on nematode growth media (NGM), as described by 

Brenner (1974). Embryos were isolated by removing gravid hermaphrodites with 4 ml M9 buffer 

per 10 cm NGM plate, centrifuging for 30 seconds at 1000xg, and removing the supernatant for a 

total volume of 2 ml.  Embryos were released from gravid hermaphrodites upon addition of 

NaOCl (400 µl) and 5N NaOH (100 µl). Embryos were washed 3 times with M9 buffer and re-

suspended in 5 ml of M9 buffer for 24-48 hours while rotating. Larval stage 1 worms were 

dropped onto media + bacteria (~250 worms/plate) and incubated at 20°C for 96 hours. Larval 

stage 4 worms were used in induction assays. 

RNA interference 

To perform intestine-specific RNA interference, VP303 rde-1 (ne219); kbIs7 worms 

were synchronized. Worms were fed non-pathogenic E. coli (RNAi strain HT115) expressing 

dsRNA of fshr-1, C17H12.6, F55G11.5, C05A9.1, or T24B8.5. Control worms were fed E. coli 

(RNAi strain HT115) expressing dsRNA of the empty plasmid L4440. All RNAi bacterial clones 

were obtained from the Ahringer RNAi library (Kamath et al. 2003). Bacteria were grown in LB 

+ 50 µg/ml carbenicillin at 37°C with agitation, spread on 6 cm RNAi plates (nematode growth 

medium (NGM), 25 µg/ml carbenicillin, 5 mM isopropyl β-D-thiogalactopyranoside), and 

incubated at 25°C for 48 hours.  

 

 



Pseudomonas Infection  

Pseudomonas aeruginosa (strain PA14) and E. coli (strain OP50) were grown in LB for 

less than 14 hours at 37°C and seeded to SK plates as described by Powell and Ausubel (2008). 

Approximately 40 late stage 4 larvae were picked to SK plates seeded with pathogenic P. 

aeruginosa + 30µl FUDR for assays at 25°C. 

Killing Assays 

Worms were infected with P. aeruginosa for blind killing assays at 25°C. Plates were 

scored for sensitivity to the pathogen as previously described (Powell and Ausubel 2008).   

RNA collection and isolation 

Wild-type and fshr-1 null mutant worms were maintained at 15°C on nematode growth 

media (NGM) described by Brenner (1974), synchronized and grown in parallel. Laval stage 1 

worms were dropped onto 10 cm NGM plates with non-pathogenic E. coli and grown to laval 

stage 4. Worms were fed non-pathogenic E. coli or infected with P. aeruginosa at 25°C. After 4 

hours, worms were removed and washed with M9 buffer. Worms were pelleted and all 

supernatant was removed. In a RNAse free area, 1ml RNAase free Tri-reagent was added to each 

pellet and frozen immediately at -80°C. Total RNA was extracted using TRI Reagent (Molecular 

Research Center, http://www.mrcgene.com) according to the manufacturer's instructions, as 

previously described by Troemel et al. (2006).   

Quantitative RT-PCR 

 Quantitative RT-PCR was performed for three independent biological replicates, in 

triplicate, as previously described (Troemal et al., 2006). Primer sequences were designed for 



each gene of interest (Table 1); F01D5.5 served as a control infection response gene. Statistical 

analysis was performed in Microsoft Excel. Induction, basal, and final expression values were 

normalized to nhr-23, a gene constitutively expressed in C. elegans. Values between conditions 

were compared using a 2-tail, paired t-test; SEM was calculated for each condition. Expression 

comparisons achieved statistical significance with p<0.05.  

Table 1. Primer pairs used for qRT-PCR. 

Primer Name  Primer Sequence (5’-3’)  

T24B8.5 Forward TGTTAGACAATGCCATGATGAA  
T24B8.5 Reverse ATTGGCTGTGCAGTTGTACC  
C05A9.1 Forward  TGTTCGAGCACTTAACATGGA  
C05A9.1 Reverse  CCCTGAATTACAGCTCGTTTG  
F55G11.5 Forward  ACTATGGCTCTCCAACGGTAG 
F55G11.5 Reverse  CCCTTGGAAGTTTAGAGGTACG 
C17H12.6 Forward  CTGAATGACTTGCAGGAGAACT 
C17H12.6 Reverse  CATCCCACCCAGAACTAGC 
F01D5.5 Forward  CTACCCCAGAACCACCAACT 
F01D5.5 Reverse  AGAAGCAATTTGAGCAGAAGC 
nhr-23 Forward  CGGATATTCTATAGCTGTTGC 
nhr-23 Reverse  ACTTGTGGCGATGGGAAGC 
 

Generating Promoter-GFP fusion constructs 

Two-way fusion PCR was used in the generation of transcriptional reporters for 

C17H12.6, T24B8.5, and F55G11.5 in C. elegans (Figure 1). DNA segments containing the 

predicted promoter regions of T24B8.5, C17H12.6, and F55G11.5 were obtained by amplifying 

4.3 Kb, 2.9 Kb, and 4.0 Kb regions upstream of the respective genes. Promoter regions were 

amplified in 25 µl PCR reactions using 1ng C. elegans genomic DNA for template and the 

corresponding Forward and Reverse primers for each gene (Table 2). Each reaction contained 

0.25 µl Expand Long Template Enzyme Mix (Roche) and had a final concentration of 175 µM 

dNTP Mix, 0.5 µM forward primer, 0.5 µM reverse primer, and 1x Expand Long Template 



Buffer 1 containing 17.5 mM MgCl2.  A Bio-Rad MyCycler performed the reactions with 

thermal cycling parameters of 1 minute initial denaturation at 95°C (1 cycle), 30 second 

denaturation at 95°C, 30 second annealing at specified temperature (Table 2), specified extension 

time (Table 2) at 68°C (30 cycles), 10 minutes final extension at 68°C (1 cycle), and unlimited 

cooling at 4°C.  To determine successful amplification, 5 µl products were electrophoresed in a 

1% Seakem LE agarose minigel in 1x TAE buffer. 

Table 2. Primers for 2-way fusion PCR. Capitalized letters are those complementary to the DNA sequence of GFP. 

Primer Name  Primer Sequence (5’-3’)  Annealin
g Temp. 
(°C)  

Extension 
Time (sec)  

T24B8.5 
Forward 

AGTCGACCTGCAGGCATGCAAGCTtttggtgatacataaatgataactga  

59 65 
T24B8.5 
Reverse 

tcattgagcaaacagattgg  

T24B8.5 
Nested 
Reverse 

ggtcatattctgcaaatacagttg  
60.8 80 

C17H12.6 
Forward 

tgtgctagaatagatcatatcatcttg  

59 65 
C17H12.6 
Reverse 

AGTCGACCTGCAGGCATGCAAGCTtgtgctagaatagatcatatcatcttg  

C17H12.6 
Nested 
Reverse (A) 

acgatttaagtgtctgttttgctc  
60.8 80 

C17H12.6 
Nested 
Reverse (B) 

gcaaattgtgaggaacgagt  
60.8 43 

F55G11.5 
Forward 

gttaagcgtccacgcctgt  

63 60 
F55G11.5 
Reverse 

AGTCGACCTGCAGGCATGCAAGCTtttctagaaaaagtgaaaatcccg  

F55G11.5 
Nested 
Forward  

aagcggccgaaggttagt  
63 61 

GFP Forward AGCTTGCATGCCTGCAGGTCGACT  
56 60 

GFP Reverse AAGGGCCCGTACGGCCGACTAGTAGG 

  

As shown in Figure 1, fusions of predicted promoter regions to the DNA sequence for 

GFP were completed in a second PCR reaction.  Promoter::GFP transcriptional reporter 



constructs were generated for C17H12.6, T24B8.5, and F55G11.5. 1µl of each amplified product 

was diluted 40-fold for future use. Fusions were performed in 20µl reactions,  containing 0.2 µl 

of Phusion® DNA Polymerase (New England Biolabs, Inc.), 200 µM Deoxynucleotide Mix, 0.5 

µM Nested Forward primer, 0.5 µM Nested Reverse primer (Table 2), and 5x Phusion™ HF 

Buffer. Fusion reactions were performed in a Bio-Rad MyCycler with thermal cycling 

parameters of 30 second initial denaturation at 98°C (1 cycle), 35 cycles of a 5 second 

denaturation at 98°C, 10 second annealing at specified temperature (Table 2), and specified 

extension time at 72°C, 10 minutes final extension at 72°C (1 cycle), and unlimited cooling at 

4°C.  Successful fusion and amplification was determined by electrophoresing 5 µl of the 2-way 

fusion PCR products in a 1% Seakem LE agarose minigel in 1x TAE buffer.  For the 

C17H12.6pr::GFP reporter (2.859 Kb), a concentration of 62.5ng/μl was approximated through 

gel electrophoresis of sample compared to 1 Kb ladder dilutions. 

 

 

 

 

 

 

 

 

Figure 1. Schematic diagram of 2-way fusion PCR used to construct transcriptional GFP reporters for injection into 
wild-type C. elegans.  



Generation of Transgenic Lines 

An injection mixture consisting of 10ng/µl C17H12.6pr::GFP reporter construct as well 

as 50ng/µl co-injection marker Pmyo-2::mCherry and 40ng/µl salmon sperm carrier DNA was 

injected into the syncytial gonads of wild type worms. Using a Leica MZ16 F fluorescence 

stereomicroscope with a GFP filter, progeny of injected worms were examined for fluorescent 

expression. Two independent lines of C17H12.6pr::GFP transgenic C. elegans were isolated and 

found to transmit the extrachromosomal array to their offspring. A sample of each line was 

frozen and named: zvEx8 and zvEx9 (Table 3). The reporter array was integrated into the 

genome of strain JRP1016 by irradiation with 280 µJ/cm2 of UV light using a Spectrolinker™ 

UV Crosslinker (Montreal Biotech Inc.).  Transgenic strains were maintained at 20°C on 

nematode growth media (NGM) described by Brenner (1974). 

Observation of CUB expression 

Approximately 40 larval stage 4 JRP1016 worms were fed non-pathogenic E. coli or 

infected with pathogenic P. aeruginosa. Worms were incubated at 25°C and scanned for basal or 

induced expression using a Leica MZ16 F fluorescence stereomicroscope.  To visualize spatial 

C17H12.6pr::GFP expression, worms were anesthetized with 25 µM NaN3 and photographed 

using a Nikon Eclipse 90i microscope with DIC and epi-fluorescence optics.   

Visualization of C17H12.6pr::GFP expression in worms lacking FSHR-1 

To observe the expression of C17H12.6pr::GFP in JRP1016 worms lacking FSHR-1, 

synchronized worms were fed fshr-1 or L4440 RNAi bacteria.  Late stage 4 larvae were infected 

with P. aeruginosa. To ensure that RNAi successfully knocked down fshr-1, killing assays were 

performed on one P. aeruginosa plate from each RNAi strain.   



In silico Analysis of CUB-like proteins 

Gene Selection 

The presence of the CUB-like domain in the FSHR-1-regulated gene C17H12.6 piqued 

an interest in the CUB-like domain. A list of 59 C. elegans genes containing CUB-like domains 

were presented by wormbase.org. From that list, I searched for each gene in a condensed 

microarray data set provided by Dr. Powell. The microarray is specific to Pseudomonas 

aeruginosa infection, where wild type worms were exposed to the pathogen for four hours 

compared to worms on control, non-pathogenic E. coli. Of the CUB-like genes from the 

microarray, 15 genes were chosen (including C17H12.6) that had a broad range of 

Pseudomonas-induced expression levels in wild type worms. P values were also taken into 

consideration: genes with high or middle induction had small P values whereas most genes that 

had a low fold change had greater P values, thus illustrating even less significant induction. The 

selected genes were ordered by induction level and arranged into 3 categories: high, middle and 

low induction. Two of the 15 genes selected were genes containing a CUB domain. For each 

selected gene, I went to wormbase.org to obtain the spliced DNA sequence as well as the amino 

acid sequence.  

Exploring sequence conservation 

 To explore whether the genes induced by Pseudomonas infection have conserved 

regions, multiple sequence alignments via UniProt ClustalW were constructed for analysis. 

Whole protein sequences were aligned for each of the three induction groups: high, middle, and 

low. The N terminus of C49G7.7 was removed due to the great length of the protein sequence 

that prevented the construction of a concise MSA. For the low induction group, the two CUB 



genes were removed from the MSA because the sequences differed so greatly from the CUB-like 

sequences. In addition, an MSA was constructed from the amino acid sequences of all 13 genes 

with one CUB gene (R10H10.3) that served as the outgroup. A guide tree was also constructed 

using JalView to roughly compare the relationships between the CUB-like genes under study. To 

further explore the CUB-like domain within each of the 13 genes selected, a CUB-like domain 

sequence was taken from ncbi to serve as a representative CUB-like consensus sequence. Each 

of the three induction groups was aligned with this sequence in order to find the CUB-like 

domain for each of the genes. The sequences were then condensed to approximately 135 amino 

acids in length and aligned via UniProt ClustalW. A guide tree was constructed using JalView to 

assess possible relationships between the CUB-like domains of the genes under study. Jalview 

guide trees were labeled with expression levels taken from the original microarray data to best 

illustrate the connection between induction and sequence similarity. 

Identifying evolutionary relationships 

To best visualize the evolutionary relatedness and to investigate the possibility of 

conserved functions between the 13 selected CUB-like genes, PHYLIP phylogenetic trees were 

constructed. The PHYLIP program used the NJ algorithm to map the distance-based 

evolutionary relatedness for the genes’ CUB-like domain sequences as well as for their entire 

amino acid sequences in a second tree. Trees were labeled with expression levels taken from the 

original microarray data to best illustrate the connection between pathogen induced transcription 

and evolutionary relatedness. 

 

 



Results 

FSHR-1 regulates a set of pathogen response genes 

A series of Pseudomonas-specific microarrays defined a set of putative pathogen 

response genes that may be upregulated by C. elegans (Powell 2009). A subset of these 

Pseudomonas-response genes is thought to be dependent on the GPCR FSHR-1 for 

transcriptional induction in the presence of pathogen. The receptor FSHR-1 is expressed most 

strongly in the somatic tissues of the intestine and neurons (Sieburth et al. 2005). Given that 

intestinal tissue comes into direct contact with pathogen, FSHR-1 activity in the intestine has 

been shown to be necessary and sufficient for the innate immune response in C. elegans (Powell 

2009). Of the 179 putative FSHR-1 dependent pathogen response genes identified, four were 

chosen for further study that had especially high induction levels on the microarray: C17H12.6 

(CUB-like), F55G11.5 (dod-22), C05A9,1 (pgp-5) and T24B8.5 (ShK-like toxin).  

To assess what effect each of the four selected target genes has on the overall innate 

immune response, the function of each candidate gene was removed via intestine-specific RNA 

interference (RNAi). The C. elegans strain VP303 rde-1 (ne219); kbIs7 was used to exclusively 

target RNAi-mediated knockdown of gene expression to the intestine without affecting other 

tissues. VP303 has an intestine-specific promoter regulating the expression of rde-1 in an rde-1 

mutant background; Argonaute RDE-1 slicer activity is required for the RNA interference 

mechanism. Killing assays were performed to assess the survivorship over time of RNAi worms 

infected with Pseudomonas aeruginosa. Worms fed an RNAi strain with an empty vector 

(L4440) served as a control. An immunocompromised phenotypic control was achieved via fshr-

1 RNAi. In comparison to the controls, the survivorship curves of intestine-specific RNAi for 

each of the 4 candidates mimicked L4440 RNAi curves and thus did not result in significant 



pathogen sensitivity phenotypes (Figure 2). The lack of immune phenotypes for each candidate 

gene tested could be accounted for by the possibility that each antimicrobial effector plays a 

small role which contributes to a greater response against pathogen.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Survivorship curves of C. elegans (VP303 rde-1 (ne219); kbIs7) fed on pathogenic P. aeruginosa. Worms 
were fed on RNAi bacteria to knockdown fshr-1, C05A9.1, T24B8.5, C17H12.6 or F55G11.5 expression. Control 
worms were fed RNAi strain L4440 (empty vector). Error bars represent standard deviation.  

Quantitative PCR (qRT-PCR) was used to quantify the relative expression levels of the 

four gene candidates. The relative amount of mRNA was quantified for the four genes in both 

healthy and Pseudomonas infected wild-type worms. For each gene, the mean induced 

expression – the ratio of gene expression in infected versus healthy worms – was determined for 

three independent RNA preparations and standardized based on the mean expression of a 

constitutively expressed gene, nhr-23. F01D5.5 served as a control due to its previously 



determined FSHR-1-dependent induction (Powell et al., 2009). All qRT-PCR data is reported as 

a sample mean of three independent RNA preparations ± SEM. Paired, 2-tailed T-tests (df =2) 

were performed to identify statistically significant results. From this analysis, all candidate genes 

had over 10-fold greater expression in infected worms than in healthy worms (Figure 3). The 

CUB-like gene, C17H12.6, was induced 71.01±20.19 fold and F55G11.5, C05A9.1, and 

T24B8.5 were induced 48.56±24.93, 238.21±188.94, and 18.56±6.30, respectively. 

 

 

 

 

 

 

 

 

 

Figure 3. FSHR-1 regulates pathogen response genes. Induced expression of four candidate pathogen response 
genes measured via qRT-PCR. Fold induction is a ratio of expression on pathogenic P. aeruginosa to expression on 
non-pathogenic E. coli in wild-type and fshr-1 mutant worms. F01D5.5 serves as a control infection response gene. 
Expression for all genes was normalized to nhr-23 expression. Error bars represent SEM for three independent 
biological replicates. *Genes with reduction in fshr-1(-) induction relative to wild-type (p<0.05).  

 

To validate the findings of the microarray and to quantify the FSHR-1-dependent 

transcriptional induction of the candidate Pseudomonas-response genes, the relative amount of 

mRNA was also measured for the four genes in fshr-1 mutants infected with Pseudomonas 

aeruginosa (Figure 3). The sample means for gene expression from three independent fshr-1 (-) 

RNA preparations were determined. The CUB-like gene, C17H12.6, was induced 13.48±3.47 

fold and F55G11.5, C05A9.1, and T24B8.5 were induced 19.71±5.72, 254.64±155.18, and 



4.33±0.90 fold, respectively. Of the four putative FSHR-1-dependent candidates, only the CUB-

like gene, C17H12.6, had significantly higher expression levels induced by infection in wild-type 

worms than in fshr-1 mutants (p=0.0484).  While not statistically significant, F55G11.5 

(p=0.1451) and T24B8.5 (0.0774) also had higher induced expression in wild-type worms in 

comparison to fshr-1 mutants.  

 
Figure 4. Fold change in gene expression levels measured via qRT-PCR is a ratio of wild-type to fshr-1 mutant 
expression in worms fed non-pathogenic E. coli or pathogenic P. aeruginosa. F01D5.5 serves as a control infection 
response gene. Expression for all genes was normalized to nhr-23 expression. Error bars represent SEM for three 
independent biological replicates. *Change in basal expression signifies a difference between wild-type and fshr-1 
mutants on E. coli (p<0.05). ●Change in final expression signifies difference between wild-type and fshr-1 mutants 
on P. aeruginosa (p<0.05).  

 
 

Additionally, qRT-PCR was used to measure basal expression of the four genes: the 

relative expression in wild-type to fshr-1 mutant worms fed exclusively on nonpathogenic E. coli 

(Figure 4). Interestingly, C17H12.6 and F55G11.5 are significantly down regulated by FSHR-1 

for their basal expression, as expression in wild-type worms is significantly lower than fshr-1 

mutant worms: C17H12.6 at 0.22±0.06 fold (p=0.0063) and F55G11.5 at 0.26±0.09 fold  

(p=0.0144). Both C05A9.1 (1.91±0.73, p=0.3373) and T24B8.5 (14.81±8.72, p=0.2543) appear 



to be upregulated by FSHR-1 for their basal expression, however these results did not achieve 

statistical significance. Further, the final expression of the 4 genes was determined in worms 

infected with P. aerugoinsa (Figure 4). On pathogen, the expression of T24B8.5 was 

significantly greater in wild-type worms than fshr-1 mutants by 40.86±7.81 fold (p=0.036). 

Interestingly, F55G11.5 was still repressed in infected wild-type worms compared to fshr-1 

mutants at 0.49±0.09 (p=0.031), but at a lesser extent than in healthy worms. The final 

expression levels of C17H12.6 (1.17±0.41, p=0.717) and C05A9.1 (1.01±0.12, p=0.0953) did 

not achieve statistical significance.  

C17H12.6 is induced upon Pseudomonas infection 

In order to learn more about the tissue specificity and expression patterns of FSHR-1-

dependent pathogen response genes, transcriptional reporters were constructed. Based on the 

qRT-PCR data, GFP reporter fusions were made for the three genes that appear to be partially 

dependent on FSHR-1 for induction (C17H12.6, T24B8.5, and F55G11.5). GFP reporter 

constructs were generated via 2-way fusion PCR. DNA segments containing the predicted 

promoter regions of T24B8.5, C17H12.6, and F55G11.5 were obtained by amplifying 4.3 Kb, 

2.9 Kb, and 4.0 Kb regions upstream of the respective genes.  Successful amplification of the 

promoter products was confirmed via agarose gel electrophoresis (Figure 5).  

 

 

 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Amplification of the C. elegansT24B8.5, F55G11.5, and C17H12.6 predicted promoter regions. 5µl of 
each promoter product was electrophoresed at 80 volts in a 1% agarose minigel. Key to lanes: 1, Quick-load 1 Kb 
DNA ladder, 500 ng; 2, T24B8.5 promoter, 50 ng; 3, C17H12.6 promoter, 200 ng; 4, F55G11.5 promoter, 200 ng.  

 
 

To serve as the reporter, the coding sequence of GFP (1.892 Kb) was also amplified by 

PCR. For the amplification of the promoter regions of the genes, reverse primers were designed 

with a marker tail sequence complementary to GFP in order to promote fusion of the two 

segments in a subsequent reaction. Agarose gel electrophoresis was used in the confirmation of 

the successful amplification of fusion PCR products: T24B8.5pr::GFP at 5.354 Kb, 

C17H12.6pr::GFP (A) 4.676 Kb and (B) 2.859 Kb, and F55G11.5  at 4.065 Kb (Figure 6).  

 

 

 

 

 
 
 



 

 

 

 

 

 

 
Figure 6. Amplification of the C. elegansT24B8.5pr::GFP, F55G11.5pr::GFP, and C17H12.6pr::GFP fusion 
constructs. 5µl of each 2-way fusion product was electrophoresed at 94 volts in a 1% agarose minigel. Key to lanes: 
1, Quick-load 1 Kb DNA ladder, 500 ng; 2, T24B8.5pr::GFP, 5 µl; 3, C17H12.6pr::GFP (A), 5 µl; 4, 
C17H12.6pr::GFP (B), 5 µl; 5, F55G11.5pr::GFP, 5 µl.  
 

 

Of the three genes that transcriptional markers were made, the CUB-like gene C17H12.6 

had the most significant FSHR-1-regulation based on the qPCR data. Thus, a C17H12.6pr::GFP 

fusion was chosen for use in the first injection mixture. As two CUB reporter constructs were 

made, the shorter C17H12.6pr::GFP reporter (2.859 Kb) was chosen over the longer fusion due 

to the presence of another major product (<1 Kb) visualized on the GFP fusion product gel 

(Figure 6). A concentration of 62.5ng/μl for the 2.859 Kb product was approximated through 

agarose gel electrophoresis of sample compared to ladder dilutions; product band matches band 

at 3Kb from 250ng 1 Kb ladder in lane 3 (Figure 7).  

 

 

 

 



 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

Figure 7. Concentration of C17H12.6pr::GFP fusion construct. 5µl of 2-way fusion product was electrophoresed 
with series of ladder dilutions at 90 volts in a 1% agarose minigel. Key to lanes: 1, C17H12.6pr::GFP (B), 1 µl; 2, 
Quick-load 1 Kb DNA ladder, 500ng; 3, Quick-load 1 Kb DNA ladder, 250ng; 4, Quick-load 1 Kb DNA ladder, 
100ng; 5, Quick-load 1 Kb DNA ladder, 50ng. 

 

An injection mixture consisting of the fusion construct as well as co-injection marker 

Pmyo-2::mCherry was injected into the syncytial gonads of wild type worms. Via fluorescence 

microscopy, two independent lines of C17H12.6pr::GFP transgenic worms were isolated and 

found to transmit the array to their offspring (Table 3). Both lines had very similar 

C17H12.6pr::GFP basal and infection- induced expression patterns. The array in strain JRP1015 

was integrated into the genome to generate strain JRP1016 with the zvIs7 genotype, whose 

expression patterns were further characterized.  

Table 3. Transgenic C. elegans strains containing a C17H12.6 transcriptional reporter.  
C. elegans strain  Genotype  Source  

JRP1013 zvEx8 – C17H12.6pr::GFP Extrachromosomal Array Powell Lab 

JRP1015 zvEx9 – C17H12.6pr::GFP Extrachromosomal Array Powell Lab 

JRP1016 zvIs7 – C17H12.6pr::GFP Integrated Powell Lab 

 



Through the use of fluorescent microscopy, the spatial and temporal expression of CUB-

like C17H12.6 in healthy JRP1016 worms fed non-pathogenic E.coli was assessed (Figure 8). 

C17H12.6pr::GFP expression is limited to the posterior intestinal cells, as no expression was 

observed in any other tissues. Seen in Figure 8, as worms age, C17H12.6pr::GFP expression 

becomes more concentrated in the posterior intestine and has minimal anterior extension. 

 
 

 
 
 
 
 
 
 

Figure 8.  Basal expression of GFP in uninfected worms carrying an integrated C17H12.6pr::GFP transcriptional 
reporter. Worms at the fourth larval stage were fed on non-pathogenic E. coli at 25°C for 4, 12 and 27 hours and 
photographed at optimal exposure DIC, 75ms FITC, and 15ms Rhodamine. Scale bars, 100 µm. 

 

The transcriptional induction of C17H12.6 was observed in worms fed on pathogenic P. 

aeruginosa. JRP1013 displays clear induced expression of C17H12.6pr::GFP when worms are 

infected with pathogen. In comparison to healthy worms, most worms placed on Pseudomonas 

have C17H12.6pr::GFP expression that is brighter and extends from the posterior end of the 

intestine to the vulva, which marks the midsection of the worm (Figure 9). Induced expression of 

C17H12.6pr::GFP was observed as early as 4 hours but was best observed 24-27 hours post 

initial pathogen exposure.  

 

 



 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 9.  Expression of GFP in healthy and infected worms carrying an integrated C17H12.6pr::GFP 
transcriptional reporter. Worms at the fourth larval stage were fed on (A) non-pathogenic E. coli or (B) pathogenic 
P. aeruginosa at 25°C for 27 hours and photographed at optimal exposure DIC, 75ms FITC, and 15ms Rhodamine. 
Scale bars, 100 µm. 

 

RNA interference was performed to assess the FSHR-1 dependency of this CUB 

expression patterns. The induction seen in both control and fshr-1 knockdowns appeared to be at 

approximately equal levels. In most worms, infection-induced C17H12.6pr::GFP expression was 

limited to the posterior intestine and was visualized at 12 hours post initial pathogen exposure. 

Interestingly, C17H12.6pr::GFP induction in both control (L4440) and fshr-1 RNAi worms was 

less concentrated than that of induced-expression in wild-type worms in the previous induction 

assays. This change in expression could be attributed to feeding larval worms on the RNAi E. 

coli strain (HT115) versus E. coli (OP50) before placement on pathogenic Pseudomonas.  

 



 

Figure 10.  Expression of GFP in infected (A) control (L4440) and (B) fshr-1 RNAi worms carrying an integrated 
C17H12.6pr::GFP transcriptional reporter. Worms at the fourth larval stage were fed on pathogenic P. aeruginosa at 
25°C for 26 hours and photographed at optimal exposure DIC and 300 ms FITC. Scale bars, 100 µm. 

 

Shared Pseudomonas-induced expression is suggestive of evolutionary conservation among 
CUB-like genes  
 

Given that the qRT-PCR data as well as induction assays using JRP1013 worms indicate 

that the expression of  CUB-like gene C17H12.6 is induced by P. aeruginosa infection, 

bioinformatics analysis was employed to investigate the evolutionary conservation and function 

of related CUB-like genes. Prior Pseudomonas-specific microarray data shows a gradient of 

expression of CUB-like genes in C. elegans in response to infection. The microarray identified 

C17H12.6 as highly upregulated (18.477 fold) in wild type worms exposed to Pseudomonas 

infection compared to worms fed non pathogenic E. coli.  It was hypothesized that CUB-like 

genes with the highest induced expression levels may be more closely related than the CUB-like 

genes with little or no Pseudomonas- induced transcription. Table 4 contains the 13 CUB-like 

genes, including C17H12.6, and 2 true CUB genes selected for analysis, arranged by 

Pseudomonas-specific transcription expression levels.  

 



Table 4. Genes selected based on microarray fold change expression levels in wild type C. elegans when exposed to 
pathogenic P. aeruginosa versus non-pathogenic E. coli. Fold change values are relative to the microarray. 

High induction level 
Annotation Expression fold change  t test p value 
C17H12.8  7.421 0.008044047 
C49G7.7  8.497 0.01819496 
F55G11.5 (dod-22) 11.188 0.01050894 
F55G11.4  12.819 0.003948842 
C17H12.6  18.477 0.007656637 

Middle induction level 
Annotation Expression fold change t test p value 
C29F3.7a 3.229 0.004632528 
F35E12.9a 5.044 0.005668923 
F53C11.1  5.402 0.008237721 
C32H11.1  5.723 0.06055998 
K08D8.5  5.829 0.004448748 

Low induction level 
Annotation Expression fold change t test p value 
T05E12.6 0.361 0.007059164 
F35E12.2  0.97 0.7646276 
ZK896.1  0.976 0.7651929 
CUB Domains:             
Annotation Expression fold change t test p value 
K05C4.11  0.993 0.8627944 
R10H10.3  1.256 0.2137785 

 

To investigate the possibility that Pseudomonas-response genes containing a CUB-like 

domain may share conserved regions for antimicrobial function, multiple sequence alignments 

were constructed for genes with high, middle, and low induction levels respectively. As 

represented by Figure 11, the MSA for highly induced putative pathogen-response genes shows 

conserved regions within and outside of the N-terminal CUB-like domain. The MSA’s for 

middle and low induction gene subsets also reveal conservation within and outside of the CUB-

like regions (Appendix). However, there is greater overall sequence similarity observed for the 



three low induction genes than the five middle induction genes. The greater overall similarity in 

the low induction subset could be the result of only three sequences within that alignment.  

CLUSTAL 2.1 multiple sequence alignment 
 
C49G7.7  FEMFEKPLLLLAVIVAVSAVGNGCQLGKAIYKPVIDGTPVYWPPSWTETQPAPQLETEQS 61 
F55G11.4 --MFQKLLAFLTVVVFVSAAGNSCKIGKVINKPVIDGTPVYWPASWNETQPAPQLEKEQS 59 
F55G11.5 --MLSKVVLFLAVLSSASAS--VCKTGNLINKPVND-SPVIWPATWDMKFAPPKLDKGQT 56 
C17H12.8 ----MIVAFWLLAL---VTVSTALECTQIP-EPIIAGEFVTIPAGANDTVQIPPN---FS 50 
C17H12.6 ----MSATPLIISLGLLVGVTAALDCTQIPNNAIIPLSYTTIPAGATGLVEIPPN---FN 54 
                   :  :          .  :   :.:     .  *.        *      . 
 
C49G7.7  CSWIVTIPRGYYAKLIISGKTTDKDSRFQTVDTAGNLVQTTQEN---MEPYYFPSPKFTI 118 
F55G11.4 CSWYVTIPRGYYAKLIISGKTTDKDSRFQTVDSAGNLIQTTHEK---MVPYYFPASKFTL 116 
F55G11.5 CSWTVTVPDGFYAKLVISAKAMDRDTYFQTIDSAGNLAKTGNEK---MKPYYFVGPKFTI 113 
C17H12.8 CTYNVNAPPMIYAHVTLENGLNGNNDMITVIDEQLTRTIVSSRSAKFVHFYIFPNTTTKF 110 
C17H12.6 CVYNVKVPKMVYARVRLENGLKGYNDLITVQDQQGTYTRVSSRSPSVLNFYVFPNTTTTF 114 
         * : *. *   **:: :.    . :  : . *   .   .  ..   :  * *  .. .: 
 
C49G7.7  AVSNTGS---ATFAFKVVWFPLPYLDDSIR-VGPLAKVMNATSTVNYNNYWDANSNSLTL 174 
F55G11.4 AVSNEGS---ATFAFKVVWWPLPTEKYVDI-VASIGQVINVTETVVAMEY--AAPGGITL 170 
F55G11.5 ALSSNAP---AAFGFKIIWLPFPNIDIGYSGVTEAAEVLNATGIIYKQSIY--SRGGIHL 168 
C17H12.8 QVITKSVNMHSSFRIVVHFERMLNTTVTHLGNPDMKYFMLNDLRVNSYRTPQTMISNERI 170 
C17H12.6 QVVTKSVDMHSSFRMIVFYQPMYTETVTHLGNPDMKYFMLNDLQENSYKTPQTIISNEKI 174 
          : . .    ::* : : :  :               .:                ..  : 
 
C49G7.7  MTFPADTKNYYSLRSTLVFDGPGLSSGCYISNLYQLYQTTNQWT-SSQKSIIVLNLEASS 233 
F55G11.4 LTFPEDLKNYNSLRSTLIYDGSSLTSATYVSNLFLLNQSKKQWT-SSQDGIVVVNVEASR 229 
F55G11.5 LPFPQDPTNYFSLRSALVFEGGSFPGCNYVGNLYQMYRSKKPYSFSSEGSIVVFNLAASG 228 
C17H12.8 SLSIAHSGWYSDIFDNYFVIEGYIENPKAVYRMSKFVYQGYISTGNILTVVGLDNRVSES 230 
C17H12.6 SVSMASSGWDADIFENYFIIKGDLNNTKSVSRLSRFVGQGYISTGSSLTVVGLDNRVSES 234 
                    .: .  .     : .   : .:  :       : .    : : *  :.  
 
C49G7.7  SNDKLLFLSSKYLAGIGEMVKLQPQANSIYNGTVNG--LMSSLVAAS------------- 278 
F55G11.4 SMNKLLIQGSVYLAGIDEIVELHPQPNSIYNGTVNAGAHMSSLVAVSDLELQMIDVQMKD 289 
F55G11.5 NSDKLLIQDTEYVQDIAQFVELYPEIKTSYTETINGGKLKSSLVSVSGANFKLTKVKMDD 288 
C17H12.8 SVTFVPLSQAQQYDSYTAFSTYFQANQLDMDSTVGDKKKKAVTVISMEDIVLVIDVQKTN 290 
C17H12.6 SVTFVPFSQAQQYDSYTTFSTYFEANQLKIDATVGNKKKKAVTVISMKNIVTVLDVQRVT 294 
         .   : :  :    .   :       :     *:.     :  *                 
 
C49G7.7  --TVTVYNGSPAVYALNKTYTGTQLKNALPLSFSGPVVQFVVSSGKAVFTFKS------ 329 * 
F55G11.4 DSTVSVYYGSPDAFTLDKTYTGAELKKALPLPFGGYFVQFVVSSGKAVFTFKS------ 342 
F55G11.5 EATMAVYYGSPTVGTIVKNYTALEINKAVPLNFQGEVLQFVVSSGKADFTFDGWK---- 343 
C17H12.8 EPNCVLRAVQYPPTPSSEVYLDFTAVYDYPRNITHKSFCIVAENCAATFKLVSPYPEQN 349 
C17H12.6 ----------------------------------------------------------- 
 
Figure 11. Multiple sequence alignment of protein products from highly induced genes expressed in C. elegans 
during P. aeruginosa infection. Area highlighted in yellow denotes approximate CUB-like domain region.  Area 
highlighted in green represents an interesting extra-CUB-like domain region. *Due to the extended length of 
G49G7.7, the N-terminal end was removed for a more precise alignment. 

 

 



CLUSTAL 2.1 multiple sequence alignment 
 
C17H12.8   -----------MIVAFWLLAL---VTVSTALECT----QIP-EPIIAGEFVTIPAGANDT 42 
C17H12.6   -----------MSATPLIISLGLLVGVTAALDCT----QIPNNAIIPLSYTTIPAGATGL 46 
C49G7.7    -------FEMFEKPLLLLAVIVAVSAVGNGCQLG-KAIYKPVIDGTPVYWPPSWTETQPA 53 
F55G11.4   ---------MFQKLLAFLTVVVFVSAAGNSCKIG-KVINKPVIDGTPVYWPASWNETQPA 51 
F55G11.5   ---------MLSKVVLFLAVLSSASAS--VCKTG-NLINKPVND-SPVIWPATWDMKFAP 48 
C32H11.1   ---------MLSTVFLLATLAASAAADGYSCARN-TLINPPQDLSKPYYYPETWRENMEP 51 
K08D8.5    MSEKSLQSKMLSTVFLLATLIAFASADGYTCAGN-TLINPFLNLSEPYYYPGTWRENMEP 60 
C29F3.7a   ------MNIYFLAFIAFLISQSEVSCEVPQCEKGFIIFDKPHNLLNGTYFPDGFKSSS-P 54 
T05E12.6   ------MKAIFLIFT-IVIAFS--NATIPECSGGVVTFDKPANTTIGTSYPGVFNNSN-I 51 
ZK896.1    -------MNMTIFIVFVICLSCVSLSLGTETCPPLTTIKPPDDIQKSLFYPSNWNDDLPT 54 
F35E12.2a  -------MFFITLILDFLTYTSISAENSFVCPSN-------FITAESGPIGVIPYGRVGL 47 
F53C11.1   ---------MISFVLFSILFIAPSFADDLTCPNS----------PITSNVPSGHFPLNGL 42 
F35E12.9a  -----MLKLVLQLAFLVCSAHGVAFMEAYKQTIKKTGEYFPLSLVTGISYYTIT-SDNPN 55 
                                                                      
 
C17H12.8   VQIPPNFSCTYNVNAPPMIYAHVTLENGLNGNNDMITVIDEQLTRTIVSSRSAKFVHFYI 102 
C17H12.6   VEIPPNFNCVYNVKVPKMVYARVRLENGLKGYNDLITVQDQQGTYTRVSSRSPSVLNFYV 106 
C49G7.7    PQLETEQSCSWIVTIPRGYYAKLIISG---KTTDKDSRFQTVDTAGNLVQTTQENMEPYY 110 
F55G11.4   PQLEKEQSCSWYVTIPRGYYAKLIISG---KTTDKDSRFQTVDSAGNLIQTTHEKMVPYY 108 
F55G11.5   PKLDKGQTCSWTVTVPDGFYAKLVISA---KAMDRDTYFQTIDSAGNLAKTGNEKMKPYY 105 
C32H11.1   PQYAPNQKCNWKINVPQGMYATVIFYK---KTKYEIG-IQCAYPGKDLEYINDYEQSPYI 107 
K08D8.5    AEYAPDQKCNWKINVPQGTYATVIFYK---KTQYESG-IKCAYPGKDLEYISDNDQNPYI 116 
C29F3.7a   QLFPDNYSCDFKINVPQNYFATIQLTVNITSSNNKSAPVQAVDQMQNVEQVFSTKSESFY 114 
T05E12.6   QNFPKLYNCDYQINVPQNYSARVHLYV--VTNDNTTAPVQVTDQLGRSEEVQSVKNTLFF 109 
ZK896.1    PNFAAGQKCSFKVIVPNRMFAQVFLTV----SVDSTSSFTVTDSANYTTQITSAKKELFF 110 
F35E12a    SVIPALYDCAYNFYVYPGWALHFSIST--HYDQLLGDNITFTDSLGVVHILITPNQHIDQ 105 
F53C11.1   AKFPANYDCSVEFEIPDGQVIKFIVQT-----DALFENLDSFVIRDSRSTLYKMDVGESV 97 
F35E12.9a  EKVVLSYAMRVGVNEDKLLAYYYVYDG---DNINNATMIGNLDTIGGKITVSSGRSVTIV 112 
                     .                                                
 
C17H12.8   FPNTTTKFQVITKSVNMHSSFRIVVHFERMLNTT----- 136 
C17H12.6   FPNTTTTFQVVTKSVDMHSSFRMIVFYQPM--------- 136 
C49G7.7    FP--SPKFTIAVSN-TGSATFAFKVVWFP---------- 136 
F55G11.4   FP--ASKFTLAVSN-EGSATFAFKVVWWPLP-------- 136 
F55G11.5   FV--GPKFTIALSS-NAPAAFGFKIIWLPFPNID----- 136 
C32H11.1   FT--SPQFQVDLKVGDKPGAFSFKVVWSKYP-------- 136 
K08D8.5    FT--SPQFQVDLKVGDKPGEFS----------------- 136 
C29F3.7a   FV--SNGGNIKLSTGNRKVQFGFS--------------- 136 
T05E12.6   FI--SPGGKIQLSTGNREVGFGFVIY------------- 133 
ZK896.1    WM--DPSATLSLQA-NHVAVFGMKIT------------- 133 
F35E12.2a  WS-SAPSAILHINTISNTSQMFAIYEFVN---------- 133 
F53C11.1   FFAAANNSKVYISTNSGKASFYFSWQYIDVSKFTRIQNP 136 
F35E12.9a  NFYGGTKSNSYALGNDASTVQGYD--------------- 136 
Figure 12. Multiple sequence alignment of the CUB-like domains for 13 selected CUB-like C. elegans genes 
varying in Pseudomonas-induction levels. Yellow highlighting in the second row depicts examples of visually 
identified conserved regions not highlighted by the ClustalW program.  

To visualize sequence conservation within the CUB-like domain, a MSA was constructed for 

the CUB-like domains from the 13 genes under study (Figure 12). While the MSA only shows 

one amino acid marked for significant conservation across all 13sequences, a visual analysis of 



the aligned sequences reveals the abundant sequence conservation within the domain. The guide 

tree from JalView for this alignment showed some interesting relationships that were further 

investigated by the construction of a PHYLIP phylogenetic tree via the NJ algorithm. The 

phylogenetic tree in Figure 13 shows the evolutionary relationships between the CUB-like 

protein domains of the 13 genes from the alignment in Figure 13, with a CUB gene R10H10 that 

serves as the outgroup. Interestingly, there are two clades that house two (C17H12.6 and 

C14H12.8) and three (C49G7.7, F55G11.5, F55G11.4) high induction genes respectively. In 

addition, there is one clade of two genes (C32H11.1 and K08D8.5) from the middle induction 

subset. The rest of CUB-like domains from the middle and low induction subsets are grouped 

together.  

The relationships in Figure 13 show greatest sequence conservation of CUB-like domains 

from genes more highly transcribed in response to Pseudomonas infection. This is suggestive of 

conserved antimicrobial function within the CUB-like domain of the high induction gene subset. 

Also intriguing is the pairing of genes with similar names, for example C17H12.6 and 

C17H12.8. The names imply that they are neighboring genes on the DNA strand. The close 

proximity that the genes have to each other coupled with tight sequence similarity within their 

functional domains suggests that the genes are paralogous: one of the genes, C17H12.6 for 

example, was probably duplicated to give rise to its paralog, C17H12.8. Two other possible 

paralogous gene couples– F55G11.4 with F55G11.5 and F35E12.2a with F35E12.9a – were 

identified by their names and grouping in Figure 13. Unlike the C17H12 genes that appear to 

have recently diverged, the F35E12 genes have an earlier point of divergence which can explain 

lesser similarity within their CUB-like sequences.      

 



 

Figure 13. PHYLIP generated phylogenetic tree via the NJ algorithm illustrating relationships between 13 CUB-like 
domains from selected pathogen response genes ranging in induced expression levels in C. elegans during P. 
aeruginosa infection. CUB R10H10.3 serves as the outgroup. Induction levels are labeled red, orange, and green for 
high, middle, and low induction levels respectively. *C49G7.7 was shortened at the N terminus. 

 

To determine whether the extra-CUB-like domain sequences of the genes may also 

function in antimicrobial protection, the whole amino acid protein sequences were mapped 

through PHYLIP via the NJ algorithm. Figure 14 depicts the phylogenetic tree produced for 

which a true CUB gene R10H10 serves as the outgroup. Intriguingly, a clade of all five highly 



induced genes, including CUB-like C17H12.6, is observed; the strong evolutionary relationship 

between this group is suggestive of conserved functional regions outside of the CUB-like domain 

as well as within it. Further, strong relationships were seen within the two-member clade of 

C32H11.1 and K08D8.5 that share middle induction values. A three-member clade containing 

two middle and one low induction genes (F53C11.1, F35E12.9a and F35E12.2a) also show 

strong evolutionary conservation.      

Figure 4. PHYLIP generated phylogenetic tree via the NJ algorithm illustrating relationships between whole protein 
products from selected CUB-like pathogen response genes ranging in induced expression levels in C. elegans during 
P. aeruginosa infection. CUB R10H10.3 serves as the outgroup. Induction levels are labeled red, orange, and green 
for high, middle, and low induction levels respectively. *C49G7.7 was shortened at the N terminus. 



Discussion 

To characterize the function of the receptor FSHR-1 in the context of innate immunity, 

four candidate FSHR-1-dependent pathogen response genes (C17H12.6, F55G11.5, C05A9.1 

and T24B8.5) were evaluated in worms infected with Pseudomonas aeruginosa. Intestine-

specific RNA interference of each of the four candidate genes in infected worms did not yield 

significant pathogen sensitivity phenotypes. The lack of immune phenotype for each putative 

infection response gene tested could be explained by the possibility that each alone plays a small 

role but the culmination of all FSHR-1-dependent effectors results in an effective response 

against pathogen.    

Through quantification of gene expression via qRT-PCR, all candidate response genes 

had over 10-fold induced expression, suggesting antimicrobial activity in response to P. 

aeruginosa infection. Three (T24B8.5, F55G11.5 and C17H12.6) of the 4 candidates tested 

appear to be partially dependent on FSHR-1 for induction, however, only C17H12.6 was 

statistically significant (p=0.0484). Powell et al. (2009) found that a closely related CUB-like 

gene C17H12.8 was significantly dependent on FSHR-1 for its induction, as its expression was 

10-fold less in fshr-1 mutant worms than wild type worms. Interestingly, Troemel et al. (2006) 

reported that the same CUB-like gene, C17H12.8, is upregulated 17 fold by PMK-1 of the p38 

MAPK pathway. As C17H12.6 and C17H12.8 share such great homology, it is possible that 

C17H12.6 also relies on PMK-1 for induction.  

Basally, FSHR-1 significantly down regulates C17H12.6 expression in healthy worms 

(p=0.0063) while the receptor is responsible for C17H12.6 upregulation in response to infection.  

Similarly, Powell et al. (2009) reported that C17H12.8 may be repressed by FSHR-1 in the 



absence of pathogen because it was expressed at significantly lower levels in wild-type worms 

than fhsr-1 mutants (p<0.01). While another candidate T24B8.5 did not reach statistical 

significance, it appears to be marginally dependent upon FSHR-1 for upregulation in response to 

infection. Thus, FSHR-1 appears to play a role in C. elegans response to infection because it 

directly contributes to the induction of some genes. Importantly, T24B8.5 is also PMK-1 

dependent, as it is upregulated by PMK-1 7-fold in response to P. aeruginosa infection 

(p=0.0001) (Troemel et al. 2006).   As FSHR-1 and p38MAPK signal in parallel to each other, 

these results support the hypothesis that these pathways converge on a common set of target 

effector genes in response to attack by pathogenic P. aeruginosa (Powell et al. 2009). 

Additionally, from its apparent role in constitutive (basal) gene expression, FSHR-1 may 

contribute to the balance of immune efficacy and energy conservation: FSHR-1activates at least 

one gene, T24B8.5, and represses the transcription of at least two others, F55G11.5 and 

C17H12.6. It is possible that the constitutive expression of some antimicrobial effectors such as 

T24B8.5 provides an immediate defense against pathogen while the repression of other 

antimicrobial effectors may facilitate energy conservation in C. elegans.  

To learn more about the expression patterns of FSHR-1 regulated effectors, the 

expression pattern of C17H12.6 was closely examined. C17H12.6pr::GFP is expressed in the 

posterior intestinal cells under both healthy and infectious conditions. Intestine limited 

expression of C17H12.6 supports its proposed antimicrobial effector identity, given that C. 

elegans intestinal tissue comes into direct contact with pathogen. In healthy worms, C17H12.6 is 

transcribed in the absence of infection and expression is limited to the very posterior intestinal 

region.  Intriguingly, C17H12.6pr::GFP expression becomes more concentrated in the posterior 

intestine and has minimal anterior extension. The low C17H12.6pr::GFP expression in later stage 



4 larval worms compared to visibly higher expression in 1 day old adults could be explained by a 

change in gene expression program; McCarroll et al. (2004) found that the transcriptional 

responses of both C. elegans and D. melanogaster to stress were significantly correlated with 

early adult transcriptional programs in both organisms, suggesting that transcriptional regulation 

is developmentally timed in young adults.  

Based on the expression of C17H12.6pr::GFP, C17H12.6 appears to be a true pathogen 

response gene; it is induced upon infection with Pseudomonas aeruginosa: in the posterior 

intestine as its expression becomes visibly saturated. Further, expression extends anteriorly to 

midsection of infected worms, reaching the vulva. The concentrated posterior-intestinal 

expression of C17H12.6 may explained by the ability of bacteria to infiltrate the rectum via the 

anus. Irazoqui et al. (2010) reported that gram positive Staphylococcus aureus accumulates in the 

C. elegans posterior intestine and the rectum after only 4 hours, with less accumulation in the 

midsection of the intestinal lumen; however, while marked deformation occurs in the anal region 

due to S. aureus infection, no deformed anal phenotype was observed due to P. aeruginosa 

infection. Another gram positive pathogen, Microbacterium nematophilum, is known to adhere 

to the rectal and post-anal cuticle of C. elegans, causing slowed growth, constipation, and a 

defensive swelling response of rectal hypodermal cells (O’Rourke et al. 2006). Given the 

posterior-intestinal expression of C17H12.6, it would be interesting to compare C17H12.6 

expression patterns in bacterial pathogens like S. aureus and M. nematophilum known to 

specifically target the posterior intestine and anus for infection. Moreover, due to the apparent 

antimicrobial activity of C17H12.6, it would be interesting to use JRP1016 as a tool for doing 

RNAi screens to identify the intermediate signaling molecules in regulating antimicrobial 

effectors. 



Contrary to the qRT-PCR results, there was no visible decrease in C17H12.6pr::GFP 

expression in infected fshr-1 RNAi worms compared to infected wild-type worms. This could 

suggest that C17H12.6 does not require FSHR-1 for its induction; it is possible that the mRNA 

isolated from wild-type or fshr-1 mutant worms was not representative of true C17H12.6 

transcription. Another explanation is that the reduction in induction of C17H12.6 in the absence 

of FSHR-1, as revealed by qRT-PCR, may not be detectable for C17H12.6pr::GFP in visual 

assays. However, based on the qRT-PCR data, it is most probable that the predicted C17H12.6 

promoter region amplified to make the GFP reporter construct does not encompass the regions 

necessary for FSHR-1 regulation. To further investigate the apparent FSHR-1-dependency of 

C17H12.6, given the average length between C. elegans genes is ~5 Kb (Kent and Zahler, 2000), 

a new transcriptional reporter could be constructed that simply incorporates a larger part of the 

C17H12.6 promoter region than the 2.9 Kb segment used for making C17H12.6pr::GFP used in 

this study. As a heterologous 3’ UTR was used in the current C17H12.6pr::GFP construct, it 

could be important to construct a promoter using the endogenous C17H12.6 3’UTR. However, a 

reporter in which the C17H12.6 protein is fused with GFP would best ensure the incorporation of 

the necessary FSHR-1 regulatory regions.   

Bioinformatics analysis revealed that the transcriptional responses to Pseudomonas 

aeruginosa infection are reflective of the tight evolutionary conservation for genes within the 

CUB-like class. The strong evidence for the functional conservation of highly induced CUB-like 

genes could further the understanding of the C. elegans innate immune response. While RNAi of 

CUB-like C17H12.6 did not have a pathogen sensitivity phenotype, it is possible that the 

ablation of all 5 identified highly induced CUB-like genes may produce an immune phenotype.  



Further, it would be interesting to both measure and visualize the expression of the five 

highly induced CUB-like genes, including C17H12.6, on other intestinal pathogens to investigate 

whether expression is specific to Pseudomonas infection or is constitutive in the response to all 

types of intestinal pathogenesis. Microbes that are known to cause intestinal infections in C. 

elegans such as Serratia marcescens and Salmonella enteric as well as fungi such as 

Cryptococcus neoformans in addition to Staphylococcus aureus and Microbacterium 

nematophilum  could be pathogens used in such experiments (Shivers et al. 2008; O’Rourke et 

al. 2006; Irazoqui et al. 2010). With regard to the overarching question of the function of FSHR-

1 in innate immunity, a continuation of the investigation of C17H12.6 and other closely related 

CUB-like gene homologs may increase the understanding of FSHR-1 regulation. A 

comprehensive study of the FSHR-1 dependency of a subset of effectors containing a potential 

antimicrobial functional domain like CUB could contribute substantial information pertaining to 

innate immunity generally and lead towards a greater understanding of the FSHR-1 mechanism.    
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