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Analysis of an ODE Model for Sea Turtle

Populations with Temperature-Dependent Sex

Determination

Lindsey Ukishima

Spring 2020

Abstract

The sex of green sea turtles is determined by the temperature at which
the eggs are incubated. Recent studies have shown that the sex ratios of
sea turtle populations have changed over recent years, likely due to cli-
mate change, which has produced a more female-biased population. This
paper finds the nonzero equilibrium point of the novel system developed
by Herrera et al. (2019) and attempts to determine the stability of the
population at that point.

1 Biological Background

In many species of turtles, temperature-dependent sex determination has
been observed. Temperature-dependent sex determination (TSD) is the process
in which the temperature of an embryo’s environment influences the production
of hormones that dictate the sex of the embryo. This means that the sex of
the organism is environmentally dependent, which means that it is dependent
on factors in the physical and biotic environment. Turtles that exhibit TSD
have a period of thermosensitivity during which the sex of the embryo is de-
termined. For turtles, this period takes place during the mid-trimester of the
embryo incubation period [2]. In TSD, there are three different patterns that
species use: FM, MF, and FMF. In FM patterning, female eggs develop at
lower temperatures while male eggs develop at higher temperatures; MF pat-
terning is the inverse of FM patterning. And, FMF patterning indicates that
female eggs develop at both low and high temperatures while males develop at
a medium temperature range [8]. Turtles follow an MF pattern; this indicates
that at lower temperatures there are mostly male hatchlings and at higher tem-
peratures there is a mostly female hatchling population. The temperature at
which the sex differentiates is around 29.4◦C [12]; this temperature is called
the pivotal temperature. It is at this temperature that we see a nearly even
distribution of male and female hatchlings. At temperatures below this pivotal
temperature we see primarily male populations and above this we see primarily
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female populations. In recent years, inordinate ratios of female to male eggs
have been observed, and this trend could lead to the extinction of sea turtles
[12, 14].

Female sea turtles often return to the beaches where they were born to lay
their eggs. They dig their nests in the sand, which leads us to investigate the
factors that act on the sand temperatures as major impacts on the sex ratios of
the hatchlings. This is the focus of many biologists [13][5][7][11]. One hypothesis
is that climate change will lead to increased sand temperatures, which is due to
the relationship between air temperatures and sand temperatures [6]. Naturally,
this hypothesis leads us to question the overall impacts of climate change on
the ratios of male and female sea turtles that will lead to extinction.

2 Mathematical Background

In this paper, we use a system of ordinary differential equations (ODEs)
constructed by Herrera et al. to model the population sex demographics of
green sea turtles. [8]. This capstone paper addresses the same questions that
Herrera et al. [8] propose about the impacts of climate change on TSD and
the sex ratios that will eventually lead to extinction of green sea turtles. The
following investigation introduces the model created in the previous study [8],
finds the equilibrium points, analyzes the stability of the non-zero equilibrium
point, a step that was not included by Herrera et al., and proposes methods for
follow-up studies.

Prior to the mathematical analysis, it is imperative that vocabulary is ex-
plained. An equilibrium point is any point, y0, where dy

dt = f (y) = 0. Equilib-
rium points can be classified into three categories: a sink, a source, or a node.
A sink is where any solution with an initial condition sufficiently close to y0
asymptotically approaches y0 as t increases. A source is where all solutions that
start sufficiently close to y0 tend toward y0 as t decreases. A node is neither
a sink nor a source. A sink is a point that attracts certain solutions or they
approach the point, while a source repels solutions or they leave that point. In
a single ODE, by definition, the point Y 0 is an equilibrium point for the system
dY
dt = F (Y ) if F (Y 0) = 0. The constant function Y (t) = Y 0 is an equilibrium

solution [3]. In the system discussed in this capstone, we will be working with
multiple ODEs with multiple variables.

Additionally, we discuss the finding of eigenvalues. Given a matrix A, a num-
ber λ is called an eigenvalue of A if there is a non-zero vector V = (x, y, ..., n)

for which AV = A


x
y
...
n

 = λ


x
y
...
n

 = λV . The vector V is called an eigen-

vector corresponding to the eigenvalue λ. To find the eigenvalues of the ma-
trix A, we must find the values of λ for which det (A− λI) = 0. In the case
where there are n distinct real eigenvalues λ1, λ2, ..., λn, the general solution
is Y (t) = C1k1e

λ1t + C2k2e
λ2t + ... + Cnkne

λnt. When λ1, λ2, ..., λn are all
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negative, this equilibrium point is considered to be asymptotically stable, or a
sink [9]. If any λ1, λ2, ..., λn are positive, then the equilibrium point is unstable,
either a source or a node [9]. These terms- sink, source, and node- have been
used in 2x2 systems [3], but it is unclear if they are used for larger NxN systems.
From this point we refer to them as stable or unstable equilibrium points

Suppose that Y (t) is a complex-valued solution to a linear system

dY

dt
= AY =

(
a b
c d

)
Y,

where the coefficient matrix A has all real entries. The determinant equation
above might have real and complex solutions, so that means that we may end
up with complex exponents. Suppose Y (t) = Yre (t) + iYim (t), where Yre (t)
and Yim (t) are real valued functions of t. Then Yre (t) and Yim (t) are both
solutions of the original system dY

dt = AY [3]. Given a linear system with
complex eigenvalues of the form λ = α ± iβ, β > 0, the solution curves spiral
around the origin in the phase plane. Moreover, if α is negative, then the
solution is a spiral sink. If α is positive, then the solution is a spiral source.
And, if α = 0 then the solution is called a center [3].

In this paper, we investigate non-linear systems of differential equations. In
order to look at the linear portion of these equations, we can use calculus to
calculate the tangent plane. This is considered to be the best linear approxima-
tion of the nonlinear right-hand side of the ODE system. The reason for finding
the linear portion is because we have solution techniques and analysis for linear
systems, while non-linear systems are too difficult to manipulate by hand. This
matrix of partial derivatives in this expression is called the Jacobian Matrix,
J. The Jacobian matrix extracts the linear component of the nonlinear system
so we can perform analysis on hte easier-to-handle linear equations. In other
words, we can use this linearized system to study the behavior of solutions of
the nonlinear system near the equilibrium point. If all eigenvalues of the Jaco-
bian Matrix are negative real numbers or complex number with negative real
parts, then the equilibrium point it is asymptotically stable. If the opposite is
the case, then it is unstable.

It is important to note that in this paper we use a 4x4 matrix in the form
a b c d
e f g h
i j k l
m n o p

 .
To find the determinant of a 4x4 matrix, we can write A− λI as

a− λ b c d
e f − λ g h
i j k − λ l
m n o p− λ

 .
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and det (A− λI) as

(a− λ) ∗ det

f − λ g h
j k − λ l
n o p− λ

− b ∗ det
 e g h
i k − λ l
m o p− λ



+c ∗ det

 e f − λ h
i j l
m n p− λ

− d ∗ det
 e f − λ g
i j k − λ
m n o

 .

We can then expand this to be

(a− λ)

[
(f − λ) ∗ det

(
k − λ l
o p− λ

)
− g ∗ det

(
j l
n p− λ

)
+ h ∗ det

(
j k − λ
n o

)]

−b
[
e ∗ det

(
k − λ l
o p− λ

)
− g ∗ det

(
i l
m p− λ

)
+ h ∗ det

(
i k − λ
m o

)]

+c

[
e ∗ det

(
j l
n p− λ

)
− (f − λ) ∗ det

(
i l
m p− λ

)
+ h ∗ det

(
i j
m n

)]

−d
[
e ∗ det

(
j k − λ
n o

)
− (f − λ) ∗ det

(
i k − λ
m o

)
+ g ∗ det

(
i j
m n

)]
.

Finally, we expand this as:

(a− λ) [(f − λ) [(k − λ) (p− λ)−(o) (l)]−g[(j) (p− λ)−(n) (l)]+h[(j) (o)−(k − λ) (n)]]

−b[e[(k − λ) (p− λ)− (o) (l)]− g[(i) (p− λ)− (m) (l)] + h[(i) (o)− (k − λ) (m)]]

+c[e[(j) (p− λ)− (n) (l)]− (f − λ) [(i) (p− λ)− (m) (l)] + h[(i) (n)− (m) (j)]]

−d[e[(j) (o)− (n) (k − λ)]− (f − λ) [(i) (o)− (m) (k − λ)] + g[(i) (n)− (m) (j)]].

We can then set this equation equal to zero and solve for the eigenvalues of this
system.

3 Mathematical Analysis and Results

The mathematical analysis begins with given equations from Herrera et al.
[8]. The description and units for the parameters are included in Table 1 where
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all values are provided by Herrera et al. [8] unless otherwise noted.

dAM
dt

= αMEM − µMAM , (1)

dAF
dt

= αFEF − µFAF , (2)

dEM
dt

= −αMEM + pr

(
1− AM +AF

K

)(
b AFAM
AF
AM

+ a

)
AM − µEEM , (3)

dEF
dt

= −αFEF + (1− p) r
(

1− AM +AF
K

)(
b AFAM
AF
AM

+ a

)
AM − µEEF(4)

Parameter Description Estimates

αM Maturity rate of eggs that become adult males 0.022± 0.004yr−1

αF Maturity rate of eggs that become adult females 0.029± 0.05yr−1

µm Leaving rate of adult males 0.05± 0.09yr−1

µF Leaving rate of adult females 0.04± 0.07yr−1

µE Death rate for eggs 0.36± 0.33yr−1

p Proportion of eggs that become male N/A

r Average number of eggs per successful interaction 117± 38

b Interaction rate 180± 20yr−1

a Half saturation constant, equal to b
c 90 [1]

K Carrying capacity of adults 73600 [4]

Parameter descriptions and values from [8]

3.1 Model Description

The development of this model comes from the life cycle of green sea turtles.
Their life starts when they emerge from their shells and travel to the ocean. The
turtles remain at sea during their juvenile stage and often don’t reappear for
several years. The turtles reach sexual maturity between 40-60 years of age [8],
and they return to their natal beaches to mate or nest. Male turtles commonly
mate every two years while females lay eggs every 2-5 years [10]. Sea turtles are
able to have multiple mates and lay several clutches each breeding season. These
eggs will then develop into male or female turtles depending on the incubation
temperature. It is also important to note that the death of adult turtles, as well
as movement out of reproductive stages, decrease the adult population, while
the death of eggs and juveniles reduced the population of the ”eggs” class [8].
This information was used to create the model of the simplified life cycle seen
in Figure 1.

This model also uses many parameters including the density of the female
population, the density of the male population, behavioral responses of females
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Figure 1: Schematic diagram of the mathematical model [8]

during mating, and characteristics of males such as searching efficiency. Fol-
lowing Herrera et al. [8] we limit our attention to the proportions of eggs that
are male and female. The population is divided into two groups: adults and
eggs, where adults refers to those in reproductive stages and eggs are those in
pre-reproductive stages. The egg population and adult population for males and
females are denoted as EM (t), EF (t), AM (t), and AF (t), respectively, and are
functions of time t.

The first two differential equations, Equations (1) and (2), in the system
below represent the total number of eggs that will reach adulthood denoted by
αMEM for males and αMEF for females. They also show the total number of
adults that leave the sexually reproductive stage denoted by µMAM for males
and µFAF for females. The second two differential equations, Equations (3)
and (4) show the flow of turtles leaving the egg stage and entering the sexually
reproductive stage. These equations tell us the rates at which turtles are enter-
ing the population and the rate at which some leave, whether that be by aging
out or death.

The total number of male eggs and female eggs produced per successful

interaction per unit of time is represented as
b
AF
AM

AF
AM

+a
AM . The average number

of eggs in a clutch is represented by r, the proportion of male or female eggs
are represented by p and 1 − p respectively, and the saturation constraint is
represented by 1− AM+AF

K where K is the carrying capacity.
The parameters αM and αF are maturity rates that show the number of

male and female hatchlings that survive onto the reproductive stage, while µM
and µF show the leaving rates of reproductive males and females, which include
death of sexually mature turtles and the rate at which adults move to the post-
reproductive stages. The variable µE is the death rate of turtles in the egg and
juvenile stages. The duration of courtship and copulation is indicated by th, or
handling time, and the searching efficiency is defined as c, which is the rate at
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which a male finds a female. The copulation rate is denoted by b = 1
th

and the

half saturation constant is a = 1
cth

.

3.2 Finding A Non-Zero Equilibrium Point

First, it is important to note that there is a zero equilibrium point. This is
the point where all four variables are zero, then the right-hand sides of all four
equations will be zero as well. Herrera et al. find this point to be asymptotically
attractive if the birth rate minus the mortality of eggs is less than zero (rb−µ <
0) which means that the turtle population would go extinct.

Recall that to find the non-zero equilibrium points we must set the differ-
ential equation equal to 0. In doing so for each equation, we see that Equation
(1) becomes

αMEM − µMAM = 0 =⇒ αMEM = µMAM , (5)

Equation (2) becomes

αFEF − µFAF = 0 =⇒ αFEF = µFAF (2b) , (6)

Equation (3) can be written as

−αMEM + pr

(
1− AM +AF

K

)(
b AFAM
AF
AM

+ a

)
AM − µEEM = 0 (7)

=⇒ pr

(
1− AM +AF

K

)(
b AFAM
AF
AM

+ a

)
AM = αMEM + µEEM , (8)

and lastly, Equation (4) can be written as

−αFEF + (1− p) r
(

1− AM +AF
K

)(
b AFAM
AF
AM

+ a

)
AM − µEEF = 0 (9)

=⇒ pr

(
1− AM +AF

K

)(
b AFAM
AF
AM

+ a

)
AM = αFEF + µEEF . (10)

We can then add the four equations (5, 6, 8, and 10) to get

αMEM+αFEF+pr

(
1− AM +AF

K

)(
b AFAM
AF
AM

+ a

)
AM+(1− p) r

(
1− AM +AF

K

)(
b AFAM
AF
AM

+ a

)
AM

= µMAM + µFAF + (αMEM + µEEM ) + (αFEF + µEEF )

and by simplifying we obtain the equation

r

(
1− AM +AF

K

)(
b AFAM
AF
AM

+ a

)
AM = µMAM + µFAF + µEEM + µEEF . (11)

7



From Equations (5) and (6), we know

EM =
µM
αM

AM , EF =
µF
αF

AF . (12)

By substituting Equation (12) into Equation (11), we obtain

r

(
1− AM +AF

K

)(
b AFAM
AF
AM

+ a

)
AM = µMAM+µFAF+µE

(
µMAM
αM

)
+µE

(
µFAF
αF

)
We can then multiply µE into the numerator of each fraction to obtain

µMAM + µFAF +
µEµMAM

αM
+
µEµFAF

αF

We then pull out the AM and AF and rearrange the equation

µMAM +
µEµM
αM

AM + µFAF +
µEµF
αF

AF

by pulling out the AM and AF we get

AM

(
µM +

µEµM
αM

)
+AF

(
µF +

µEµF
αF

)
Finally, we can multiply µM by αM

αM
and multiply µF by αF

αF
and combine the

fractions.

AM
αMµM + µEµM

αM
+AF

αFµF + µEµF
αF

.

We then can rewrite equation (10) as

r

(
1− AM +AF

K

)(
b AFAM
AF
AM

+ a

)
AM =

(αM + µE)

p
EM (13)

and substituting Equation (12) into Equation (13) we get

r

(
1− AM +AF

K

)(
b AFAM
AF
AM

+ a

)
AM =

(µE + αM )µM
αMp

AM . (14)

Using equations (11) and (14) we obtain

αMµM + µMµE
αM

AM +
αFµF + µFµE

αF
AF =

(µE + αM )µM
αMp

AM . (15)

We can rewrite Equation (15) to obtain a relationship between AM and AF :
HAM = GAF where AM

AF
= H

G and AM + AF =
(
1 + H

G

)
AM , and H =

(1−p)(µE+αM )µM
αMp

and G = −αFµF+µFµE
αF

. Using these equations, we can ex-

pand Equation (15) to find the equilibrium point. We can rearrange Equation
(14) to read as

r

K
(K − (AM +AF ))

(
b AFAM
AF
AM

)
AM =

(µE + αM )µM
αMp

AM .
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We can then plug in using the relationships previously described to get

r

K

((
1 +

H

G

)
AM

)(
bHG

H
G + a

)
AM =

(µE + αM )µM
αMp

AM .

To get rid of the fractionHG within the fraction, we can multiply the left-hand
side by G

G

r

K

(
K −AM −

HAM
G

)(
bH

H +Ga

)
AM =

(µE + αM )µM
αM

AM .

We then multiply through r
K to get(

r − rAM
K
− rHAM

KG

)(
bH

H +Ga

)
AM =

(µE + αM )µM
αMp

AM .

Then, we combine the fractions and get the equation(
rKG− rGAM − rHAM

KG

)(
bH

H +Ga

)
AM =

(µE + αM )µM
αMp

AM .

Because each term has an r, we can pull that out in the numerator. We can
also cancel the AM term on both sides.

r (kG−GAM −HAM
KG

(
bH

H +Ga

)
=

(µE + αM )µM
αMp

We then can group and pull out the AM in the numerator in the left-hand side.

r (KG− (H +G)AM )

KG

(
bH

H +Ga

)
=

(µE + αM )µM
αMp

We then multiply the two factions on the left-hand side together to get

bHr (KG− (H +G)AM )

KG (H +Ga)
=

(µE + αM )µM
αMp

We then multiply the right-hand side by the denominator of the left-hand side
and multiply the left-hand side by the denominator from the right-hand side.

αMpbHr (KG− (H +G)AM ) = (µE + αM )µMKG (H +Ga)

Through multiplication and rearranging the equation we get

KGαMpbHr − (H +G)AMαMpbHr = (µE + αM )µM (H +Ga)KG =⇒

KGαMpbHr − (µE + αM )µM (H +Ga) = (H +G)AMαMpbHr.

We can then divide both sides by αMpbHr to get

KG− (µE + αM )µM (H +Ga)KG

αMpbHr
= (H +G)AM

9



We can then pull out a G from each term on the left-hand side:

G

(
K − (µE + αM )µM (H +Ga)K

αMpbHr

)
= (H +G)AM

We then divide by (H +G)

G
(
K − (µE+αM )µM (H+Ga)K

αMpbHr

)
H +G

= A∗M .

We can then write A∗M = (K−Q)G
H+G where Q = (µE+αM )µM (H+aG)K

αMpbHr
. Using the

relationship between AM , AF , EM , and EF , we can find the equilibrium point,
I∗.

I∗ =

(
A∗M ,

H

G
A∗M ,

µM
αM

A∗M ,
HµF
GαF

A∗M

)
.

Now that a non-zero equilibrium point has been found, we can determine if
it is a stable or unstable point.

3.3 Stability of the Equilibrium Point

As previously mentioned, to determine the stability of the equilibrium point
we must first find the eigenvalues that correspond to the system of equations.
We mist first find the Jacobian matrix by taking the partial derivatives of the
system. Let fi denote the right hand side of Equation (i) for i = 1, 2, 3, 4. Then

∂f1
∂AM

= −µM ,

∂f1
∂AF

= 0,

∂f1
∂EM

= αM ,

∂f1
∂EF

= 0.

∂f2
∂AM

= 0,

∂f2
∂AF

= −µF ,

∂f2
∂EM

= 0,

∂f2
∂EF

= αF .

∂f3
∂AM

= pr

(
AM − 1

K
A2

M +
1

K
AFAM

)(
abAF

(AF + aAM )2

)
+

bAF

AF + aAM
pr

(
1 − 2

K
AM +

AF

K

)
,
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(17)

∂f3
∂AF

= pr

(
AM − 1

K
A2

M +
1

K
AFAM

)(
AF + abAM − bAF

(AF + aAM )2

)
+ pr

(
1

K
AM

)(
bAF

AF + aAM

)
,

∂f3
∂EM

= −αM − µE ,

∂f3
∂EF

= 0.

∂f4
∂AM

= (1 − p) r

(
AM − 1

K
A2

M +
1

K
AFAM

)(
abAF

(AF + aAM )2

)
+

bAF

AF + aAM
(1 − p) r

(
1 − 2

K
AM +

AF

K

)
,

(19)

∂f4
∂AF

= (1 − p) r

(
AM − 1

K
A2

M +
1

K
AFAM

)(
AF + abAM − bAF

(AF + aAM )2

)
+ (1 − p) r

(
1

K
AM

)(
bAF

AF + aAM

)
,

∂f4
∂EM

= 0,

∂f4
∂EF

= −αF − µF .

Now, we have the Jacobian Matrix for the system.

−µM 0 αM 0
0 −µF 0 αF

pr
(
AM −

1
K
A2
M + 1

K
AFAM

) ( abAF(
AF+aAM

)2
)

+
bAF

AF+aAM
pr

(
1 − 2

K
AM +

AF
K

)
pr
(
AM −

1
K
A2
M + 1

K
AFAM

) (AF+abAM−bAF(
AF+aAM

)2
)

+ pr
(

1
K
AM

) ( bAF
AF+aAM

)
−αM − µE 0

(1 − p) r
(
AM −

1
K
A2
M + 1

K
AFAM

) ( abAF(
AF+aAM

)2
)

+
bAF

AF+aAM
(1 − p) r

(
1 − 2

K
AM +

AF
K

)
(1 − p) r

(
AM −

1
K
A2
M + 1

K
AFAM

) (AF+abAM−bAF(
AF+aAM

)2
)

+ (1 − p) r
(

1
K
AM

) ( bAF
AF+aAM

)
0 −αF − µF



For each of the equations
∂
dEM
dt

dAM
,
∂
dEF
dt

dAM
,
∂
dEM
dt

dAF
, and

∂
dEF
dt

dAF
we can plug in the

equilibrium solutions. In doing so we can follow that

∂ dEMdt
dAM

= pr

((
AM −

A2
M

K
+

H
GA

2
M

K

)(
abHGAM(
H
G + a

)
AM

)
+

(
bH
G AM(

H
G + a

)
AM

)(
1− 2AM

K
+

H
GAM

K

))
=⇒

pr

(
KAM −A2

M + H
GA

2
M

K

)(
abHG(
H
G + a

))+

(
bH
G(

H
G + a

))(K − 2AM + H
GAM

K

)
=⇒

pr

(
abHG

(
KAM −A2

M + H
GA

2
M

)
+ bH

G

(
K − 2AM + H

GAM
)

K
(
H
G + a

) )
=⇒

pr
bH

G

(
a
(
KAM −A2

M + H
GA

2
M

)
+K − 2AM + H

GAM

K
(
H
G + a

) )
=⇒

prbH

(
aKAM − aA2

M + aHGA
2
M +K − 2AM + H

GAM

K
(
H
G + a

) )

11



finally we can multiply by G to get

prbH

(
aKAMG− aA2

MG+HaA2
M +HAM +KG− 2AMG

K (H + aG)

)
.

When we plug in the equilibrium solutions to

∂ dEMdt
dAF

= pr

(
AM −

A2
M

K
+
AFAM
K

)(
AF + abAM − bAF

(AF + aAM )
2

)
+pr

(
AM
K

)(
bAF

AF + aAM

)
=⇒

pr

((
AM −

A2
M

K
+
AFAM
K

)(
AF + abAM − bAF

(AF = aAM )
2

)
+

(
bAFAM

K (AF + aAM )

))
=⇒

pr

((
KAM −A2

M + H
GA

2
M

K
∗
H
GAM + abAM − bHGAM(

H
GAM + aAM

)2
)

+
bHGA

2
M

K
(
H
GAM + aAM

)) =⇒

pr

(
AM

(
K −AM + H

GAM
)

K
∗
AM

(
H
G + ab− bh

G

)
AM

(
H
G + a

)2
)

+
bHGA

2
M

KAM
(
H
G + a

) =⇒

pr

(
A2
M

(
K −AM + H

GAM
) (

H
G + ab− bH

G

)
A2
M

(
H
G + a

)2
)

+
bHGAM

K
(
H
G + a

) =⇒

pr

((
K −AM + H

GAM
) (

H
G + ab− bH

G

)(
H
G + a

)2
)

+
bHGAM

K
(
H
G + a

) =⇒

pr (K (AMH −AMG+KG) (H −Hb+Gab) +AMHb (H +Ga))

K (H + aG)
.

When we plug in the equilibrium solutions for

∂ dEFdt
dAM

= (1− p) r
(
AM −

A2
M

K
+
AFAM
K

)(
abAF

(AF + aAM )
2

)
+

bAF
AF + aAM

(1− p) r
(

1− 2AM
K

+
AM
K

)
we obtain

(1− p) rbH

(
AM

(
aK − 2 + H

G

)
− aA2

M

(
1 + H

G

)
+K

K
(
H
G + a

) )

which leads us to

(1− p) rbH
(
aKAMG− aA2

MG+HaA2
M +AM −KG− 2AMG

)
K (H + aG)

.

Lastly, if we plug the equilibrium solutions into

∂ dEFdt
dAF

= (1− p) r
(
AM −

A2
M

K
+
AFAM
K

)(
AF + abAM − bAF

(AF + aAM )
2

)
+(1− p) r

(
AM
K

)(
bAF

AF + aAM

)
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we get

(1− p) r

((
K −AM + H

GAM
) (

H
G + ab− bH

G

)
H
G + a2

+
bHGAM

K
(
H
G + a

)) .
We can then combine the fractions to obtain

(1− pr (AMH −AMG+KG) (H −Hb+Gab) +AMHb (H +Ga)

K (H +Ga)
2 .

Now that we have solved for each of these partial derivatives at the equilib-
rium points, we are able to find the values for the Jacobian matrix to determine

the eigenvalues for the system. As noted earlier, H = (1−p)(µE+αM )µM
αMp

and

G = −αFµF+µFµE
αF

and Q = (µE+αM )µM (H+aG)K
αMpbHr

. To find the values of the Ja-
cobian Matrix, we use the mean values from Table 1. The variable p is not
fixed, meaning that it can be a different constant in different situations, and
we can adjust it to see the effects that different sex ratios have on the stability
of the system. For the purpose of this paper we investigate the system using
p = 0.1. This value says that ten percent of the population born becomes males.
This follows from research from NOAA [1] that states that 85%-95% of turtles
become female.

After plugging in the variables, we find

J =


−0.05− λ 0 0.022 0

0 −0.04− λ 0 0.029
−1.24816 ∗ 108 2.0009 ∗ 106 −0.382− λ 0
−1.12334 ∗ 109 1.80081 ∗ 107 0 −0.389− λ

 .
We can then take the determinant of this matrix as explained earlier. In doing
so we get

(−0.05− λ) [(−0.04− λ) ((−0.382− λ) (−0.389− λ))+(0.029)
((

2.0009 ∗ 106
)

(−0.389− λ)

−
(
1.80081 ∗ 107

)
(−0.382− λ)]+(0.022) [− (−0.004− λ)

((
−1.24816 ∗ 107

)
(−0.389− λ)−(

−1.12334 ∗ 107
)

(0) + (0.029)
((
−1.24816 ∗ 107

) (
1.80081 ∗ 107

)
−(

−1.12334 ∗ 107
) (

2.0009 ∗ 106
)
] = 0

Then, when we multiply this out, we get

(0.05− λ) [(−0.04− λ) [(0.148598)+0.771λ+λ2]]+[(0.029) [(−778350.1)−2000900λ+6879094.2

+18008100λ]]+[(0.022) [[(0.04 + λ) (4855342.4 + 12481600λ)]]+[(0.029) [
(
−2.24769901 ∗ 1014

)
+
(
2.247691006 ∗ 1013

)
]]] = 0.

Simplifying this out further, we find

(0.05− λ) [176921.5734 + 464208.6206λ− 0.811λ2 − λ3]

13



+[−1.29062924 ∗ 1011 + 117801.3408λ+ 274595.2λ2] = 0.

And, finally we find the polynomial

−1.29062915 ∗ 1011 − 35909.80157λ− 189613.4612λ2 + 0.761λ3 + λ4 = 0

Finally, I was able to use Mathematica to calculate the roots of the polynomial.
The eigenvalues for this system with these parameters are λ1 = −683.12, λ2 =
682.69, λ3 = −0.165867− 526.066i, and λ4 = −0.165867 + 526.066i.

I also chose to investigate the effect of the clutch size on the system. Using
the minimum number given so r = 79, I was able to find the eigenvalues to be
λ1 = −403.545, λ2 = 0.790654, λ3 = 201.718 − 1407.74i, and λ4 = 201.718 +
1407.74i. When r = 155, λ1 = −2.09757, λ2 = 1.66861, λ3 = −0.216019 −
1717.47i and λ4 = −0.216091 + 1717.47i. Looking at these different variations
in parameters is important because the numbers are changing rapidly as the
environment changes. In this case, changing the values of r would indicate that
turtles either laid more eggs than they do at this current moment, or that they
lay fewer eggs than they do at this time. Varying the parameters may also
provide insight into situations where the nonzero equilibrium point might be
stable.

3.4 Poincare-Perron Theorem and Proof

According to the Poincare-Perron Theorem stated by Dr. Howard from
Texas A&M [9]: For any ODE System d #»y

dt , suppose #»y e denotes an equilibrium

point and that
#»

f is twice continuously differentiable for #»y in a neighborhood
of #»y e. (I.e. all second order partial derivatives of each component of

#»

f are
continuous.) Then #»y e is stable or unstable as follows:

1. If the eigenvalues of
#»

f ′ ( #»y e) all have negative real part, then #»y e is asymp-
totically stable.

2. If any of the eigenvalues of
#»

f ′ ( #»y e) has positive real part then #»y e is un-
stable.

To provide a proof for Part 1 of the Poincare-Perron Theorem we begin with the
equation #»y =

#»

f ( #»y ), for which #»y e is assumed to be an equilibrium point. Under

our assumption that
#»

f ( #»y e) is twice continuously differentiable in a neighbor-
hood of #»y e, we can write the Taylor expansion

#»

f ( #»y ) =
#»

f ( #»y e) +
#»

f ′ ( #»y e) ( #»y − #»y e) +
#»

Q ( #»y , #»y e) ,

where we know that
#»

f ( #»y e) = 0,
#»

Q is a function such that #»y contained in a

radius around the equilibrium point and | #»Q ( #»y , #»y e) | ≤ C| #»y − #»y e|2. By setting
#»z = #»y − #»y e, we obtain

#»z =
#»

f ( #»y e)
#»z +

#»

Q ( #»y , #»y e) ,
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where | #»Q ( #»y e,
#»y ) | ≤ C| #»z |2. We can re-write this equation for #»z as(
e−

#»
f ( #»(y)e

)
t #»z ′ = e−

#»
f ( #»y e)(t−s) #»

Q ( #»y (s) , #»y e) ds.

In the first case of the theorem, the eigenvalues of
#»

f ( #»y e) all have negative real

part. If we let λR denote the real part of the largest eigenvalues of
#»

f ′ ( #»y e), then

there exists some constant C1 so that the largest entry in the matrix e
#»

f ′( #»y e)(t−s)

is bounded in complex modulus by C1e
λRt. In this way, we see that

| #»z (t) | ≤ K1e
λRt| #»z (0) |+K2

∫ t

0

eλR(t−s)| #»z (s) |2ds (20)

where K1 and K2 are positive constants. Let ζ (t) be defined as follows:

ζ (t) := sup
a∈|0,t|

| #»z (s) e−λRs|,

where sup is the supremum. A supremum of a subset of an ordered set is the
least element in the set that is greater than or equal to the largest element in
the subset. And, note that equation (20) can be rearranged as

| #»z (t) e−λRt| ≤ K1| #»z (0) |+K2

∫ t

0

e−λR2| #»z (s) |2ds.

since the right-hand side of equation (20) increases with t, we can take a sup on
each side of this last expression to obtain

ζ (t) ≤ K1| #»z (0) |+K2

∫ t

0

e−λRs| #»z (s) |2ds. ≤ K1ζ (0) +K2ζ (t)
2
∫ 2

0

eλRsds ≤ K1ζ (0) +
K2

|λR|
ζ (t)

2
. (21)

Note especially that since ζ (0) = | #»z (0) |, we are justified in choosing it small
as we like. (In the definition of stability, we take | #»z (0) | ≤ δ, where δ may be
chosen.) The following argument is referred to as continuous induction. Since
it is important in its own right, we separate it out as a lemma.

Lemma (continuous induction) Suppose there exists a constant C so that

ζ (t) ≤ C
(
ζ (0) + ζ (t)

2
)
, (22)

for all t ≥ 0. If ζ (0) < min[1, 1/
(
4C2

)
], then

ζ (t) < 2Cζ (0) , (23)

for all t ≥ 0.
Proof of Lemma We first observe that by (20), and for ζ (0) < 1,

ζ (0) ≤ C
(
ζ (0) + ζ (0)

2
)
< C (ζ (0) + ζ (0)) = 2Cζ (0) ,
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so (22) is satisfied for t = 0 and, by continuity for some interval t ∈ [0, T ]. Let
T , if it exists, denote the first time for which ζ (T ) = 2Cζ (0). Then

ζ (T ) ≤ C
(
ζ (0) + ζ (T )

2
)

= C
(
ζ (0) + 4C2ζ (0)

2
)
< C (ζ (0) + ζ (0)) = 2Cζ (0) ,

which contradicts the existence of T . IF no such T exists, (21) must be true for
all t.

We now conclude our proof of the Poincare-Perron as follows. Let C =
max[K1,

K2

|λR| ]. Then by (21), we have

ζ (t) < 2Cζ (0) ,

or
sup
s∈[0,t]

| #»z (s) e−λRs| < 2Cζ (0) .

In particular,
| #»z (t) e−λRt| < 2Cζ (0) ,

giving at last
| #»z (t) | ≤ 2Cζ (0) eλRt.

Since λR < 0,
lim
t→∞

| #»z (t) | = lim
t→∞

2Cζ (0) eλRt = 0,

which means, according to our definition of asymptotic stability, that #»y e is
asymptotically stable.

At this point, we have found the nonzero equilibrium point and the eigenval-
ues of the system. After finding the proof to describe asymptotic stability with
multiple eigenvalues, we can then turn back to our system with four eigenvalues
to determine if the system is asymptotically stable. In the context of turtle pop-
ulations, this will tell us if the system will go extinct at this equilibrium point
or if it will not. We can see that the resulting eigenvalues are not all negative,
therefore the equilibrium point is unstable. Then, it takes the form

v (t) = c1e
λ1tv1 + c2e

λ2tv2 + c3Re
(
eλ3tv3

)
+ c4Im

(
eλ4tv4

)
where v1,v2,v3 and v4 are the corresponding eigenvectors respectively.

4 Conclusion

After completion of this study, there are still questions that must be inves-
tigated in the future. The first question would be to investigate the stability of
this system using different parameters. What if the proportion of females was
higher as suggested by National Geographic [15]. We can also investigate the
effects of clutch sizes. As noted above, when r = 79 there are three positive
eigenvalues and when r = 155 there are three negative eigenvalues, but the
numbers are closer to zero. It might be useful to use a bifurcation diagram for
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that study. It would also be of interest to study the number of copulation events
that a male turtle would participate in during mating seasons and the current
global carrying capacity for sea turtles. Although the paper by Herrera et al.
was published in 2019, it would be worth considering more recent data for the
parameters provided as time goes on.

For these studies it would be useful to find or create a computer program
that would allow all of these parameter changes and eigenvalues to be found. In
this study, Mathematica was unable to compute eigenvalues using the unknown
parameters in the equations, and once the numbers were found, the program
was unable to directly compute the eigenvalues. To biologists, it would be
interesting to understand these systems for other species that have different sex
determination patterning, different mating rates, or different clutch sizes.
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