

DIGITAL CIRCUIT
PROJECTS

Understanding Digital Circuits through Implementation
Second Edition

ABSTRACT
This text explains some of the most basic digital
circuits by implementing them on a breadboard.
The use of the circuits in a CPU is then illustrated.
This text is intended as a laboratory manual for a
class is Computer Organization, or for use by a
hobbyist who just wants to learn more about
computer hardware.

Charles W. Kann

DIGITAL CIRCUIT PROJECTS 1

© Charles W. Kann III

 277 E. Lincoln Ave.

 Gettysburg, Pa

All rights reserved.

This book is licensed under the Creative Commons Attribution 4.0 License

This book is available for free download from http://cupola.gettysburg.edu/oer/1/.

Supporting materials for this text book can be found at http://chuckkann.com.

http://creativecommons.org/licenses/by/4.0/
http://cupola.gettysburg.edu/oer/1/
http://chuckkann.com/
http://creativecommons.org/licenses/by/4.0/

2 DIGITAL CIRCUIT PROJECTS

Table of Contents
Chapter 1 Before you start.. 13

1.1 Introduction .. 13

1.2 Computers and magic ... 13

1.3 Reading this text ... 14

1.4 Materials Needed .. 14

1.4.1 Logisim ... 14

1.4.2 Hardware ... 14

1.5 Some notes ... 16

1.6 Conclusion ... 17

Chapter 2 Background Material .. 19

2.1 Introduction .. 19

2.2 A Universal Set of Boolean Operations ... 19

2.3 Truth Tables .. 20

2.4 Disjunctive Normal Form(DNF) ... 21

2.4.1 Boolean Relationships .. 22

2.5 Karnaugh Maps (K-maps) .. 23

2.5.1 Gray Codes ... 23

2.5.2 2-Variable Karnaugh Maps ... 24

2.5.3 3-Variable Karnaugh Maps ... 25

2.5.4 4-Variable Karnaugh Maps ... 27

нΦрΦр 5ƻƴΩǘ ŎŀǊŜ ŎƻƴŘƛǘƛƻƴǎ ... 30

2.6 Conclusion ... 31

2.7 Exercises .. 32

Chapter 3 Getting started ... 35

3.1 Introduction .. 35

3.2 Logisim circuit to turn on a light ... 35

3.3 Implementing the switch circuit to turn on a light ... 36

3.3.1 The breadboard.. 37

3.3.2 Stripping wires ... 38

3.3.3 Powering the Circuit ... 40

3.3.4 Installing the switch ... 43

3.3.5 Completing the Circuit ... 44

3.4 Debugging the circuit .. 45

3.5 Exercises .. 46

DIGITAL CIRCUIT PROJECTS 3

Chapter 4 Gates .. 47

4.1 Introduction .. 47

4.2 Boolean logic and binary values .. 47

4.3 Unary operations .. 47

4.4 Binary Operations ... 48

4.5 Implementing the AND gate circuit .. 49

4.5.1 ICs and the 7408 chip ... 49

4.5.2 The datasheet .. 50

4.5.3 Creating the AND circuit .. 51

4.6 Exercises .. 52

Chapter 5 Associative Boolean operators ... 55

5.1 Introduction .. 55

5.2 Modeling associative operations in Logisim ... 55

5.3 Implementing the circuit ... 56

5.3.1 Implementing the serial AND circuit .. 56

5.3.2 Implementing the parallel AND circuit .. 58

5.4 Conclusion ... 58

5.5 Exercises .. 58

Chapter 6 Adders .. 61

6.1 Introduction .. 61

6.2 Half adder .. 61

6.2.1 Adding binary numbers .. 61

6.2.2 Half adder circuit .. 62

6.2.3 Half adder implementation .. 63

6.3 Full adder .. 64

6.3.1 Full adder circuit .. 65

6.3.2 Full adder implementation .. 66

6.4 2-bit adder circuit .. 68

6.5 Conclusion ... 69

6.6 Exercises .. 69

Chapter 7 Decoders .. 71

7.1 Introduction .. 71

7.2 Decoder circuit .. 71

7.3 2-to-4 decoder implementation ... 72

7.4 Implementing a decoder using a single chip ... 74

4 DIGITAL CIRCUIT PROJECTS

7.4.1 The 74139 chip ... 74

7.4.2 Implementing one 2-to-4 decoder using the 74139 chip .. 76

7.5 Conclusion ... 77

7.6 Exercises .. 77

Chapter 8 Multiplexers ... 79

8.1 Introduction .. 79

8.2 Circuit Diagram for a MUX .. 81

8.3 Implementing a MUX .. 83

8.4 74153 MUX chip .. 85

8.5 74153 circuit diagram ... 85

8.6 Implementing the 74153 circuit .. 86

8.7 Conclusion ... 87

8.8 Exercises .. 87

Chapter 9 Memory basics - flip-flops and latches ... 89

9.1 Introduction .. 89

9.2 Background material ... 89

9.2.1 State ... 89

9.2.2 Static and dynamic memory .. 90

9.2.3 Square Wave .. 90

9.3 Latches .. 90

9.3.1 D latch .. 91

9.3.2 Circuit diagram for a D latch .. 92

9.3.3 Implementing the D latch .. 93

9.3.4 D latch as a single IC chip ... 95

9.3.5 Implementation of a D latch using a 7475 chip ... 96

9.3.6 Limitations of the D latch ... 96

9.4 Edge triggered flip-flop ... 98

9.5 Conclusion ... 100

9.6 Exercises .. 100

Chapter 10 Sequential circuits .. 101

10.1 Introduction .. 101

10.2 Debouncing ... 101

10.3 Implementing a state machine ... 102

10.3.1 Mod 4 counter ... 102

10.3.2 Implementation of a state transition diagram ... 103

DIGITAL CIRCUIT PROJECTS 5

10.3.3 Hardware implementation of next state logic ... 104

10.3.4 Read Only Memory .. 105

10.3.5 Implementation of the Mod 4 counter .. 106

10.4 Conclusion ... 109

10.5 Exercises .. 109

Chapter 11 Use of these ICs in a CPU .. 111

11.1 An overview of the CPU. ... 111

11.2 Flip Flops ... 112

11.3 Muxes .. 112

11.4 Adder ... 112

11.5 Decoder ... 113

11.6 Summary ... 113

6 DIGITAL CIRCUIT PROJECTS

Table of Figures

Figure 3-1: Logisim circuit to turn on light. ... 36
Figure 3-2: Typical breadboard... 37
Figure 3-3: Breadboard layout .. 38
Figure 3-4: Wire strippers ... 39
Figure 3-5: A stripped wire ... 40
Figure 3-6: 7805 voltage regulator.. 41
Figure 3-7: Powering the breadboard .. 41
Figure 3-8: LED .. 42
Figure 3-9: Toggle switch ... 43
Figure 3-10: Completed circuit ... 44
Figure 3-11: Debugging the circuit .. 45
Figure 4-1: Buffer and inverter gates .. 48
Figure 4-2: Buffer and inverter circuit in Logisim ... 48
Figure 4-3 Truth table for AND and OR ... 48
Figure 4-4: AND, OR, and XOR gates ... 49
Figure 4-5: AND, OR, and XOR gate circuit ... 49
Figure 4-6: 7408 chip, circle indicates top of chip. ... 50
Figure 4-7: 7408 chip, notch indicates top of chip. .. 50
Figure 4-8: 7408 pin configuration diagram ... 51
Figure 4-9: 7408 AND gate circuit ... 52
Figure 5-1: Serial AND circuit .. 55
Figure 5-2: Parallel AND circuit ... 56
Figure 5-3: 7408 pin configuration diagram ... 57
Figure 5-4: Serial AND implementation .. 57
Figure 5-5: Parallel AND implementation ... 58
Figure 6-1: ALU ... 61
Figure 6-2: Half adder truth table ... 62
Figure 6-3: Half adder circuit ... 62
Figure 6-4: 7486 pin configuration diagram ... 63
Figure 6-5: Half adder implementation ... 64
Figure 6-6: Addition problem showing a carry bit.. 65
Figure 6-7: Full adder truth table .. 65
Figure 6-8: Full adder circuit .. 66
Figure 6-9: Full adder implementation ... 67
Figure 6-10: 2 bit full adder circuit ... 68
Figure 7-1: Control lines for ALU .. 71
Figure 7-2: Decoder used to set ALU control lines .. 71
Figure 7-3: Decoder circuit ... 72
Figure 7-4: 7404 pin configuration diagram ... 73
Figure 7-5: Decoder circuit ... 74
Figure 7-6: 74139 pin configuration diagram ... 75
Figure 7-7: 74139 decoder circuit ... 76
Figure 8-1: Multiplexer as a memory selector .. 79
Figure 8-2: Truth table for a MUX ... 80
Figure 8-3: 1-bit 4-to-1 MUX ... 80
Figure 8-4: 4-to-2 MUX .. 80

DIGITAL CIRCUIT PROJECTS 7

Figure 8-5: Two 4-to-8 MUXes .. 81
Figure 8-6: Schematic of a MUX .. 82
Figure 8-7: Decoder used to implement a MUX ... 83
Figure 8-8: 4-to-1 MUX .. 84
Figure 8-9: 74153 circuit diagram .. 85
Figure 8-10: 74153 pin configuration diagram ... 86
Figure 8-11: 74153 circuit .. 87
Figure 9-1: Memory in a CPU .. 89
Figure 9-2: Square Wave .. 90
Figure 9-3: D latch .. 91
Figure 9-4: Characteristic truth-table for a D latch ... 91
Figure 9-5: D latch with enable bit ... 92
Figure 9-6: Truth-table for a D latch with enable bit .. 92
Figure 9-7: Circuit diagram for a D latch ... 92
Figure 9-8: Implementation of a D latch ... 93
Figure 9-9: 7475 pin configuration ... 94
Figure 9-10: 7475 pin meanings ... 95
Figure 9-11: : D latch using a 7475 chip ... 96
Figure 9-12: State transition with multiply operation ... 97
Figure 9-13: State transition with add operation ... 97
Figure 9-14: Two D latches to hold correct state .. 98
Figure 9-15: Small time delay rising edge .. 98
Figure 9-16: Edge trigger time in square wave ... 99
Figure 9-17: Illustrative example of D flip-flop ... 99
Figure 9-18: Actual implementation of a D flip-flop .. 99
Figure 10-1: State diagram for a mod 4 counter ... 102
Figure 10-2: State transition table for a mod 4 counter .. 103
Figure 10-3: Circuit overview for a state machine.. 103
Figure 10-4: Hardware implementation for a mod 4 counter ... 104
Figure 10-5: ROM implementation of a mod 4 counter ... 105
Figure 10-6: Mux implementation of next state logic for a mod 4 counter .. 106
Figure 10-7: 74153 pin layout diagram ... 107
Figure 10-8: 7474 pin layout ... 107
Figure 10-9: Mod 4 counter .. 108
Figure 10-10: ALU Implementation ... 113
Figure 10-11: Decoder used in the CU for a CPU .. 113

8 DIGITAL CIRCUIT PROJECTS

I Forward

This text is designed provide an overview of the basic digital integrated circuits (ICs) that make

up the Central Processing Unit (CPU) of a computer. The coverage of the material is at a

sufficiently deep level that the text could be used as a supplemental text for a class in Computer

Organization, but the material should be easily understandable by a hobbyist who wants a better

understanding of how a computer works.

I.1 Why this book?

This book is designed to address three issues. The first is that textbooks are far too expensive.

As having completed my 4
th
 book shows, I understand the large amount of effort that goes into

writing, editing, producing, and distributing these books. But the work involved no way justifies

the exorbitant prices that are charged, and the resultant extravagant lengths people go to in order

to avoid paying those prices. It all plays into a hyper-materialistic capitalism that can only

eventually fail as it pits consumers against producers, and ignores the overall societal good. I

hope by releasing free books (or books with nominal costs) that we can start to have a discussion

about the relative merits of this type of unfettered capitalism, and perhaps come up with better,

more sustainable market based economic models.

The larger problem with high priced textbooks is the cost alone becomes an impediment to many

people who wish to learn the material. Social good is advanced when information can be easily

disseminated, shared, and discussed. I view providing this book for free as my contribution to

those who want to learn this material.

The second reason for this text is to provide a way to incorporate labs into classes in Computer

Organization, particularly online classes. As many colleges and universities moving more

classes online, there is a need to translate beneficial methodologies from face-to-face

environments to formats where they are useful in an online environment. One such instructional

methodology that is hard to translate is laboratory experiences. A class in Computer

Organization benefits immensely from labs that allow the students to create physical circuits.

Labs provide reinforcement for the material covered in class, and the labs represent a fun and

exciting way for students to interact with this material. This text is meant to provide a way to

incorporate labs into any class on Computer Organization, but especially online classes.

Finally, this text book is written for hobbyists who want to better understand digital circuits and

how they work. It is designed for the complete novice, someone who has never seen a

breadboard or IC chip. In fact, it is hoped that people who are afraid they could never get a

circuit to work, or understand what it does, will try the exercises in this book and find out just

how much talent they have when it comes to understanding and creating circuits.

I.2 Intended Audience

The intended audience is central to what material is covered, the order in which it is covered, and

how it is covered. Thus understanding the intended audience will help the reader understand

how the book is oriented and how to use it.

This book is designed for two types of people. The first is hobbyists who want to understand

how a computer works, and would like to be able to build digital circuits using standard chips

DIGITAL CIRCUIT PROJECTS 9

they can easily buy online. The book is designed to describe and implement the major ICs used

in a CPU, and to give a rough idea of how they are used.

The second audience for this text is students who are taking a class in Computer Organization,

which is the study of how a CPU works, and the various issues in the design of computers. The

text is intended as a lab manual for a Computer Organization class, and in particular targeted at

students who are taking this class in an online environment.

Understanding the target audience for this book is important understand how it is written. First

the book is written to make understanding and implementing circuits as simple as possible for

novices who have little support in implementing these labs. The labs assume no institutional

infrastructure or support. No lab space or extra equipment should be needed, and students

should be able to complete these labs at home with only the equipment listed in chapter 1.

Second the book is written to address the interests and needs of both the hobbyist and CS

students. Both groups have similar but somewhat different levels of interests and the text

attempts to address the needs of both groups.

How the text supports these two groups is explained in the next two sections.

I.3 Easy to understand circuit design and implementation

One important characteristic of the target readers for this book is that they will have little or no

face-2-face support when implementing the components. Thus the book is written to help

maximize the chance for success in implementing the circuits in each chapter. To do this the

book does the following:

1) All parts that are needed for all circuits are listed, and can be easily obtained from a

number of online sources. There is no need to start a project and reach a point where

some extra part is needed.

2) An attempt was made to keep the kits as low cost as possible. This text is free for

download. When the text was written, a complete lab kit (without tools) could be ordered

as parts for $20-$25, with $5-$10 extra if wire strippers or pliers are not available. This is

a reasonable cost considering many textbooks today can sell for $100 or more.

3) Even simple steps, such as how to strip wires, are covered.

4) An overview of each circuit is given, where the functioning of the circuit and how it is

used is explained. Detailed step-by-step instructions with photographs are included with

each lab so that the actual wiring of the circuit can be examined.

5) Extensive use is made of a powerful yet easy to use circuit design tool named Logisim.

Logisim allows the reader to interact with the circuits and components presented in each

chapter to understand how they work, and to modify these circuits to implement

enhanced functionality for the component.

I.4 Material covered in the text

A hobbyist will be most interested in a general understand of what each digital component is,

and how it is used in a CPU. They are also interested in implementing successful projects which

are fun, while gaining some understanding of the material.

10 DIGITAL CIRCUIT PROJECTS

Students using this text as a lab manual are more interested in understanding the details of digital

circuits, in particular how to the circuits in their Computer Organization class, and often beyond.

Since the students will often be online, success in the projects is also a major goal; as is having

fun. Let's face it, actually implementing working, physical objects that turn light bulbs on should

be, and is, fun. There is no reason not to have fun while enhancing learning.

This book is designed to engage both types of readers. Chapters 2, 3 4, and 5 of the book are

designed to give the reader some basic understanding of Boolean algebra, how a CPU works, and

how to build a circuit on a breadboard. The material on Boolean algebra is not rigorous, and a

class in Computer Organization would need to supplement this material. The description of a

CPU needs to be greatly extended for a class in Computer Organization. But the material in this

text is sufficient for the reader to understand enough Boolean algebra to understand basic

circuits, and how they are used in a CPU.

Each subsequent chapter will cover one digital component. The chapter will contain an

overview of the component, and a brief description of how it can be used in a CPU. For

instructors who desire that students do more with the circuits than what is presented in the

chapter, exercises (both in Logisim and with the breadboards) are given at the end of each

chapter.

II Additional text materials

This text can be downloaded from http://cupola.gettysburg.edu/oer/1. Additional materials for

the text, including a complete parts list from commercial suppliers with part numbers and prices

can be found at http://chuckkann.com.

III About the second edition

Other than numerous edits to fix errata in the first edition, the main reason for this new release of

the text are two fold, and based on the feedback I have received from the first edition.

1. Chapter 2 has been changed to provide a more theoretic background in Boolean algebra

for the cases where this book is being used in a course on Computer Organization. This

chapter can safely skipped by a hobbyist only interested in how digital circuits work.

2. The chapter 2 in the first edition was intended to give a context for the ICs developed in

this text. It seemed out of place and disjointed from the rest of the text. The role of

chapter 2 has been moved to chapter 11, which shows the ICs in the context of a working

CPU developed by the author.

IV Using this book in a class on Computer Organization

The central question for professors looking to use this book is how the book can be applied to
their classes. The following is an outline of how I use this text in a Computer Organization class.

In a class on Computer Organization I generally do not get into CPU data path until the eighth
week of the semester. For the first seven weeks of the semester I cover background material.
The first two weeks of the semester I cover a basic review of material that I find students often

http://cupola.gettysburg.edu/oer/1
http://chuckkann.com/

DIGITAL CIRCUIT PROJECTS 11

do not understand well. Boolean Algebra, binary mathematics (2's complement addition,
subtraction, multiplication, and division), and floating point number format.

The next five weeks of the semester are spent covering assembly code. I find this is important
for two reasons. First the students should know how their higher level programs are translated
into programs which the computer can execute. It allows the students to see all data in a
computer as just a binary number, and to understand concepts such as variables and pointers
to variables. Second teaching assembly shows the translation by the assembler of the student's
program into machine language, and the format of machine code. Understanding how a
program is presented to the hardware is important to the understanding of how the CPU
executes the program.

This leaves the last 5 weeks of a semester for actually studying the data path which defines the
CPU.

In this type of semester, I do not cover the digital components in this book as a single entity.
Chapters 1, 2, and 3 are assigned the first week, and each subsequent chapter assigned each
subsequent week. A short overview of each circuit is provided in class, but the students are
largely left on their own to do the problems associated with the circuit. By the eighth week, all
of the circuits have been covered and the students are ready to begin studying the data path of
the CPU. The digital circuits that have been covered in this text form the basis for the
components in the CPU.

A sample 15-week schedule follows. Note that the assignments from this text are the second
topic in each week. The first assignment each week represent material used in covering
Computer Organization using a MIPS programming text.

Week Topic Circuit Assignment

1 1. Review: Boolean Algebra, Binary Arithmetic

2 1. Floating Point Numbers
2. Basic circuits

Due: Chapter 3: Exercise 1

Chapter 4: Exercises 3, 4A, 5, 6

3 1. Introduction to MIPS assembly:
Hello World Program

2. Associative operators

Chapter 5: Exercises 1 & 2.
Implement the circuit for one
type of gate only (your choice)

4 1. MIPS operators
2. Adders

Chapter 6: Exercises 2 & 3

5 1. Non-reentrant subprograms, accessing
memory

Chapter 7: Exercise 1

12 DIGITAL CIRCUIT PROJECTS

2. Decoders

6 1. Program Control Structures (branches and
loops)

2. Multiplexers

Chapter 8: Exercises 1, 2, 3 & 4

7 1. Reentrant subprograms and program stack
2. Latches and flip-flops

Chapter 9: Exercise 1

8 1. Arrays
2. State machines

Chapter 10: Exercises 2, 3, &4

9 1. Multiplication and Division circuits, Parallel
Adders

10 1. MIPS data path

11 1. Pipelining

12 1. Pipelining (continued)

13 1. High performance memory or concurrency

14 1. I/O or other topics

15 Final

DIGITAL CIRCUIT PROJECTS 13

Chapter 1 Before you start

1.1 Introduction

This chapter provides an overview of the entire text, and what the reader can expect to learn. It

also provides a listing of all materials needed to implement the circuits covered in this text.

1.2 Computers and magic

While most would not admit it, people believe that computers actually obey the laws of magic.

Computers do such wild and miraculous things that somehow we all believe computers are not

really machines at all, but there is something very strange and magical which must go on inside

of a computer. Computers seem to do things which are beyond the physical laws of nature. And

the growth in the capability of the devices which we use every day, which are small and simple

to use yet so amazing in what they can do, reinforces this idea that computers are indeed magic.

In reality, we know computers are simply machines. The first machine ever designed that had all

the functionality of a modern computer, the analytical engine, was designed by Charles Babbage

in 1838. The analytical engine was to be purely mechanical and designed to run on steam.

While it was never implemented, it is a perfectly workable design, and incorporates all the

necessary functionality of a modern computer.

The analytical engine shows that computers can be understood in purely mechanical terms. To

aid in understanding computers, this text will look at the heart of all computers, the Central

Processing Unit (CPU). The first step in understanding computer is to understand a CPU.

A CPU is entirely made up of wires and logic components called gates. These gates are very,

very tiny, and very, very fast, but they are just electronic circuits which perform simple

operations. The only operations these gates need to provide are the Boolean AND, OR, and NOT

operators, which will be explained in Chapter 4. More surprisingly, AND, OR and NOT

functions are more than what is needed. All of the logic in a computer can be implemented using

only one type of gate, the Not-AND, or NAND, gate. Thus a computer is simply a collection of

these wires and gates, and can be completely explained as a mechanical device using only one

type of computational element, the NAND gate. This really is almost as amazing as computers

being made of magic, but much more useful.

To simplify the CPU, collections of AND, OR and NOT gates are organized into digital

components (called Integrated Circuits, or ICs) which are used to build the CPU. These digital

ICs are called multiplexors, decoders, flip-flops (registers) and Arithmetic Logic Units (ALUs).

Some of these components, such as the ALU, are made up of other digital components, such as

adders, subtracters, comparators, and circuits to do other types of calculations. This book will

cover these digital ICs, explaining how they are used in a CPU, showing how these digital

components are made using simple gates, and actually implementing the circuits on a breadboard

using IC chips.

Once completing this book, the reader should have a concept of what is a CPU, a good

understanding of the parts which make up a CPU, and a rudimentary concept of how a CPU

works to convert 1s and 0s into the amazing devices that are so central to our world.

14 DIGITAL CIRCUIT PROJECTS

1.3 Reading this text

This textbook is intended for multiple audiences. Chapter 2 of this text is an overview of

Boolean algebra and included largely for when the text is use in classes covering digital circuit

design. Chapter 2 is not necessary to the understanding of the rest of the book, and can be safely

skipped by someone using this text as a lab manual. I would recommend that a hobbyist using

this book for bread board project skip Chapter 2 altogether.

Chapter 11 is an implementation of a CPU in Logisim, and shows how a CPU can be designed

using only wires, gates, and the ICs that are covered in this text. The implementation is a real

CPU which can be programmed, producing input and output. However even this simple CPU is

too complex to implement in a Breadboard.

Chapters 3 to 10 are the chapters which implement the projects. These chapters are the important

chapters for someone interested in implementing the ICs used in a CPU.

1.4 Materials Needed

This section will outline the materials you will need for the rest of the book. There are two types

of materials you will need. The first will be a software program called Logisim, and the second

will be physical parts needed to implement the circuits on a breadboard.

1.4.1 Logisim

Logisim is a tool which is used to describe the circuits found in this book. Logisim is free and

easy to use, and can be found at http://ozark.hendrix.edu/~burch/logisim/. There is a download

link at that site, as well as tutorials and videos which can help you get started.

All circuits in this book are implemented in Logisim, and can be found at

http://www.chuckkann.com/

1.4.2 Hardware

The following is a complete list of hardware that is needed to implement the basic circuits in the

text. It is broken down into 3 sections; chips, tools, and miscellaneous parts. For a complete list

of parts with part numbers from various retailers, please go to http://www.chuckkann.com.

When buying the hardware, users will often have some of the needed material already on hand.

Things like wire stripper, needle-nose pliers, and a small flat-blade screw driver are common

items that many people will have readily available. Other items like wire or 9 volt batteries are

often available from other uses. If you already own some of the parts or equipment listed below,

there is no need to buy them again.

Chips

Except for the 7805 voltage regulator, all of the chips are standard 7400 series chips. For more

information about 7400 series logic chips, see http://en.wikipedia.org/wiki/7400_series. A

complete list of 7400 series chips can be found at

http://en.wikipedia.org/wiki/List_of_7400_series_integrated_circuits.

The chips in this series represent most of the logic components and Integrated Circuits (ICs) that

are needed to implement most digital logic applications. The numbering on chips is as follows:

http://ozark.hendrix.edu/~burch/logisim/
http://www.chuckkann.com/
http://www.chuckkann.com./
http://en.wikipedia.org/wiki/7400_series
http://en.wikipedia.org/wiki/List_of_7400_series_integrated_circuits

DIGITAL CIRCUIT PROJECTS 15

74tttsssn

where

¶ 74: indicates the chip is a 7400 series chip

¶ ttt: the type of logic used. In this text, the following are valid:

o blank - transitor-transitor logic (ttl)

o HC - high speed CMOS

o HCT - high speed CMOS, ttl compatible

¶ sss: The type of chip. For example:

o 7408 is a quad 2-input AND gate chip

o 7432 is a quad 2-input OR gate chip

¶ n: Indicates the packaging of the chip. Only type n is used in this text.

For most of the 7400 series chips below, ttl, HC, and HCT chips can be considered

interchangeable in the circuits in this text
1
. So for a 7408 quad 2-input AND gate chip, the

following chips would all be valid:

7408N, 74HC08N, 74HCT08N

However the following chips could not be used:

7408D - Any chip designated D is a surface mounted chip, and will not work with the

breadboard. Other types of packaging might be encountered, and should be assumed not

to be compatible.

74LS08N - There are numerous technologies used to implement 7400 components. For

this text, only ttl, HC, and HCT types of chips are recommended. Some type of chips

(ACT, BCT, FCT, etc) would probably work, and others (LS, ALVC, etc) will definitely

not work. For readers interested in a more detailed discussion of the chip technology,

please refer to the Wikipedia page referenced above.

To simplify the process of obtaining the correct chips, a web site is maintained at

www.chuckkann.com/books/DigitalCircuits/kits.html. It lists a number of retailers who sell

these chips, and the retailers part numbers for each chip.

A complete list of follows.

7805 5V voltage regulator 1

7400 quad 2-input NAND gate 1

7402 quad 2-input NOR gate 1

7404 hex Inverter (NOT gate) 1

7408 quad 2-input AND gate 2

7414 hex Schmitt Trigger Inverter (NOT gate) 1

7432 quad 2-input OR gate 1

7474 dual D positive edge triggered flip-flop 1

7486 quad 2-input XOR gate 1

1
 The exception is the 7414 chip, which must use the ttl logic. HC and HCT chips are not substitutable.

16 DIGITAL CIRCUIT PROJECTS

74139 dual 2-line to 4-line decoder 1

74153 dual 4-to-1 Multiplexor 1

Important Note: In this text all chips will be referred to using their generic numbers. So while

the circuits in the text will generally use a 74HCT08N chip, the text will refer to the chip as a

7408 chip.

Tools
A few tools are useful to implement the labs in this text. The wire strippers are the only required

tool, but needle nose pliers are very handy when doing wiring, and a flat blade screw driver

makes it much easier to pry chips from the board safely. These tools are often in toolboxes that

the reader might already have. If the reader does not have one or more of these tools, they

should be obtained.

wire stripper 1

needle nose pliers 1

small bladed screw driver 1

Miscellaneous

A number of miscellaneous parts are needed to implement the circuits in this text. The number

of type of these parts is limited specifically to keep the cost of the kits to a minimum. For

example, the labs in the text use 4 colors of wire for clarity: red, black, yellow, and green. The

kits below only include black wire. The reader can obtain multiple colors of wire if they desire,

but the circuits can be implemented using a single color wire.

Be careful of substitutions. For example, a 400 point solderless breadboard is cheaper than the

830 point solderless breadboard which is recommended, and a thrifty reader might be tempted to

substitute the smaller board since it looks very similar. However several of the circuits in this

text will not fit on the 400 point version.

Wire, black 1 25 foot spool

830 point solderless breadboard 1

9V battery snap 1

9V battery 1

toggle switches 4

red LED 3

green LED 3

1k resister 1 package of 10

0.1µf capacitor 1 package of 10

0.22µf capacitor 1

mini push button switch (tactile button switch) 1

1.5 Some notes

There is a wiring convention used in this book which the reader should be aware of. This book

uses 4 colors of wires: red, black, yellow, and green. Red wires are wires which are always

expected to carry a positive voltage. Black wires are wires which are always expected to be

DIGITAL CIRCUIT PROJECTS 17

connected to ground. Yellow wires are used for wires running from the battery towards the

output LED. Green wires are used for wires which recycle backwards towards the battery (the

use of green wires will become clearer when the latch and counter circuits are implemented).

The only reason these colors were chosen is to enhance the readability of the circuits for the text.

The standard material for the lab kit only recommends purchasing black wire. The color of the

wire is inconsequential to the working of the circuit, though using only black wire means your

circuits will appear slightly different from the ones in the text, and be harder to read.

Be careful when doing the labs: The exercises in this book require the reader to strip wire and

to use simple logic chips. While a young person could do the exercises in this book, it is

intended for an adult audience or at least adult supervision. The parts are small, pointy and

sharp, and care should be used when handling them. Clipping and stripping wires can result in

small pieces of plastic and metal becoming airborne. The components used in these circuits can

become very hot, especially if installed backwards. While there is nothing inherently dangerous

in working with the circuits, care should be used. Safety glasses are recommended, and if any

chip or part of the circuit become hot, quickly remove the power by disconnecting the battery.

Do not touch any hot chips or other components, and wait for chips or other components to cool

before handling them.

1.6 Conclusion

Computers are machines. They are amazing machines, but they are still simply machines. This
book will start to demystify computers by defining the basic components which make up a
computation machine. It will do this by allowing the reader to develop the basic components
which make up a computer, both virtually in software and physically in hardware.

18 DIGITAL CIRCUIT PROJECTS

DIGITAL CIRCUIT PROJECTS 19

Chapter 2 Background Material

2.1 Introduction

This chapter introduces the necessary Boolean algebra for understanding circuits. It covers truth

tables, Disjunctive Normal Form (DNF) for Boolean functions, Boolean relationships, how to

use Boolean Algebra to manipulate and reduce Boolean functions, and how to use Karnaugh

maps to minimize Boolean functions.

While the material in this chapter can be understood by someone with a good understanding of

algebra, it can be a bit esoteric and is not needed to understand the rest of the textbook. This

chapter can be safely skipped by someone using this book as a lab manual. I would suggest that

this chapter be skipped by hobbyists using this textbook for bread boarding projects.

2.2 A Universal Set of Boolean Operations

When thinking about Boolean algebra, it is important to realize that Boolean values are binary,

so any Boolean variable is limited to two values. Often these values will be True or False, but in

reality any binary values can be used. In this textbook, the value 0 will be used for False, and 1

for True. The reason for using 0 and 1 is that it is a more natural and useful way to represent

these values in an engineering context, which will hopefully become apparent to the reader as

they continue their study of computer organization.

To be useful some minimum set of operations which can be used to manipulate those Boolean

variables. For Boolean algebra this minimum set of operations will include just 3 operations,

they are AND, OR, and NOT. The AND and OR operations are binary operations (operations

that take two operands), and the NOT is a unary operation (operation that takes one operand).

These operations will be defined formally using truth tables in the next section. For now they

will be defined informally as follows:

¶ the AND operator is f(A,B), where f(A,B) is 1 (true) where A, B are both 1 (true)

otherwise it is 0 (false).

¶ the OR operator is f(A,B), where f(A,B) is 1 (true) is A or B or both A and B are 1(true),

otherwise it is 0 (false).

¶ the NOT operator is f(A), where f(A) is 1 (true) if A is 0 (false), and f(A) is 0 (false) if a

is 1 (true).

This leads to a question as to why these three, and only these three, operations are chosen. The

answer is that these three operations are universal Boolean operations. In this context, universal

means that any Boolean function can be reduced to combinations of these three operations.

Therefore, there is never a need to define any other Boolean operations to calculate a Boolean

function. Other useful Boolean operations will be introduced in this textbook, but realize that

these operations can be reduced to simply AND, OR, and NOT operations
2
. The proof of this

will be left to the exercises at the end of this chapter.

2
 This result, and AND, OR, and NOT are Universal over Boolean functions is even more amazing when it is realized

that any effectively computable function is computable using only Boolean functions. This result, that any
effectively computable function is computable with just the operations AND, OR, and NOT, was personally mind
blowing when I first understood it.

20 DIGITAL CIRCUIT PROJECTS

In this textbook, the AND operation will be written using the multiplication sign, "*", and the

result call a product; the OR operation will be written using the "+" sign, and will be called a

sum; the NOT operation will be shown by following the variable with a single "'" mark, e.g. A' is

NOT-A. Note also that the "*" symbol can be dropped as in standard algebra, so "A*B" can also

be written simply as "AB".

2.3 Truth Tables

Boolean functions are functions that perform operations on sets of Boolean variables. For

example, a Boolean function f, which takes 2 input values A and B, would produce an output

value, f(A,B). The input values A and B are binary, as is the output value f(A,B). It is possible

to completely characterize the function f(A,B) by enumerating all the possible input

combinations and A and B (00, 01, 10, 11), and specifying the output f(A,B) for each input

combination.

A truth table is standard way to represent a Boolean function which enumerates all the possible

outputs of that function. So assume f(A,B) is the AND operator. The truth table for this

operation is:

Input Output

A B AND

0 0 0

0 1 0

1 0 0

1 1 1

Table 2-1: AND truth table

More than one function can be represented in a truth table. A truth table that represents two

functions, AND and OR, would be the following:

Input Output

A B AND OR

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

Table 2-2: AND and OR truth table

All Boolean functions can be represented using truth tables (the proof for this is left for the

exercises at the end of this section), though the size could become quite large, or possibly

infinite. For example, consider two Boolean functions f1(A,B,C) and f2(A,B,C). The truth table

for these two functions would be written as follows:

DIGITAL CIRCUIT PROJECTS 21

Input Output

A B C f1(A,B,C) f2(A,B,C)

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 0 1

1 0 0 1 0

1 0 1 1 1

1 1 0 1 0

1 1 1 1 1

Table 2-3: Truth table for f1(A,B,C) and f2(A,B,C)

2.4 Disjunctive Normal Form(DNF)

Disjunctive Normal Form (DNF) is a standard way to write Boolean functions. It can be

described as a sum or products, and an OR and ANDS
3
. To understand DNF, first the concept of

a minterm will be covered.

A minterm is a row in the truth table where the output function for that term is true. For example,

in Table 2-3, the function f1(A,B,C) has a minterm when A=1, B=0, and C=0. We can write this

minterm a AB'C' (A and not-B and not-C), since A is true, and B and C are both false. Function

f1(A,B,C) also has three other minterms, AB'C, ABC', and ABC. So the DNF for the function

f1(A,B,C) would be written as:

f1(A,B,C) = AB'C' + AB'C + ABC' + ABC

Note that these minterms are numbers 4, 5, 6, and 7
4
 in the table so a short hand to write the DNF

is the following:

f1(A,B,C)= Ɇ(4,5,6,7)

Likewise f2(A,B,C) can be written as:

f2(A,B,C) = A'B'C + A'BC + AB'C + ABC

=Ɇ(1, 3, 5, 7)

Note that any Boolean function can be written in DNF, and DNF requires only 3 types of

operations, the AND, OR, and NOT. This is why AND, OR, and NOT are universal. The proof

of this is left for the exercises at the end of the chapter.

3
 Another way to represent the function is Conjunctive Normal Form (CNF). CNF can be described as a product of

sums, or an AND or ORs. The use of CNF is left to the problems at the end of the chapter.
4
 Note that the number starts at 0, not 1.

22 DIGITAL CIRCUIT PROJECTS

2.4.1 Boolean Relationships

The next question to be asked is if any Boolean function can be written in DNF, should DNF be

used to represent all Boolean functions? The answer to this question comes from the engineering

the circuit. At some point, a computer has to implement the Boolean function as a circuit. That

circuit will need 1 gate for each operation. And in engineering the circuit, the goal is to

minimize the number of gates needed.

Why should the number of gates be minimized? When a gate is actually included in a circuit, it

has 3 bad effects:

¶ Every gate requires power to operate it. The more gates in the circuit means that

power will be needed to operate the computer.

¶ Since gates require power, they produce heat as a result. More gates mean more heat

from the CPU.

¶ There are always delays in propagating the signal across the gates. The speed of light

is very fast, but it is not infinite. The further the electricity has to go to reach the end

of the circuit, the longer it takes. So the more gates in the circuit, the slower the CPU.

And in modern computers, the speed of light is often the limiting factor in how fast

the CPU can cycle, and thus in the speed of the CPU.

Thus the goal in any circuit design is to limit the number of gates in the circuit. For the function

f1(A,B,C) in Table 2.3, the number of AND gates is 8, or gates is 3, and not gates is 4, or a total

of 15 gates. The question is whether or not the circuit can be implemented in less than 15 gates.

Boolean algebra is the mechanism which is used to answer this question. Boolean algebra is just

like traditional algebra in that there are a set of relationships that can be applied to a function to

transform it. And those operations are generally somewhat analogous to the operations in

traditional algebra, making the transition to Boolean algebra somewhat easier. A list of these

relationships is given in table 2.4.

Relationship Rule
No.

Relationship Rule
No.

x + 0 = x 1 x * 0 = 0 2

x + 1 = 1 3 x * 1 = x 4

x + x = x 5 x * x = x 6

Ȅ Ҍ ȄΩ Ґ м 7 Ȅ ϝ ȄΩ Ґ л 8

x + y = y + x 9 xy = yx 10

x + (y + z) = (x + y) + z 11 x(yz) = (xy)z 12

x(y+z) = xy + yz 13 x + yz = (x+y) (x+z) 14

 όȄҌȅύΩ Ґ ȄΩȅΩ 15 όȄȅύΩ Ґ ȄΩ Ҍ ȅΩ 16

 όȄΩύΩ Ґ Ȅ 17

All of these relationships except for 15 and 16 should can be easily derived. Relationships 15

and 16 are known as DeMorgan's Laws, and should simply be memorized.

Applying these relationships for f1(A,B,C), we find the following:

DIGITAL CIRCUIT PROJECTS 23

f 1(A,B,C) = AB'C' + AB'C + ABC' + ABC

 = AB'(C'+C) + AB(C'+C) (rule 13)

 = AB'(1) + AB(1) (rule 7)

 = AB' + AB (rule 4)

 = A(B'+B) (rule 13)

 = A(1) (rule 7)

 = A (rule 4)

This expression is obviously simpler than the original, and the number of gates needed for this

circuit has been reduced from 15 to 0. This reduction was obviously worth the effort.

But how did we know to continue to reduce this expression after "AB' + AB"? This was a

significant reduction in itself, form 15 to 4 gates. Since we have now shown that DNF does not

necessarily (and often does not) result in a minimum expression, how can we know if a

minimum expression has been reached? That is the topic of the next section of this chapter.

2.5 Karnaugh Maps (K-maps)

Karnaugh Maps (K-maps) are a mechanism for creating minimum Boolean expressions from a

truth table. K-maps rely on Gray Codes to create the mapping space, so this chapter will first

cover Gray Codes. The chapter will continue with how to set up a K-map, how to solve a K-

map, and how to solve a K-map with don't care conditions.

2.5.1 Gray Codes

Gray codes are simply binary codes where the numbers adjacent numbers differ by a single digit.

A single digit number only has a single digit, so it is trivial. Now consider the Gray Code for a

two digit numbers. It would be:

00

01

11

10

Table 2-4: 2-digit Gray Codes

In this Gray Code, each number differs from its neighbor by 1 digit. 00->01->11->10->00 (note

that the Gray code is circular or wraps around from the bottom to the top). A 3 digit Gray Code

can be created by reflecting (like a mirror) the 2 digit Gray Code through a plane, and

prepending a 0 to the numbers at the top of the table, and a 1 to the numbers at the bottom of the

table.

000

001

011

010
110

111

101

100

24 DIGITAL CIRCUIT PROJECTS

Table 2-5: 3-digit Gray Codes

Once again that all values in this table differ from the adjacent values by 1 digit, but in addition

the table has been group into collections of 2-bit groupings. For example, the rows 0 and 1 both

contain 00x, rows 1 and 2 contain 0x1, rows 2 and 3 contain 10x, rows 3 and 4 contain x10, etc

(where x is 0,1). Note that once again the table wraps, so rows 7 and 0 both contain x00.

Gray Codes are useful in partitioning a space to group like elements together, and this property

will be used in the next section on K-maps.

2.5.2 2-Variable Karnaugh Maps

A Karnaugh map (or simply K-map) is a mapping of a truth table that partitions the truth table so

that elements that have the same values are placed adjacent to each other. It is then easier to see

what terms are in common, and to reduce the Boolean expression. For example a 2-variable K-

map for a function F(A,B) would be represented as follows, with the values of A in rows and the

values of B in the columns.

A/B 0 1

0 A'B' A'B

1 AB' AB

Table 2-6: 2-Variable K-Map

In this table, the rows correspond to A and not-A, and the columns correspond to B and not-B.

Table 2-7: A/A' for 2-variable K-map

Table 2-8: B/B' for a 2-variable K-map

DIGITAL CIRCUIT PROJECTS 25

Since the K-map has grouped the terms together, it is easier to find a minimum Boolean

equation. For example, consider the following truth table:

Input Output

A B AND

0 0 1

0 1 1

1 0 1

1 1 0

Table 2-9: Truth Table for 2-variable K-map problem.

This truth table maps to the following K-map. In this K-map groups of 2
n
 adjacent items are

found, which for a 2-variable K-map can only be groups of 4, 2 and 1. In this map there are 2

groups of 2, as shown below.

Table 2-10: Solving a 2-variable K-map

The two grouping found correspond to A' and B', so the final equation for this K-map is A'+B'.

Two variable K-maps are trivial, and so not very interesting. The next two section will show

how to solve the K-maps for more 3 and 4 variables.

2.5.3 3-Variable Karnaugh Maps

3-variable K-maps correspond to Boolean functions of the form f(A, B, C). The K-maps again

allow a truth table to be mapped so that rows that differ by 1 or 2 values are placed next to each

other. To do this, the Gray Codes that were introduced earlier are used. Note how the values for

variables B and C are numbered as Gray Codes in the 3-variable K-map table.

A/BC 00 01 11 10

0 A'B'C' A'B'C A'BC A'BC'

1 AB'C' AB'C ABC A'BC'
Table 2-11: 3 variable K-map

26 DIGITAL CIRCUIT PROJECTS

Note that once again this number has resulted in regions in the K-map where the variables differ

by 1 digit, as shown below. Note that the region C' wraps around the table.

Table 2-12: A/A' region of a 3-variable K-map

Table 2-13: B/B' region of a 3-variable K-map

Table 2-14: C/C' region of a 3-variable K-map

To use the K-map to solve 3 variable functions, once again groupings of 2
n
 are found, which for

a 3-variable K-map are 8, 4, 2, and 1. The larger the grouping, the fewer the terms, so groupings

of 8 are chosen over groupings of 4, groupings of 4 are chosen over groupings of 2, and

groupings of 2 are chosen over groupings of 1.

The following is an example of how to use a K-map to solve a Boolean expression. Consider a

function f(A,B,C) has the following truth table:

Input f(A,B,C)

A B C AND

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

DIGITAL CIRCUIT PROJECTS 27

1 1 0 1

1 1 1 1

This expression can be represented as the following sum of products.

f(A,B,C) = Ɇ(0, 4, 5, 6, 7)

The minimum function for this K-map consists of one group of 4 and one group of 2, and

corresponds to the equation f(A,B,C) = A+B'C' . Note the cell AB'C' is used in both equations,

which is rule 5 from the Boolean relationship table, X+X = X, and means that any term in the

summation can be used more than once in minimizing the circuit.

To show that the final equation corresponds to the initial truth table, algebra will be used to

reduce the expression from DNF to the final form.

f(A,B,C) = Ɇ(0, 4, 5, 6, 7)

 = A'B'C' + AB'C' + AB'C + ABC' + ABC

 = A'B'C' + AB'C' + AB'C' + AB'C + ABC' + ABC (rule 5)

 = (A+A') B'C' + (AB' + AB)(C+C') (r ule 13)

 = (1) (B'C') + (AB' + AB) (1) (rule 7)

 = B'C' + AB'+ AB (rule 4)

 = (B'C') + A(B'+B) (rule 13)

 = (B'C') + A(1) (rule 7)

 = (B'C') + A (rule 4)

2.5.4 4-Variable Karnaugh Maps

While K-maps larger than 4 variables exist, they require more than 2 dimensions and are thus

hard to solve by hand, though there are algorithmic ways to do this and there are many programs

online that can solve them. This text is only interested in presenting the concept of K-maps and

how they are solved, so it will end with presenting 4-Varable K-maps.

4-Variable K-maps correspond to Boolean functions of the form f(A, B, C, D). The K-maps

again allow a truth table to be mapped so that rows and columns that differ by 1 or 2 values are

placed next to each other. To do this, the Gray Codes that were introduced earlier are used.

Note how the values for variables A,B and C,D are numbered as Gray Codes in the 3-variable K-

map table.

28 DIGITAL CIRCUIT PROJECTS

AB/CD 00 01 11 10

00 A'B'C'Dô A'B'CôD A'BôCD A'BôCDô

01 AôBCôDô AôBCôD AôBCD A'BC'Dô

11 ABCôDô ABCôD ABCD ABCDô

10 ABôCôDô ABôCôD ABôCD ABôCDô

Note that once again this number has resulted in regions in the K-map where the variables differ

by 1 digit, as shown below. Note that the regions B' and Dô wrap around the table.

To use the K-map to solve 3 variable functions, once again groupings of 2
n
 are found, which for

a 4-Variable K-map are 16., 8, 4, 2, and 1. The larger the grouping, the fewer the terms, so

groupings of 16 are chosen over groupings of 8, groupings of 8 are chosen over groupings of 4,

groupings of 4 are chosen over groupings of 2, and groupings of 2 are chosen over groupings of

1.

The following is an example of how to use a K-map to solve a Boolean expression. Consider a

function f(A,B,C) has the following truth table:

Input f(A,B,C)

A B C D AND

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

DIGITAL CIRCUIT PROJECTS 29

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

This expression can be represented as the following sum of products.

f(A,B,C) = Ɇ(0, 4, 5, 6, 7, 8, 12, 13, 14, 15)

The minimum function for this K-map consists of one group of 8 and one group of 4, and

corresponds to the equation f(A,B,C) = B + CôDô. Note the cells AôBC' Dô and ABCôDô are

used in both equations, which is rule 5 from the Boolean relationship table, X+X = X, and means

that any term in the summation can be used more than once in minimizing the circuit.

30 DIGITAL CIRCUIT PROJECTS

To show that the final equation corresponds to the initial truth table, Boolean algebra can be

used. The derivation of the final equation from the DNF is left as an exercise.

2.5.5 Donôt care conditions

Sometimes when specifying an equation there are a number of situations where the input is not

used. If the input is not used, then any value (0 or 1) can be used, and these are called donôt care

conditions. For example, consider a 7-segment display which is used for many time clocks for

sporting events. The display consists of 7 segments that are used to display the 10 decimal

numbers 0..9. A 7-segment display along with the names for each segment (A..G) is shown

below.

Each digit 0-9 will lights 1 or more segments to create the number. For example the digit 0

would light segments A,B,C,D,E,F; the number 1 would light segments B,C; the number 2 would

light segments A,B,D,E,G; etc. Therefore, there will be 7 Boolean functions, one for each

segment.

Next, knowing that 10 digits can be represented using a minimum of 4 bits, a truth table can be

created where the input 4 digits represent the decimal number, and a truth table developed for

each of the 7 segments making up the number. When doing this, note that input values for the

truth table must always be between 0-9, so there are 6 values (10-15) that are not used, so those

rows in the table are never accessed. The values for the segments for those rows are donôt cares

because they are never used; the component does not use those values, so it does not care how

they are set. This gives the result for the 7-segment display truth table, where X=donôt care,

which is shown below.

Input Output

A B C D A B C D E F G

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

DIGITAL CIRCUIT PROJECTS 31

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 0 0 1 1

1 0 1 0 X X X X X X X

1 0 1 1 X X X X X X X

1 1 0 0 X X X X X X X

1 1 0 1 X X X X X X X

1 1 1 0 X X X X X X X

1 1 1 1 X X X X X X X

The K-map for each segment now can be evaluated to give the corresponding minimum Boolean

expression. The donôt cares (Xs) in the map are important because we can assume they are 1

when they help us minimize an expression, and assume they are 0 otherwise. In short, we can

use them to create larger groupings, but they do not have to be used.

The K-map for segment A is the following:

The result is two groups of 8 (in red and purple) corresponding to A and B, and two groups of 4, one (in
black) corresponding to BD, and one (in yellow, crossing the 4 corners of the map) corresponding to B'C',
resulting in the following equation for segment A,

f A(A,B,C,D) = A + C + BD + B'D '

2.6 Conclusion

Boolean algebra, or functions where the values are binary or two digit values, is the basis for the

circuits that will be presented in this text. Boolean functions can always be represented in a truth

table, and then translated directly into DNF. Thus any Boolean function can be written using

only AND, OR, and NOT operations.

To instantiate these functions into hardware for a computer, circuits will be used. For a number

of reasons, including making the circuit faster and decreasing the amount of electricity used and

the amount of heat generated, it is of interest to designers to make the circuits as small as

possible, and to make the circuits contain the fewest gates possible. DNF seldom represents the

smallest possible circuit, and Boolean algebra is introduced as a way to simplify a circuit.

32 DIGITAL CIRCUIT PROJECTS

It is difficult to know if a circuit has been reduced to a minimum using just DNF, so the concept

of a K-map was introduced which is a mechanical way to ensure minimum circuits.

2.7 Exercises

1. DeMorganôs Law:

a. Show that DeMorganôs Law is correct for two variables, (AôBô)ô = A+B by using a

truth table.

b. Does DeMorganôs Law hold for 3 variables? What about 4 variables?

2. Simplify the following Boolean expressions using Boolean algebra

a. A + AB

b. A + AôB

c. ABôCô + ABCô

d. AC + ACô + AôB + AôBô

3. The operations AND, OR, and NOT are universal in that any Boolean function can be

implemented using just these three gates.

a. Prove by construction that the NAND gate is universal by creating AND, OR, and

NOT gates using only the NAND gate.

b. Prove by construction that the NOR gate is also universal.

c. Why are the AND and OR gate not universal? (e.g. what simple operation cannot be

created with just an AND or OR gate?)

4. For inputs A and B, show how to use an XOR gate to create a NOT gate if B is 1, and a

buffer if B is 0.

5. XOR is sometimes called an ñoddò function because the result of an XOR is 1 if the number

of 1ôs the minterm is odd, the xor is 1, otherwise it is 0. Show that this is true for 3 and 4

variable XOR functions, e.g. A ṥ " ṥ #ȟ ÁÎÄ ! ṥ " ṥ # ṥ $Ȣ

DIGITAL CIRCUIT PROJECTS 33

6. For the following truth table:

a. Give the DNF equation for the table.

b. Minimize the equation using a K-map.

c. Show that the DNF is equivalent to the minimum representation using Boolean

algebra.

A B C F(A,B,C)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

7. For the following truth table

a. Give the DNF equation for the table.

b. Minimize the equation using a K-map.

c. Show that the DNF is equivalent to the minimum representation using Boolean

algebra.

A B C F(A,B,C)

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

8. For the following truth table

a. Give the DNF equation for the table.

b. Minimize the equation using a K-map.

34 DIGITAL CIRCUIT PROJECTS

c. Show that the DNF is equivalent to the minimum representation using Boolean

algebra.

A B C F(A,B,C)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

9. Solve the 7-segment display problem for segments b, d, and f.

DIGITAL CIRCUIT PROJECTS 35

Chapter 3 Getting started

3.1 Introduction

There is an old adage, ñA journey of 1000 miles begins with the first stepò. The hardest part of

any project is getting started. I had taught Computer Organization for years but had always used

virtual circuits to describe the components presented in this text. That meant using pictures,

drawings, and eventually tools such as Logisim. Though I knew the circuits in this book, I was

afraid to actually touch the hardware. From my conversations with others, this is not an

uncommon feeling even among computer scientists. Like so many people in so much of life, I

was afraid of the beginning.

The beginning, when all the fears about the project are apparent. Do I really know enough to do

the project? Will it take a lot longer than I think? What happens if I hit a problem that I cannot

solve? Too often these fears take over, and useful projects just fail to get started. But once the

project is started, the unknowns become known and can be dealt with. The complexity becomes

manageable. Incremental progress can be achieved, and each success builds on the last. The

trick is to start very simple, and to allow the complexity to evolve. This is the approach of this

text.

This text starts as simply as possible. To begin studying circuits, the first step is to understand

that digital circuits take electricity into the circuit, and convert it to an output. In our case, the

input will always be a switch, and output will always a LED light. So the first project is a circuit

which has a switch which turns on a light.

3.2 Logisim circuit to turn on a light

In this text, all circuits are first created in Logisim to allow the reader to see the logic

implemented by the circuit. This is important for a number of reasons. First, it is much easier to

build the circuit in Logisim. No wires need to be cut and stripped, and there are no physical

problems like loose connections or other problems to debug. The circuit is virtual and it always

behaves as it is coded.

Second, Logisim will represent the circuit as a series of logic gates, which closely represent the

Boolean expressions used to create the circuit. When the circuit is implemented using the

breadboard and chips, and all the chips look the same so visualizing the circuit is difficult.

Logisim makes it easier to understand the circuit, and then to translate it into hardware.

Third, implementing the circuit requires as much concentration on the pin configurations on the

chips as the actual gates that are used to implement the logic. Using Logisim allows the reader

to understand the logic of the circuit without worrying about extraneous implementation details.

Fourth circuits in Logisim are easier to modify, so problems in implementing the circuit can be

more quickly addressed and fixed. Different types of designs for the circuits, inputs to the

circuits, etc., can be tried in a much more forgiving environment.

Finally, the circuits which are implemented are more easily saved and shared using Logisim.

Most of the circuits in this book will have a Logisim implementation which can be downloaded

from http://chuckkann.com/

For the first circuit, a Logisim implementation is shown below. The first circuit implemented

http://www.chuckkann.com./

36 DIGITAL CIRCUIT PROJECTS

turns a light on/off. The following list is a step-by-step guide to creating this circuit in Logisim.

If you are new to Logisim, you might want to start with the tutorials found at the Logisim site.

Figure 3-1: Logisim circuit to turn on light.

1. Make sure the arrow icon is selected.

2. Select the input pin and place it on the board.

3. Select an output pin, and place it on the board,

4. Connect the right side of the input pin to the left side of the output pin by holding the right

mouse button and drawing a line from the input pin to the output pin.

5. The circuit is now complete. Select the hand icon to run the circuit.

6. Clicking on the input pin changes its value from 0 to 1 and back. Since it is directly

connected to the output pin, you will also change the output pin.

This circuit will now be implemented in using a breadboard, resister, 9-volt battery, switch, and

led light.

3.3 Implementing the switch circuit to turn on a light

In this project you will connect the breadboard to the power supply, then wire the positive and

negative side strips. You will then put a switch on the board, and connect the switch to a led so

DIGITAL CIRCUIT PROJECTS 37

that the switch can turn the led on and off. This will complete the project.

3.3.1 The breadboard

This section describes the breadboard in your lab kits. For more information about breadboards

please see the following link:

http://en.wikipedia.org/wiki/Breadboard

The following is a picture of a typical breadboard:

Figure 3-2: Typical breadboard

On the breadboard there are two long strips, called rails, running along the side. The red rail is

normally connected to a positive (+5 volts) power supply, and the blue rail is normally connected

to ground (0 volts). Note that rails must be connected to a battery or other power source to

power them.

There are a number of 10 hole rows in the board, separated by a center empty column. In a row,

groups of 5 holes on each side of the empty column are connected. There is no connection

between the rows.

This wiring of the breadboard is shown in the Figure 3-3. For the positive and ground rails a

wire runs the length of the board which connects the holes in the positive and negative rails.

Note that the rails on opposite sides of the breadboard are not connected. Powering one side of

the rails does not power both sides, and the rails must be connected to fully power the board.

This will be done as part of the circuit created in this chapter.

http://en.wikipedia.org/wiki/Breadboard

38 DIGITAL CIRCUIT PROJECTS

Figure 3-3: Breadboard layout

This breadboard layout also shows that the groups of 5 holes in each row are also connected,

though the top and bottom groups of 5 holes are not. Normally the holes in these groups of 5 on

the two sides of the board will be kept separate. This will make sense when chips are installed

and used.

The groups of five holes are numbered 1 to 60 on each side of the breadboard. Each group of

five holes are wired together, so two wires which are placed in holes in the same group on a row

are connected. This will be used to wire the circuits.

3.3.2 Stripping wires

To make contact with the holes in the breadboard, the insulation must be removed from the ends

of the wires. To do this wire strippers will be used. Typical wire strippers are shown in the

following figure. Wire strippers are sharp and can easily cut the wire we are using here by

placing the wire in the lower part of the clippers (1), and closing them. However, the notches in

the wire strippers are places where there is a predetermined distance between the two blades

which is just the size of the copper wire inside of our insulation. By placing the wire in the notch

labeled 22 AWG (or .60 mm) (2), the insulation is cut but the wire is not. Then by simply pulling

the wire from the strippers there is a clean end to the wire that no longer is insulated. This is

DIGITAL CIRCUIT PROJECTS 39

what will be placed in the holes in the breadboard. When stripping the wires, you should strip

off about 1/4 to 1/2 an inch of insulation. The holes in the breadboard will grab the wires when

they are placed inside and make a good contact. If you strip too little insulation off of the wire

the connection to the breadboard will probably be poor, and your circuits will not work. If you

strip too much insulation off, the circuit will have the possibility of short circuiting. So strip

enough insulation so that the wires are grabbed in the hole, but not too much more.

Figure 3-4: Wire strippers

The end of the wire strippers (3) can be used as pliers, and is helpful to bend the end of the wire.

This is useful if you implement the circuits so that the wires run flush along the board, as they

will do in this book. If you cut your wires very long and run them above the board, as many

students do, you do not want to bend the end of the wire. Running wires flush along the board

makes the circuit neater and easier to read, but it makes the circuit harder to wire, and takes

much more time to implement.

40 DIGITAL CIRCUIT PROJECTS

Figure 3-5: A stripped wire

3.3.3 Powering the Circuit

You are now ready to implement the circuit. The steps in creating the circuit will be as follows.

1. Power will be provided to the breadboard.

2. A switch will be inserted into the breadboard.

3. The output from the switch will be sent to the LED, which will complete the circuit.

The first step is to provide power to the breadboard. Pictures of how to power the breadboard

are shown in the Figure 3-7and Figure 3-9. These figures contains numbers corresponding to the

step-by-step instructions below. As was mentioned earlier, wires in this circuit that always carry

a positive voltage are red, ground wires are black, and wires that can take on either value are

yellow.

1) Find the 7805 voltage regulator (shown in Figure 3.6). The 7805 voltage regulator will take

the input of 9 volts from the battery and convert it to 5 volts needed by the chips which will

be used in the circuit
5
. Place the 7805 voltage regulator so that it straddles rows 1, 2, and 3

on the breadboard as shown in Figure 3-7. The fit may be tight, so be careful to push it in

gently so as to not bend the legs.

2) The input to pin 1 (the pin in row 1 of the breadboard) of the 7805 is the positive 9 volts from

the battery. In the figure a red wire is used to indicate this is wire is always connected to

positive input. Connect a wire to any hole on the first row, leaving one end not connected to

anything. This will be connected to the positive lead of the battery when the breadboard is

powered. To test if this is correct, connect the long leg of an led to the positive output of the

7805 regulator, and the short end to the ground, as shown in Figure 3-6. Make sure the

battery is new and strong, or you might now get power across the 7805 regulator.

5
 Chips used in circuits generally use either 5 volts or 3.3 volts. The chips used in this book will all work with 5

volts, so the circuits will be powered at 5 volts.

DIGITAL CIRCUIT PROJECTS 41

Figure 3-6: 7805 voltage regulator

Figure 3-7: Powering the breadboard

3) The input to the 7805 pin 2 (the pin in row 2 of the breadboard) is now connected to the

ground coming from the 9 volt battery. In the figure a black wire is used to indicate this is

wire is always connected to ground. Connect a wire to any hole on the second row, leaving

42 DIGITAL CIRCUIT PROJECTS

one end not connected to anything. This will be connected to the negative lead of the battery

when the breadboard is powered

4) Connect the ground rail of the breadboard to row 2. The ground rail is the blue column which

runs down the side of the board. Note that row 2 has three connection, the input ground from

the battery, the middle pin on the 7805 chip, and the output wire to the blue ground side rail.

5) The 5 volt output from the 7805 is the pin in row 3. To power the board, connect row 3 to

the positive rail of the breadboard. The positive rail is the red column which runs down the

side of the board.

6) The left half of the board is ready to be connected to the battery. Put a 9 volt battery in the

battery snap, and connect the leads from the battery to red and black wires from steps 3 and

4. (Be sure to connect positive wire to positive input, and negative wire to negative input!)

The board should now have power. This can be checked by placing an LED between the

positive and negative rails on the board. Note that the LED has two legs, and one is longer

than the other, as shown in Figure 3-8. Make sure to place the positive (long) leg in the

positive (red) rail, and the short leg in the ground (blue) rail. The light should come on. If it

does not, you have a debugging problem. Here are some things to try:

a) Make sure that the battery is connected correctly, positive to positive and negative to

negative. If it is not, your 7805 chip will quickly start to become hot. If this happens,

disconnect the battery and allow the chip to cool. When the chip is cool, reconnect the

battery correctly.

b) Make sure the LED is properly oriented. This simple mistakes often causes confusion,

and so when using an LED always make sure to orient it correctly.

c) Make sure the battery and the snap are ok by putting the LED directly into the 9 volt

battery clip. If the LED lights, move to step d.

d) Make sure that current is getting to the board correctly. Connect the battery to your

positive and negative leads (to power the board) and place the LED between rows 1 and 2

of the board to make sure that you have a good connection with the leads. If the LED

lights, move to step e.

e) Make sure you have current coming from the 7805 by connecting the LED between rows

3 and 2. If the LED does not light, something is wrong with the 7805. Check that you

have installed it correctly (not backwards for instance).

Figure 3-8: LED

DIGITAL CIRCUIT PROJECTS 43

7) The left half of the bread board should now have powered, but the right half is still not

connected. To connect the right half of the breadboard, go to the last row with the blue and

red rails. Run a wire from the left red rail (the outside left rail) to the right red rail (the inside

right rail) as shown in Figure 3.7. Do the same for the blue rail. This should power the rails

on the right side of the breadboard. You can test that both rails are now powered by using the

LED between the blue and red rails on the right side of the breadboard as in step 6 above.

The breadboard is now powered.

3.3.4 Installing the switch

This purpose of this first circuit was to have a switch turn on/off a light. This section will

describe how to install the switch. The instructions below refer to Figure 3-11.

0. The switch to be installed is shown in Figure 3-10. There are two nuts and two washers

on the switch. These will not be used in the circuits in this book, and make the switch

harder to use. Remove them. You may want to save them in case you ever use this

switch in a different circuit.

1. To install the switch, insert it across 5 rows of the breadboard. In this picture, the switch

is placed across rows 9-13. Only the 1st (row 9), 3rd (row 11), and 5th (row 13) rows

will be connected to the switch.

Figure 3-9: Toggle switch

2. The first pin is the positive input. Connect the first pin (row 9) in the switch to the

positive rail.

