DIGITAL CIRCL
PROJECT

Understanding Digital Circuits through Implementation
Second Edition

ABSTRACT

This text explains some of the most basic digital
circuits by implementing them on a breadboard.
The use of the circuits in a CPU is then illustrated.
This text is intended as a laboratory manual for a
class is Computer Organization, or for use by a
hobbyist who just wants to learn more about
computer hardware.

Charles W. Kann

DIGITAL CIRCUIT PROIX 1

© Charles W. Kann Il
277 E. Lincoln Ave.
Gettysburg, Pa

All rights reserved.

This book is licensed under the Creative Commons Attribution 4.0 License

This book is gailable for free download fromnttp://cupola.gettysburg.edu/oer/1/

Supporting materials for this text book can be founhtigd://chuckkann.com

http://creativecommons.org/licenses/by/4.0/
http://cupola.gettysburg.edu/oer/1/
http://chuckkann.com/
http://creativecommons.org/licenses/by/4.0/

2 DIGITAL CIRCUIT PROS

Table of Contents

Chapter 1 Before YOU StarL..........coooiiiiiii i r e s e e e s aaeaaaaans 13
R 70 To [Tox 1 o o PP PP OPUPPPPPTP 13
1.2 COMPULETS AN MEAGIC.eeeeeeeeeiiiieie e e e ee sttt e e e e s e e e e s ea st r e e e e s s aasn e e e e e e e s eaannrrnreeeeeaanns 13
1.3 REAAING TS TEXL.....eeeeeiiiitiiie ettt e 14
1.4 MaterialS NEEAEM.oeeiiiiii e e e e e s s e e e e e e e nnnreees 14

O T 0 T [P 14
R o P T o Y7V g SO 14
RIS T o] 4 T g [0 (L T TP PUPTPTR 16
LG o o] 11 1= (o o SRR, 17

Chapter 2 Background Material............ccccuuiiiiiiiiiiiiiiiiicieeeeeeee e e e e e nnennees 19
P20 I [(o To [1Tox 1o o PP EPPR PRI 19
2.2 A Universal Set Of BOOIEAN OPEIALIONS......cviiiiiiiiiiiiiieee ettt e e 19
b2 T I U 11 T 1= o] =SSP 20
2.4Disjunctive Normal FOMM(DNE)......coooviiiiiiiii e 21

2.4.1 Boolean RelatiONShiPS.uuuuiiiiiiiiieieiieeee e 22
2.5 Karnaugh Maps {aPS)........cooiiiiiiiii e s e e e e e aaannaaare 23
2.5.1 GrAY COUES.....oeeiiiieiiiiitie ettt e e e e e s e e e e e e e e e et e e e e e e b e e e e e e e e e e aae s 23
2.5.2 2Variable Karnaugh MapS........oooiiiiiiiiieeiiie et 24
2.5.3 3Variable Karnaugh MapS........eeeieeiiiiiiieiieeeee e 25
2.5.4 4Variable Karnaugh MapS.......eeeeeeeiiieiiieiieeeee e 27
HOpdp 52y QU ..0OLNE. . .O2Y.RANAZY A e, 30
2 S 3 O o] Tod 11 1] T o TSP 31
A (T o] PSPPSR 32

Chapter 3 Getting STAMEM........ooeeiieiiee e e e e e e e e e 35
G0 I [(o T [T 1o o PSPPSR 35
3.2 LogisINTIrcuit t0 tUrn 0N @ lGNT.......oooiiiiiiee e 35
3.3 Implementing the switch circuit to turn on a light............oovvvvviiiiii s 36

TR 0 A I U= o] (== Vo [o T F= T (o PO 37
TR T2 S o] o1 LT IR T (== PRSP 38
3.3.3 POWEIING The CIICUIL ...t e e e e e s eaed 40
3.3.4 INStalling the SWITCH. ...l 43
3.3.5 Completing the CIrCUIL.........ccoiiiiiiiiii e e s 44
R D T= 10T o 100 [t 1= ox T o1 U PSSR 45

RS Y o (ST (o F=Y T 46

DIGITAL CIRCUIT PROIX 3

(O 0T T (=] O B O | (PP PP PP PPEPPPRPPPPPPRPPPPY” ¥ 4
g [11 o T U T3 1T o P 47
4.2 Boolean logic and biNary VAIUES.............cooiiiiiiiiii e e e e e e e e e aaaa e a7
LG W = 1 YA o] o= = 1o P A7
4.4 BINAIYOPEIALIONSceiiiietieeeee e e eeetiee et e e e e st et e e e e s s e et e e e s e s s b e e e e e e e e e e aannbrre e e e e e e aannbnnreeeeeeane 48
4.5 Implementing the AND gate CIFCUIL.........c.coiiiiiiiiiii e 49

45.11Csand the 7408 ChUP..........coooiiiii e e e e e e e e e e e e e 49
4.5.2 The dat@SNEEL........c.eiieeiiii e a e e e e e e e nee 50
4.5.3 Creating the AND CIFCUIL..........uuuiiiiiiiieiieeeeer e e e s ae e reeeees 51
G = (o LS = PSPPSR 52

Chapter 5 Associative BOOIEaNn OPEIatQIS............uviiiieeiiiiiiiieee e e e annes 55
oI A [(0T [T 1o o TP EPPR PR 55
5.2 Modeling associate operations in LOGISIM........c.ccviiiiiiiiiieiiee e 55
5.3 IMpIementing the CITCULL..........oiiiiiiiiii e e e e 56

5.3.1 Implementing the serial AND CIFCUIL...........coeiiiiiiiiiiieiee et 56
5.3.2 Implementing the parallel AND CirCUIL..........cccociiiiiiiiiiieeeeeerr e e 58
I I @o] (o3 013 o) o TSRO PPTPPTRRN 58
ST =T (o £ PP PPP R OPPPPPRRP 58

(O aF= T (=T QG I Yo (o [T = PP P PP PPPPP RPN 61
L 200 I 111 0T [T 1T PP 61
L2 o = 1= To o = o EEPRPRIY 61
6.2.1 AddiNg DiNary NUMDEELS........cooi e s e e e s e e s e se s nasannenneed 61

A o T = Uo (o [T o[o T U 62
6.2.3 Half adder implementation.............ouuo i e e e e 63
L0 T U 11 = To [0 [T OSSP 64
L U1 = To (o = o o U | PR 65
6.3.2 Full adder implementatiQn..............oooiiiiiiii i e e e e e aaaaaaaaad 66
(S o1 A= To [0 [T o3 | P PRSRRRRRRY 68
LR 0] o3 013 1o TP 69
LSS (T o £ =PSRRI 69

(O gF=T o] = g =T o T [T o= 71
428 R 111 0T [T 1T o S 71
2 B L= ToTo Lo [g o] [o U 11 PP 4
7.3 2t0-4 decoder IMPIEMENTALION.oiuviiiieee et 72

7.4 Implementing a decoder using a single Chip. ... 74

4 DIGITAL CIRCUIT PROS

A o T N o] o T o TR 74
7.4.2 Implementing one-B-4 decoder using the 74139 chip.........cccccvviiiiiiiiiieeiiiceeeeeee, 76
7.5 CONCIUSION. ...ttt oottt e e e e e e st bttt e e e e e e s b bbb et e e e e e s assbbb e e e e e e e sanbbbneeeeeneannne 77
7.6 EXBICISES ..ot iiiiitiiee ettt ettt ettt e e e e s st r e e e e e e e s ssnbneeeaeessnnnnnneenesssnnsnnneeneesssnnnnndd)
Chapter 8 MUIIPIEXEIS ..ottt e e e s e e e e e e e nn e e e e e e e e annrees 79
S 700 I 111 0T [T 1o S 79
8.2 CircuiDiagram fOr @ MUX.......coooiiiiiiiiii e e e e e e e e e e aaaaeas 81
o IC R Tna] o] (=T a g =T o T T = T L 83
S 5 R Y L o 1o PSR 85
R N KoY ol [(o U 1l [=T | =10 D PP PPPPPPRRPP 85
8.6 Implementing the 74153 CIFCULL.............coiiiiiire e e e e e e e 86
S A @70 [od 013 o) o PP PPPPPTRRN 87
8.8 EXBICISES ..t iittetiet e ettt e ettt e e e e oot e e e et e e e e et a e et e e e e e bbb e et e e e e e nnrrraraeeeeaaan 87
Chapter 9 Memory basiedlip-flops and latChes...........ccccciiiiiii e 89
LS 200 I 1 11 0T [T 1T PSP 89
9.2 Background MAterial..............ooiiiiiiii e e e e e e e e e e ——— 89
S] = 1= PP PRPPPUTTTPPRRR 89
9.2.2 StatiC and dYNAMIC MEIMQELY.....ccoiiiiiiiieeee e e e e e e e s e e e e s s e e e e s e annreees 90
O.2.3 SUUAIE WAME......euiuiiiiiiiieiiee ettt ettt ettt e e e e e e e e e e e e e e e e et e s s s s s s s aa s s s nr s e bnn b re s rnsreeeneeeeas 90

LS R - o 1= U 90
S 0 0 N = 1 o o PP SUPPPPRRRR 91
9.3.2 Circuit diagram for a D [atCh..........cuvveiiiiiiiiii e 92
9.3.3 Implementing the D IatCH ... 93
9.3.4 D latch as @ SiNgle 1€ ChIP.........uviiiiiiiiieie e 95
9.3.5 Implementation of a D latch using a 7475 Chip..........coooi i) 96
9.3.6 Limitations of the D IatCh.............ooiiiiiiii e 96
9.4 Edge triggered THEIOPcoooiiiiiieiie et 98
1S IR 0] o o3 1§13 o o TSRS 100
S B (] o 1] PSSR 100
Chapter 10 SequeNtial CIMCUILS.......ooi i e e e eeeeeeas 101
L0 R o o 13 o o o PSSR 101
10.2 BBDOUNCING . ..t teeieitte et ettt e e e ettt e e e e e skt e ettt e e e e e bbb e e e e e e e s nabb e e e e e e e e nnnrenees 101
10.3 Implementing @ State MACKHINE..........cooiiiiiiiiiiiee e 102
0 0 VT T I B oo 11 g (= P 102

10.3.2 Implementation of a state transition diagram...........cccccuuuveiiiiiiiiiiieiieeeeee e 103

DIGITAL CIRCUIT PROIX 5

10.3.3 Hardware implementation of next state 10giC...........coorriiiieiiiiiie e 104

10.3.4 REAA ONIY MEMIOIY...cciiiiiiiiiiiieie ettt e et e e s e e e e e e nnnrneeeeeeeaan 105

10.3.5 Implementation of the MOd 4 COUNLEN.............oooiiiiii i e 106
O O o] T 11] o o P PPPP PP 109
O (=] o3 7= 3PS 109
Chapter 11 Use of these ICS N @ CRUL......oooii e 111
11.1 An oVerview Of the CPUL.......coo i 111
N I (o 1SR 112
LL.3 MUK oottt ettt ettt et e aanbbh bbb bbb bt ettt e et et e e e e e eeeeaes 112
I8 R o [0 1= PR 112
IS I T oo o =TS 113

I ST U0 T = T Y SRR 113

6 DIGITAL CIRCUIT PROS

Tableof Figures

Figure 31: Logisim Circuit to turn on light............cccuiiiiiiiiieeece s 36
Figure 32: Typical breadbOard..............uuueiiiiiiiiiieiiiiiee e 37
Figure 33: Breadboard [QYOUL.............cooi i e s e e e s s aeeanaans 38
T [0 IR 7 R VYT R 1] o] 0= £ TSP 39
FIgUre 35: A SHHPPEU WIFC.....oeeeeeiieeieee e e e e e e e e e e e e e e e aaaaaaaaeas 40
Figure 36: 7805 voltage regUIALOL.............ooo oo e e e e e e e e e e e e e e e e 41
Figure 37: Powering the breadboard...............oovioiiiiiiiiiii e A
FIQUIE 381 LED....ci i i ittt ettt e e e e et ee e e e e s e e e e e e e e e e e e e e e e e a b nreeeeeaa 42
FIgure 39: TOQQIE SWILCKL.cciiiiiiiiiie ettt e e e e e e s e e e e e 43
Figure 310: COMPIETEA CIrCUIL.......ceiieiiiiiiiiiie e e e e e e e s n e e e e e e anne 44
Figure 311: Debugging the CIFCUIL..........ooii it e e 45
Figure 41: Buffer and iNVEIMEr QateS..........oicuiiiiiiieiiiiiieeie et ee e e s sninnnne e e e nnnneeeee . A8
Figure 42: Buffer and inverter CirCuit in LOGISIML...........cviiiiiiiiiiieeee e A8
Figure 43 Truth table for AND and OR........cccoiiiiiiiiii e 48
Figure 44: AND, OR, and XOR galesS.........cceeeeeiiiiiiiiiii s cessccccinvivvvvnneveenneeeeeeeeneeensensnaaaneaeen . 49
Figure 45: AND, OR, and XOR gate CirCUIL...........ccceeeeeeeeiiiieiii e cecccvncvveeveenreeeeeeeeeeeee e A9
Figure 46: 7408 chip, circle indicates top Of Chi........cccccuiiiiiiiiiiiie e, 50
Figure 47: 7408 chip, notch indicates top Of Chip........vuiiiiiiiiii e, 50
Figure 48: 7408 pin configuration diagram.............c..uuuuiiiiiiiiieieri e 51
Figure 49: 7408 AND Qate CIFCUIL........ueiieiiieiiiei e eee e s e e e b eeereereeeeees 52
Figure B1: Serial AND CIFCUIL.......uuuuieiiiiiiieiecciee e e e e e ee e e 55
Figure 52: Parallel AND CIFCUIL..........uuuuiieiiieiiceiieee e e s e e e e e e s e aeeeeeeeeeees 56
Figure 53: 7408 pin configuration diagram............c.cc.uuuuieiiiiiiieieeiieee e 57
Figure 54: Serial AND implemMeNntation...........cccuuiiiiiiiiiiiiiiiiiieeieeeeer e e e e 57
Figure 55: Parallel AND implementation............coooiiiiiiiiiiiiiiiieeeeeee 58
FIGUIE BL: ALU .ottt e e e e e e e e e e e e e e s s et nr e e e e e s nnnnrrnneee e 61
Figure 62: Half adder truth tabIe...............oeiiiii i 62
Figure 63: Half adder CIFCUIL..........ooiiiriiiiie e e s e e e e ennee] 62
Figure 64: 7486 pin configuration IagraiL...........couiuuirririeeeeiiiiiieie e e e e ee e e e s s ee e e s nennneeeesd 63
Figure 65: Half adder implementation.............c..uuiiiiioiiiiiieee e 64
Figure6-6: Addition problem showing a carry Dit.............cccuuiiiiiiiiiiii e 65
Figure 67: Full adder truth taDLE..........ooiiee e 65
Figure 68: FUll @OUEN CIFCUIL........eeiiiiiiiiii it s e e e e e e e e s s e e e e e e e e aannes 66
Figure 69: Full adder impPIemMENTALION.........cooi i e e 67
Figure 610: 2 Dit fUll @AAEI CIFCUIL......ceiiiiiiiiieie e e e 68
Figure 71: Control NS fOr ALUL.........oooii e e e e e e e e e e e e e e e e e e 71
Figure #2: Decoder used to set ALU CONtrol lIN@S........uvviiiiiieiiiiiiiiiiieeeeeeeeee e, 71
FIgure 73: DECOAET CICUIL.......iiiiiiiiiiiiiee e e e e e e e e e e e e e e aaaaaaaaeas 12
Figure 74: 7404 pin configuration diAgramL..............uuuuiuiiiiiiiiiie e e e e e e e e e ae e e e e e e e e e e e e e e e e anaes 73
FIQUre 75: DECOUEY CIICULL.......eeiiiiiiiieiie ettt et e e e e e e e e e e e e e e aaaaaaeaens 74
Figure 76: 74139 pin configuration diagramm.............oooiiiiiiiiiii e e e e e e 75
Figure 77: 74139 deCOUEN CIMCUIL.......uueeeieieieiieei et eeeeeas 76
Figure 81: Multiplexer as a MemOry SEIECLON..........cci i ee e e e e e e e e e e e e e e e e 79
Figure 82: Truth table fOr @ MUX. ... e e e e e e e e e e e e e e e e e e e neenees 80
Figure 83: 1-Dit 4-10-1 IMUXeeiiiie ittt e e e e e e e e e e e e et e e e e e e e s nnnnneeeaeeeeeannnees 80

FIGUIE 84: 410-2 IMUX ...ttt ettt e e e e ettt e e e e e s e e e e e e e e anbbnreeeeeeeaned 80

DIGITAL CIRCUIT PROIX 7

Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 810
Figure 811
Figure 91.:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:
Figure 97:
Figure 98:
Figure 99:

Figure 910:
Figure 911:
Figure 912:
Figure 913:
Figure 914:
Figure 915:
Figure 916:
Figure 917:
Figure 918:
Figure 101:
Figure 1062:
Figure 103:
Figure 1064:
Figure 105:
Figure 106:
Figure 107:
Figure 108:
Figure 109:
Figure 1610: ALU Implementatian

TWO 4E0-8 MUXES.....ceeiieieee e e et et ettt e e e e e e e e eeeseneaannd 81
Schematic Of @ MUX ...ooiiiiiiie e e e e e e e e e e e e aaaaaeeens 82
Decoder used to implement @ MUX.........oooooiiiiiiee e 83
o o 1Y/ PSPPI 84
TAL53 CIFCUIMIAGIAIM. ...ceiieeiiiiiieiee e ettt e e e e e s e e e e e e r e e e e e s aannnneeeeeeaanes 85
1 74153 pin configuration diagram..........ccccuuviriiiiiiiiiiiiierereeer e e e e e e aa e e e e e e e e e 86
5 R of | (o1 U | PO PRPPTPPPRRPN 87
MEMOIY IN @ CPU......ooo e s e e e s aaans 89
SQUANE WAVE......ciiittiiis ittt e e ettt e e e e et e e e e e et r s e e e e e e e e e e e aabenb i reeeeeas a0
D = 1o o PSPPI 91
Characteristic truthable for a D latCh............coooiiiii e 91
D latch with €nable Dit............ooooiiiii e 92
Truthtable for a D latch with enable Dit............ccccoooiii 92
Circuit diagram for @ D [atCh...........oooiiiiiii e 92
Implementation of @ D [atCh.........oeeieiiii e 93
TATS5 PIN CONFIQUIATION. ...t eee ettt e e e e e e e e e s s n e e e e e e aannes 94
TATS PIN MEANINGS ...tteeteeeeeeiite it e e e e s st e e e e e e s s ee et e e e s s asn b r e e e e e s e bbb e e e e e e e s annrrrreeeeeans 95
2D 1Atch USING @ 7475 CRIP...eeeeeee e 96
State transition with Multiply OpPeration.............ccueviiiiiiiiiiiiiee e 97
State transition With add OPEratioN..............eeiieiiiiiiiiiie e 97
Two D latches t0 NOId COMECTBHAL.......uuuuriiiiiiiiiiiiiier e 928
Small time delay rSING EAQE.......coiiiiiiiii e 98
Edge trigger time iN SQUAIE WANE.ocuiriiiiee e st e e e et e e e e e s snnneeeeas Q9
lllustrativeexample of D flIBfIOPoooeeiiiiee e 99
Actual implementation of & D fHOP.......ccooiiiiiii 99
State diagram for a mod 4 COUNTEL..........ccocciiiirrre e e e e e e e e e e 102
State transition table for @ Mod 4 COUNLEL...........cooeiiiiiiiiieee e 103
Circuit overview for a state Machine...........ooouiiiiiii i 103
Hardware implementation for a mod 4 COUNLEL.........cccccciiviiiiiiiiiriieeeereeee e 104
ROM implementation of a mod 4 COUNLEL............oooiiiiiiii i 105
Mux implementation of next state logic for a mod 4 counter............ccccvvvveeeeeeeennen.. 106
74153 pin layout diagrail...........ooooiiiiiiii e 107
TATA PIN TAYOUL. ...t e e e e e e e e e aa e e e e e e e e e e e e s e e s s e e s e e asanneaaerreeseeeeees 107
1Y Fo o IR N oo 1U] =1 PSRRI 108
.. 113

Figure 1611: Decoder used in the CU for @ CRU...........cccco i 113

8 DIGITAL CIRCUIT PROS

| Forward

This text is designed provide an overview of the basic digital integrated circuits (ICs) that make
up the Central Processing Unit (CPU) of a computer. Therage of the material is at a

sufficiently deep level that the text could be used as a supplemental text for a class in Computer
Organization, but the material should be easily understandable by a hobbyist who wants a better
understanding of how a computeorks.

[.1 Why this book?

This book is designed to address three issues. The first is that textbooks are far too expensive.
As having completed my™book shows| understand the large amount of effort that goes into
writing, editing, producig, and distuting these booksBut the work involved no way justifies

the exorbitant prices that are charged, anddheltaniextravagant lengths people go to in order

to avoid paying those prices. It all plays into a hypaterialistic capitalism that can only

eventually fail as it pits consumers against producers, and ignores the overall societal good. |
hope by releasing free books (or books with nominal costs) that we can start to have a discussion
about the relative merits of this type of unfettered capitgland perhaps come up with better,

more sustainable market based economic models.

The larger problem with high priced textbookshie cost alone becomes an impediment to many
people who wish to learn the materi&8ocial good is advanced when information can be easily
disseminated, shared, and discusdedew providing this book for free as my contribution to
those who want to learn this material.

The second reason for this text is to provide a way to incdgplatas into classes in Computer
Organization, particularly online classes. As many colleges and universities moving more
classes online, there is a need to translate beneficial methodologies fretm fiaoe

environments to formats where they are usefan online environment. One such instructional
methodology that is hard to translate is laboratory experiences. A class in Computer
Organization benefits immensely from labs that allow the students to create physical circuits.
Labs provide reinforceent for the material covered in class, and the labs represent a fun and
exciting way for students to interact with this material. This text is meant to provide a way to
incorporate labs into any class on Computer Organization, but especially onlins.classe

Finally, this text book is written for hobbyists who want to better understand digital circuits and
how they work. It is designed for the complete novice, someone who has never seen a
breadboard or IC chip. fact,it is hoped that people who arigaad they could never get a

circuit to work, or understand what it does, will try the exercises in this book and find out just
how much talent they have when it comes to understanding and creating circuits.

|.2 Intended Audience

The intended audience is catto what material is covered, the order in which it is covered, and
how it is covered. Thus understanding the intended audience will help the reader understand
how the book is oriented and how to use it.

This book is designed for two types of peopléneTirst is hobbyists who want to understand
how a computer works, and would like to be able to build digital circuits using standard chips

DIGITAL CIRCUIT PROIX 9

they can easily buy online. The book is designed to describe and implement the major ICs used
in a CPU, and to giva rough idea of how they are used.

The second audience for this text is students who are taking a class in Computer Organization,
which is the study of how a CPU works, and the various issues in the design of computers. The
text is intended as a labanual for a Computer Organization class, and in particular targeted at
students who are taking this class in an online environment.

Understanding the target audience for this book is important understand how it is written. First
the book is written to mke@ understanding and implementing circuits as simple as possible for
novices who have little support in implementing these labs. The labs assume no institutional
infrastructure or support. No lab space or extra equipment should be needed, and students
should be able to complete these labs at home with only the equipment listed in chapter 1.

Second the book is written to address the interests and needs of both the hobbyist and CS
students. Both groups have similar but somewhat different levelseoéss and the text
attempts to address the needs of both groups.

How the text supports these two groups is explained in the next two sections.

[.3 Easy to understand circuit design and implementation

One important characteristic of the target readers for tluk isothat they will have little or no
face2-face support when implementing the components. Thus the book is written to help
maximize the chance for success in implementing the circuits in each chapter. To do this the
book does the following:

1) All partsthat are needed for all circuits are listed, and can be easily obtained from a
number of online sources. There is no need to start a project and reach a point where
some extra part is needed.

2) An attempt was made to keep the kits as low cost as possietext is free for
download. When the text was written, a complete lab kit (without tools) could be ordered
as parts for $2825, with $5%$10 extra if wire strippers or pliers are not available. This is
a reasonable cost considering many textbooksytoda sell for $100 or more.

3) Even simple steps, such as how to strip wiaescovered.

4) An overview of each circuit is given, where the functioning of the circuit and how it is
used is explained. Detailed step-step instructions with photographs areluded with
each lab so that the actual wiring of the circuit can be examined.

5) Extensive usés madeof a powerful yet easy to use circuit design tool named Logisim.
Logisim allows the reader to interact with the circuits and components presented in each
chapter to understand how they work, and to modify these circuits to implement
enhanced functionality for the component.

|.4 Material covered in the text

A hobbyist will be most interested in a general understand of what each digital component is,
and how it § used in a CPU. They are also interested in implementing successful projects which
are fun, while gaining some understanding of the material.

10 DIGITAL CIRCUIT PROS

Students using this text as a lab manual are more interested in understanding the details of digital
circuits, n particular how to the circuits in their Computer Organization class, and often beyond.
Since the students will often be online, success in the projects is also a mgjasgediaving

fun. Let's face it, actually implementing working, physical otgehat turn light bulbs on should

be, and is, fun. There is no reason not to have fun while enhancing learning.

This book is designed to engage both types of readers. Chapters 2, 3 4, and 5 of the book are
designed to give the reader some basic uraaisig of Boolean algebra, how a CPU works, and
how to build a circuit on a breadboard. The material on Boolean algebra is not rigorous, and a
class in Computer Organization would need to supplement this material. The description of a
CPU needs to be gady extended for a class in Computer Organization. But the material in this
text is sufficient for the reader to understand enough Boolean algebra to understand basic
circuits, and how they are used in a CPU.

Each subsequent chapter will cover one digtomponent. The chapter will contain an
overview of the component, and a brief description of how it can be used in a CPU. For
instructors who desire that students do more with the circuits than what is presented in the
chapter, exercises (both in Legn and with the breadboards) are given at the end of each
chapter.

[l Additional text materials

This text can be downloaded framtp://cupola.gettysburg.edu/oer/Additional materials for
the text,including a complete parts lisbm commercial suppliers with part numbers and prices
can be found dittp://chuckkann.com

1l About the second edition

Other than numerous edits to fix errata in the first edition, tha neason for this new release of
the text are two fold, and based on the feedback | have received from the first edition.

1. Chapter 2 has been changed to provide a more theoretic background in Boolean algebra
for the cases where this book is being useddouase on Computer Organization. This
chapter can safely skipped by a hobbyist only interested in how digital circuits work.

2. The chapter 2 in the first edition was intended to gigerdext for the ICs developed in
this text. It seemed out of place atidjointed from the rest of the text. The role of
chapter 2 has been moved to chapter 11, which shows the ICs in the context of a working
CPU developed by the author.

IV Using this book in a class on Computer Organization

The central question for professdi@king to use this book is how the book can be applied to
their classes. The following is an outline of how | use this text in a Computer Organization class.

In a class on Computer Organization | generally do not get into CPU data path until the eighth
week of the semester. For the first seven weeks of the semester | cover background material.
The first two weeks of the semester | cover a basic review of material that | find students often

http://cupola.gettysburg.edu/oer/1
http://chuckkann.com/

DIGITAL CIRCUIT PROIX 11

do not understand well. Boolean Algebra, binary mathematissc(@nplement addition,
subtraction, multiplication, and division), and floating point number format.

The next five weeks of the semester are spent covering assembly code. | find this is important
for two reasons. First the students should know howitttmegher level programs are translated
into programs which the computer can execute. It allows the students to see all data in a
computer as just a binary number, and to understand concepts such as variables and pointers
to variables. Seconaching asembly shows the translation by the assembler of the student's
program into machine language, and the format of machine code. Understanding how a
program is presented to the hardware is important to the understanding of how the CPU
executes the program.

This leaves the last 5 weeks of a semester for actually studying the data path which defines the
CPU.

In this type ofsemester] do not cover the digital components in this book as a single entity.
Chapters 1, 2, and 3 are assigned the first week, and each subsequent chapter assigned each
subsequent week. A short overview of each circuit is provided in class, but the students a
largely left on their own to do the problems associated with the circuit. By the eighth week, all
of the circuits have been covered and the students are ready to begin studying the data path of
the CPU. The digital circuits that have been covardtis text formthe basis for the

components in the CPU.

A samplel5-weekschedule follows. Note that the assignments from this text are the second
topic in each week. The first assignment each week represent material used in covering
Computer Organizain using aMIPS programming text.

Week Topic Circuit Assignment
1 1. Review: Boolean Algebra, Binary Arithme
2 1. Floating Point Numbers Due: Chapter 3: Exercise 1

2. Basic circuits _
Chapter 4: Exercises 3, 4A, 5

3 1. Introduction to MIPS assembly: Chapter 5: Exercises 1 & 2.
HelloWorld Program Implement the circuit for one
2. Associative operators type of gate only (your choice
4 1. MIPS operators Chapter 6: Exercises 2 & 3
2. Adders
5 1. Nonreentrant subprograms, accessing Chapter 7: Exercise 1

memory

12

DIGITAL CIRCUIT PROIS

2. Decoders
6 1. Program Control Structures (branches an| Chapter 8: Exercises 1, 2, 3 &
loops)
2. Multiplexers
7 1. Reentrant subprograms and program sta¢ Chapter 9: Exercise 1
2. Latches and fliflops
8 1. Arrays Chapter 10: Exercises 2, 3, &
2. State machines
9 1. Multiplication and Division circuits, Parallg
Adders
10 1. MIPS data path
11 1. Pipelining
12 1. Pipelining (continued)
13 1. High performance memory or concurrenc
14 1. I/O or other topics
15 Final

DIGITAL CIRCUIT PROIX 13

Chapter 1 Before you start

1.1 Introduction

This chapter provides averview of the entire text, and what the reader can expect to learn. It
also provides a listing of all materials needed to implement the circuits covered in this text.

1.2 Computers and magic

While most would not admit it, people believe that computersaaligtobey the laws of magic
Computers do such wild and miraculous things that somehow we all believe computers are not
really machines at all, but there is something very strange and magical which must go on inside
of a computer. @mputers seem to do things which are beyond the physical laws of nature. And
the growth in the capability of the devices which we use every day, which are small and simple
to use yet so amazing in what they dan reinforceghis idea that computers areleed magic.

In reality, we know computers are simply machines. The first machine ever designed that had all
the functionality of a modern computer, the analyte@aiine wasdesigned by Charles Babbage

in 1838 The analytical engine was to be purely mechanicatlasdjned toun on steam.

While it was never implemented, it is a perfectly workable design, and incorporates all the
necessary functionality of a modern computer.

The analytical engine sh@that computers can be understood in purely mechanical terms. To
aid in understanding computers, this text will look at the heart of all computers, the Central
Processing Uni(CPU). The first step in understding computer is to understand a CPU.

A CPU is entirely made up of wires and logic components cgliées These gates are very,

very tiny, and very, very fast, but they are just electronic circuits which perform simple
operations. Thenly operations these gates need to provide are the Boolean@R/2nd NOT
operatorswhich will be explained in Chagt 4. More surprisingly, AND, OR and NOT

functions are more than what is needed. All of the logic in a computer can be implemented using
only one type of gate, the N&tND, or NAND, gate. Thus a computexr simply a collection of

these wires and gates, and can be completely explained as a mechanical device using only one
type of computational element, the NAND gate. This really is almost as amazing as computers
being made of magic, but much more useful.

To simplify the CPU, collections of AND, OR and NOT gates are organized into digital
components (called Integrated Cirguior ICs) which are used to build the CPU. These digital

ICs are calledanultiplexors, decoders, flifiops (registers) and Arithmetic Logic Units (ALUS).

Some of these components, such as the ALU, are made up of other digital componeass, such
adders, subtracters, comparators, and circuits to do other types of calcul@tianbook will

cover these digtl ICs, explaining how they are used in a CPU, showing how these digital
components are made using simple gates, and actually implementing the circuits on a breadboard
using IC chips.

Once completing thibook,the reader should have a concept of what is a CPU, a good
understanding of the parts which make up a CPU, and a rudimentary concept of how a CPU
works to convert 1s and Os into the amazing devices that are so central to our world.

14 DIGITAL CIRCUIT PROS

1.3 Reading this text

Thistextbook is intended for multiple audienceShapter 2 of this text is an overview of
Boolean algebra and included largely Wdren the text isise in classes covering digital circuit
design. Chapter 4s not necessary to the understanding of the febedoook, andan be safely
skipped bysomeone using this text as a lab manualvould recommendhat a hobbyist using
this book for bread board project skip Chapter 2 altogether.

Chapter 11 is an implementation of a CiAULogisim, and shows how a CPU can be designed
using only wires, gates, and the ICs that are covered in this text. The implementation is a real
CPU which can be programmed, producing input and output. However even this simple CPU is
too complex to im@ment in a Breadboard.

Chapters 3 to 10 are the chapters which implement the projects. These chapters are the important
chapters for someone interested in implementing the ICs used in a CPU.

1.4 Materials Needed

This section will outline the materials youlvneed for the rest of the book. There are two types
of materials you will need. The first will be a software program called Logisim, and the second
will be physical parts needed to implement the circuits on a breadboard.

1.4.1 Logisim

Logisimis a tool which is used to describe the circuits found in this book. Logisim is free and
easy to use, and can be founthtép://ozark.hendrix.edu/~burch/logisimThere is a download
link at thd site, as well as tutorials and videos which can help you get started.

All circuits in this book are implemented in Logisim, and can be found at
http://www.chucklann.com/

1.4.2 Hardware

The following is a complete listf hardware that is needéalimplement the basic circuits in the
text. Itis broken down into 3 sections; chifmxls, and miscellaneous parts. For a complete list
of parts with part numbers from various retail@lsase go ttttp://www.chuckkann.com

When buying the hardware, users will often have some of the needed material already on hand.
Things like wire stripper, needlgose pliers, and a small flatade screw drier are common

items that many people will have readily available. Other items like wire or 9 volt batteries are
often available from other uses. If you already ®@eome ofthe parts or equipment listed below,
there is no need to buy them again

Chips

Except for the 7805 voltage regulatol, @ the chipsare standard 7400 series chips. For more
information about 7400 seriésgic chips, seéttp://en.wikipedia.org/wiki/7400_serie
complete list of 7400 series chips can be found at

http://en.wikipedia.org/wiki/List_of 7400_series_integrated_circuits

The dips in this series represent most of the logic components and Integrated Circuits (ICs) that
are needed to implement most digital logic applications. The numbering on chips is as follows:

http://ozark.hendrix.edu/~burch/logisim/
http://www.chuckkann.com/
http://www.chuckkann.com./
http://en.wikipedia.org/wiki/7400_series
http://en.wikipedia.org/wiki/List_of_7400_series_integrated_circuits

DIGITAL CIRCUIT PROIX 15

74tttsssn

where

74. indicates the chip is a 7400 series chip
ttt: the type of logic usedin this text the following are valid:
0 blank- transitortrarsitor logic(ttl)
0 HC - high speed CMOS
o0 HCT - high speed CMOS, ttl compatible
1 sss: The type of chip. For example:
0 7408 is a quad-ihput AND gate chip
0 7432 is a quad-thput OR gate chip
1 n Indicates the packaging of the chip. Only tyge nsed in this text.

= =

For most of the 7400 series chips below, ttl, HC, and HCT chips can be considered
interchangeable in the circuits in this tex8o for a 7408 quadifput AND gate chip, the
following chipswould all be valid:

7408N, 74HCO8N, 74HCIBN
However the following chips could not be used:

7408D- Any chip designated D is a surface mounted chip, and will not work with the
breadboard. Other types of packaging might be encountered, and should be assumed not
to be compatible.

74LS08N- There ae numerous technologies used to implement 7400 components. For
this text, only ttl, HC, and HCT types of chips are recommended. Some type of chips
(ACT, BCT, FCT, etc) would probably work, and others (LS, ALVC, etc) will definitely
not work. For readsrinterested in a more detailed discussion of the chip technology,
please refer to the Wikipedia page referenced above.

To simplify the process of obtaining the correct chips, a web site is maintained at
www.chuckkann.com/books/DigitalCircuits/kits.htmit. lists a number of retailers who sell
these chips, and the retailers part numbers for each chip.

A complete list of follows.

78055V voltage regulator

7400 quad 2input NAND gate

7402quad 2input NOR gate

7404 hex InvertenOT gate)

7408 quad 2input AND gate

7414 hex Schmitt Trigger Inverter (NOT gate)
7432 quad 2input OR gate

7474 dual D positive edge triggered fiifop
7486 quad 2input XOR gate

RPRRPRNRRRPR

'The exception is the 7414 chip, which must use the ttl IoBi€.and HCT chips are not substitutable.

16 DIGITAL CIRCUIT PROS

74139dual 2line to 4line decoder 1
74153dual 4to-1 Multiplexor 1

Important Note: In this text all chips will be referred to using their generic numbers. So while
the circuits in the text will generally use a 74HCTO8N chip, the text will refer to the chip as a
7408 chip.

Tools

A few tools are useful to implement the labs in this text. The wire strippers are the only required
tool, but needle nose pliers are very handy when doing wiring, and a flat blade screw driver
makes it much easier to pry chips from the board safely. These tea#eanr in toolboxes that

the reader might already have. If the reader does not have one or more of these tools, they
should be obtained.

wire stripper 1
needle nose pliers 1
small bladed screw driver 1

Miscellaneous

A number of miscellaneous parts are needed to implement the circuits in this text. The number
of type of these parts is limitegbecifically to keep theost of the kits to a minimunfor

example, the labs in the text use 4 colors of wire for clarity: red, black, yellow, and green. The
kits below only include black wire. The reader can obtain multiple colors of wire if thag desi

but the circuits can be implemented using a single color wire.

Be careful of substitutions. For example, a 400 point solderless breadboard is cheaper than the
830 point solderless breadboard which is recommended, and a thrifty reader might betempted
substitute the smaller board since it looks very similar. However several of the circuits in this
text will not fit on the 400 point version.

Wire, black 1 25 foot spool
830 point solderlessréadboard 1

9V battery snap 1

9V battery 1

toggle switches 4

red LED 3

green LED 3

1k resister 1 package of 10
0.1pf capacitor 1 package of 10
0.22ufcapacitor 1

mini push button switch (tactile button switch) 1

1.5 Some notes

There is a wiring conventiomsed in this book which the reader should be aware of. This book
uses 4 colors of wires: red, black, yellow, and green. Red wires are wires which are always
expected to carry a positive voltage. Black wires are wires which are always expected to be

DIGITAL CIRCUIT PROIX 17

comected to ground. Yellow wires aused forwires running from the battery towards the

output LED. Green wires atesed forwires which recycle backwards towards the battery (the

use of green wires will become clearer when the latch and counter careuitsplemented).

The only reason these colors were chosen is to enhance the readability of the circuits for the text.
The standard material for the lab kit only recommends purchasing black wire. The color of the
wire is inconsequential to the workin§the circuit, though using only black wire means your
circuits will appear slightly different from the ones in the text, and be harder to read.

Be careful when doing the labsThe exercises in this book require the reader ip wire and

to use simple logic chips. While a young person could do the exercises in this book, it is
intended for an adult audience or at least adult supervision. The parts are small, pointy and
sharp, and care should be used when handling them.irf@jippd stripping wires can result in
small pieces of plastic and metal becoming airbofftee components used in these circuits can
become very hoespecially if installed backward$Vhile there is nothing inherently dangerous
in working with the circus, careshould be used. afety glasseare recommendeand if any

chip or part of the circuit become hot, quickly remove the power by disconnecting the battery.
Do not touch any hot chips or other components, aaitifar chips or other componentsdool
before handling them

1.6 Conclusion

Computers are machinesThey are amazing machines, but they are still simply machines. This
book will start to demystify computers by defining the basic components which make up a
computation machine. It will do this by allowing the reader to develop the basic components
which make up a computer, both virtually in software and physically in hardware.

18

DIGITAL CIRCUIT PROIS

DIGITAL CIRCUIT PROIX 19

Chapter 2 Background Material

2.1 Introduction

This chapter introduces the necessary Bootdgabra for understanding circuits. It covers truth
tables, Disjunctive Normal Form (DNF) for Boolean functions, Boolean relationships, how to
use Boolean Algebra to manipulate and reduce Boolean functions, and how to use Karnaugh
maps to minimize Booledunctions.

While the material in this chapter can be understood by someone with a good understanding of
algebra, it can be a bit esoteric and is not needed to understand the rest of the textbook. This
chapter can be safely skipped by someone usingpdiok as a lab manual. | would suggest that
this chapter be skipped by hobbyists using this textbook for bread boarding projects.

2.2 A Universal Set of Boolean Operations

When thinking about Boolean algebitais important to realizéhat Boolean values are binary,

so any Boolean variable is limited to two values. Often these values will be True gibkaise
reality any binary values can be used. In this textbook, the value 0 will béousedse, and 1

for True The reason for using 0 and 1 is that it is a more natural and useful way to represent
these values in an engineering context, which will hopefully become apparent to the reader as
they continugheir study of computer organization.

To be useful some minimum set of operations which can be used to manipulate those Boolean
variables. For Boolean algebra this minimum set of operatwitisinclude just 3 ogrations,

they are AND, OR, and NOT. The AND and OR operations are binary operations (operations
that take two operands), and tdOT is a unary operation (operation that takes one operand).
These operations will be defined formally using truth tablékemext section. For now they

will be defined informally as follows:

1 the AND operator is f(A,B), where f(A,B) is 1 (true) where A, B are both 1 (true)
otherwise it is O (false).

1 theOR operator is f(A,B), where f(A,B) is 1 (true) is A or B or both A and B are 1(true),
otherwise it is O (false).

1 the NOT operator is f(A), where f(A) is 1 (true) if Ais O (false), and f(A) is O (false) if a
is 1 (true).

This leads to a question as thythese three, and only these three, operationshasen.The
answer is that these three operationsuareersal Boolean operationdn this context, universal
means that anBoolean function can be reduced to combinations of these three operations.
Thereforethere is never a need define any otheBooleanoperations to calculate a Boolean
function. Other useful Boolean operations will be introduced in this textbooledlize that
these operations can be reduced to simply AND, OR, and NOT opefatiires proof of this
will be left to the exercises at the end of this chapter.

%This result, and AND, OR, and NOT are Universal over Boolean functions is even more amazing when it is realized
that any effectively computable function is computable using only Boolean functions. This festudtny

effectively computable function is computable with just the operations AND, OR, and NOT, was personally mind
blowing when 1 first understood it.

20 DIGITAL CIRCUIT PROS

In this textbook, the ANDperation will be written using the multiphtion sign, "*", and the

result call a product; the Odperation will be written using the "+" sigand will be called a

sum; the NOToperation will be shown by following the variable withiagée """ mark, e.g. A'is
NOT-A. Note also that the "*" symbol can be dropped as in standard algebra, so "A*B" can also
be written simply as "AB".

2.3 Truth Tables

Boolean functions are functions that perform operations on sets of Boolean varkables.
exanple, a Boolean function f, which takegnput vdues A andB, would produce an output
value, f(A,B). The input valuesandB are binary, as is the output valig&,B). It is possible
to completely characterize the function f(A,B) by enumerating alpttssible input
combinations and A and B (00, 01, 10, 11), and specifying the output f(A,B) for each input
combination.

A truth tableis standard wayo represena Boolean function which enumerates all the possible
outputs of that functionSo assume f(A,B) is the AND operator. The truth table for this
operation is:

Input Output
A B AND

0 0 0

0 1 0

1 0 0

1 1 1

Table2-1: AND truth table

More than one function can be represented in a truth table. A truth table that represents two
functions, AND and OR, would be the following:

Input Output

A B AND | OR
0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

Table2-2: AND and OR truth table

All Boolean functions can be represented using truth tables (the proof for this is left for the
exercises at the end of this section), though the size could become quijteripagsibly

infinite. For example, consider two Boolean functions f1(A,B,C) and f2(A,B,C). The truth table
for these two functions would be written as follows:

DIGITAL CIRCUIT PROIX 21

Input Output

A B C f1(A,B,C) | f2(A,B,C)
0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 0 1

1 0 0 1 0

1 0 1 1 1

1 1 0 1 0

1 1 1 1 1

Table2-3: Truth table for f1(A,B,C) and f2(A,B,C)

2.4 Disjunctive Normal Form(DNF)

Disjunctive Normal Forn{DNF) is a standard way to writoolean functions. It can be
described as a sum or prodyead an OR and AND'S To understand DNF, first the concept of
amintermwill be covered.

A mintermis a row in the truth table where the output function for that term is true. For example,
in Table 23, the function f1(A,B,C) has a minterm when A=1, B=0, and C=0. We can write this
minterm a AB'C' (A and neB and notC), since A is true, and B andate both false. Function
f1(A,B,C) also has three other minterms, AB'C, ABC', and ABC. So the DNF for the function
f1(A,B,C) would be written as:

f1(A,B,C)= AB'C'+ AB'C + ABC' + ABC
Note that these minterms are numbers 4, 5, 6, airdtfie table so ahort hand to write the DNF
is the following:

f1(A,B,C)= E(4,5,6,7)

Likewise f2(A,B,C) can be written as:

f2(A,B,C) = AB'C + A'BC + AB'C + ABC

=F(1, 3, 5, 7)

Note that any Boolean function can be written in DNF, and DNF requires only 3 types of

operations, the AND, OR, and NOT. This is why AND, OR, and NOT are univérkal proof
of this is left for the exercises at the end of the chapter.

% Another way to represent the function is Conjunctive Normal Form (CNF). CNF can be describediast @fpr
sums, or an AND or ORs. The use of CNF is left to the problems at the end of the chapter.
* Note that the number starts at 0, not 1.

22 DIGITAL CIRCUIT PROS

2.4.1 Boolean Relationships

The next question to be asked is if any Bawol function can be wten in DNF, should DNF be

used to represent all Boolean functions? The answer to this question comes from the engineering
the circuit. At some point, a computer has to implement the Boolean function as a circuit. That
circuit will need 1 gate for each operation. And in engineering the circuit, the goal is to

minimize the number of gates needed.

Why should the number of gates be minimized/hen a gate is actually included in a circuit, it
has3 bad effects:

1 Every gate requires power to operate it. The more gatés circuit means that
powerwill be neectdto operate the computer.

1 Since gates require power, they produce heat as a result. More gates mean more heat
from the CPU.

1 There are alays delays in propagating the signal across the gates. The speed of light
is very fast, but it is not infinite. The further the electricity has to go to reach the end
of the circuit, the longer it takes. So the more gates in the circuit, the slow&Pithe
And in modern computers, the speed of light is often the limiting factoownfast
the CPU can cycle, and thus in the speed of the. CPU

Thus the goal in any circuit design is to limit the number of gates in the circuit. For the function
f1(A,B,C) in Table 2.3, the number of AND gates is 8, or gates is 3, and not gates is 4, or a total
of 15 gates. The question is whether or not the circuit can be implemented in less than 15 gates.

Boolean algebr& the mechanism which ised to answer this question. Boolean algebra is just
like traditional algebra in that there are a set of relationships that can be applied to a function to
transform it. And those operations are generally somewhat analogous to the operations in
traditioral algebra, making the transition to Boolean algebra somewhat easier. A list of these
relationshipgs given in table 2.4.

Relationship Rule | Relationship Rule

No. No.
X+0=xX 1 Xx*0=0 2
x+1=1 3 X*1=x 4
X+X =X 5 X*X=X 6
E b EQ I 7 E F EQ I' |8
X+y=y+X 9 Xy = yX 10
X+(y+z)=(x+y)H 11 | x(yz)=(xy)z 12
X(y+z) =xy +yz 13 | x+yz = (x+y) (x+z) | 14
GEbBUVQ I |15 [0EBUVUQ I E|16
GEQUQ I E|17

All of these relationships except for 15 and 16 should can be easily derived. Relationships 15
and 16 are known as DeMorgan's Isawnd should simply be memorized.

Applying these relationships for f1(A,B,C), we find the following:

DIGITAL CIRCUIT PROIX 23

f 1(A,B,C) = AB'C' + AB'C + ABC' + ABC
= AB'(C'+C) + AB(C'+C) (rule 13)
= AB'(1) + AB(1) (rule 7)
= AB'+ AB (rule 4)
= A(B'+B) (rule 13)
=A(1) (rule 7)
= A (rule 4)

This expression is obvioussympler than the original, and the number of gates needed for this
circuit has been reduced from 15 to 0. This reduction was obviously worth the effort.

But how did we know to continue to reduce this expression after "AB' + AB"? This was a
significant reluction in itself, form 15 to 4 gates. Since we have now shown that DNF does not
necessarily (and often does not) result in a minimum expression, how can we know if a
minimum expression has been reached? That is the topic of the next section of tkis chap

2.5 Karnaugh Maps (K-maps)

Karnaugh Map (K-maps) are a mechanism for creating minimum Boolean expressions from a
truth table K-maps rely on Gray Coddo create the mapping space, so this chapter will first
cover Gray Codes. The chapter will continue with how to setKyoreap, how to solve aK

map, and how to solve aiap withdon't careconditions.

2.5.1 Gray Codes

Gray codes are simply binary codes vehttre numbers adjacent numbers differ by a single digit.
A single digit number only has a single digit, so it is trivial. Now consider the Gray Code for a
two digit numbes. It would be:

00
01
11
10

Table2-4: 2-digit Gray Codes

In this Gray Code, each number differs from its neighbor by 1 digit>008>11->10->00 (note

that the Gray code m@rcular or wraps around from the bottom to the top). A 3 digit Gray Code

can be created hgflecting(like a mirror) the 2 digit Gray Code through a plane, and

prepending a 0 to the numbers at the top of the table, and a 1 to the numbers at the bottom of the
table.

000
001
011
010
110
111
101
100

24 DIGITAL CIRCUIT PROS

Table2-5: 3-digit GrayCodes

Once again that all values in this table differ from the adjacent values by 1 digit, but in addition
the table has been grouyo collections of Zvit groupings. For example, the rows 0 and 1 both
contain 00x, rows 1 and 2 contain Ox1, rows 2 andrain 10x, rows 3 and 4 contain x10, etc
(where x is 0,1). Note that once again the table wraps, so rows 7 and 0 both contain x00.

Gray Codes are useful in partitioning a space to group like elements together, and this property
will be used in the néxsection on Kmaps.

2.5.2 2-Variable Karnaugh Maps

A Karnaugh maygor simply K-map is a mapping of a truth table that partitions the truth table so

that elements that have the same values are placed adjacent to each other. It is then easier to see
what terms are in common, and to reduceBbeleanexpression For example a-2ariablke K-

map for a function F(A,B) would be represented as follows, with the values of A in rows and the
values of B in the columns.

AB |0 1
0 AB' | A'B
1 AB' | AB

Table2-6: 2-Variable kMap

In this table therows correspond to A and Rét and the columns correspond to B and-Bot

Table2-8: B/B' for a 2variable kmap

DIGITAL CIRCUIT PROIX 25

Sincethe K-map has grouped the terms together, it is easier to find a minimum Boolean
equation. For example, consider the following truth table:

Input Output
A B AND

0 0 1

0 1 1

1 0 1

1 1 0

Table2-9: Truth Table for 2variable kmap problem.

Thistruth table maps to the following-Kap. In this Kmap groups of 2adjacent items are
found which for a 2variable kmapcan only be groups @f, 2andl1. In this map there are 2
groups of 2, as shown below.

A/B J0 1
0 1 1
1 0

Table2-10: Solving a Zariable kKmap
The two grouping found correspond to A" and B', so the final equation for-tmigkis A'+B'.

Two variable kmaps are trivial, and so not very interesting. The next two section will show
how to solve the Knaps for more 3 and 4 variables.

2.5.3 3-Variable Karnaugh Maps

3-variable kmaps correspond to Boolean functions of tbati f(A, B, C). The Kmaps again

allow a truth table to be mapped so that rows that differ by 1 or 2 values are placed next to each
other. To do this, the Gray Codes that were introduced earlier are usecholNdteevalues for
variables B and @re nunberedas Gray Codes in thev@ariable kmap table.

A/BC |00 01 11 10

0 A'B'C' | AB'C | ABC | ABC'

1 AB'C' | AB'C |ABC | ABC'
Table2-11: 3 variable Kmap

26 DIGITAL CIRCUIT PROS

Note that once again this number has resulted in regiche K-map where the variables differ
by 1 digit, as shown belowNote that the region @iraps aroundhe table.

0 ____|AB'C' |AB'C | ABC | ABC' | &
1 | AB'C' | AB'C |ABC |[ABC |4

Table2-12: A/A' region of a 3variable kmap

00 11 10

AB'C A'BC | ABC

AB'C' | AB'C | ABC | A'BC
B' B

Table2-13: B/B' region of a 3variable Kmap

AB'C

Table2-14: C/C' region of a &ariable kmap

To use the Kmap to solve 3 variableinctions once again groupings of are found, which for

a 3variable kmap are 8, 4, 2, and 1. The larger the grouping, the fewer the terms, so groupings
of 8 are chosen over groupings ofyoupings of 4 are chosen over groupings of 2, and

groupings of 2 are chosen over groupings.of 1

The following is an example of how to use arap to solve a Boolean expressid@onsidera
function f(A,B,C) has the following truth table:

Input f(A,B,C)
A B C AND

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

DIGITAL CIRCUIT PROIX 27

This expression can be represented as the following sum of products.
f(A,B,C) = E(O, 4, 5, 6, 7)

The minmum function for this Kmap consists of one group of 4 and one group of 2, and
corresponds to the equati@gn,B,C)= A+B'C' . Note the celhB'C' is used in bth equations
which isrule 5 from the Boolean relationship table, X+X 5 Znd means that any term in the
summation can be used more than once in minimizing the circuit.

To show that the final equation corresponds to the initial trutle taldebra will be used to
reducethe expression from DNF to the final form.

f(A,B,C) = E(O, 4, 5, 6, 7)
=AB'C'+ AB'C' + AB'C + ABC' + ABC

A'B'C'+ AB'C' + AB'C' + AB'C + ABC' + ABC (rule 5)

(A+A") B'C' + (AB' + AB)(C+C" (r ule 13)

(1) (B'C") + (AB' + AB) (1) (rule 7)

B'C' + AB'+ AB (rule 4)

(B'C") + A(B'+B) (rule 13)

(B'C") + A1) (rule 7)

(B'C") + A (rule 4)

2.5.4 4-Variable Karnaugh Maps

While K-mays larger than 4 variables exist, they require more than 2 dimensions and are thus
hard to solve by hand, though there are algorithmic ways to do this and there are many programs
online that can solve them. This text is only interested in presenticgrloept of Kmaps and

how they are solved, so it will end with presentingatable kmaps.

4-Variable KKmaps correspond to Boolean functions of the form f(A, B, C, D). TFhwalis

again allow a truth table to be mapped so that rows and columns thabyliffeor 2 values are
placed next to each other. To do this, the Gray Codes that were introduced earlier are used.
Note how the values for variables A,B and C,D are numbered as Gray Codes-wratiabl® Kk
map table.

28

DIGITAL CIRCUIT PROIS

AB/CD | 00 01 11 10

00 A'B'" (A'"B'"|A' BG6|A' Bo
01 AOBC(AGBC|IAG6BCA' BC
11 ABCO6IABCOG|ABCD |ABCD
10 ABOC(ABO6C/IABG6CABOGC

Note that once again this number has resulted in regions in-th@pdvhere the variables differ
by 1 digit, as shown below. Note that the regiBhs a rwdap &dundthe table.

AB/CD [00 01 11 10 AB/CD | 00 01 11 10
00 AB'CD’ |AB'C'D | AB'CD | AB'CD™) 00 ARCD TAB'CD TARCD [ABCD) ®
01 [ABC'D |[ABCD [A'BCD | ABCD_J 01 ABCD' | ABCD |ABCD | ABCD™ T _
11___|ABCD |ABCD |ABCD |ABCD | 11 ABCD | ABC'D |ABCD | ABCD"
10 |ABCD [ABCD |ABCD | AB'CD' 10 [ABCD [ABCD|ABCD | ABCD | ¥
AB/CD [00 01 [11 | 10] AB/CD | 00 01 [11 10
00 AB'CD’ | AB'C’'DY AB’CD | AB'CD’ 00 AB'CD YAB'C'D [AB’CD [(AB’CD
01 A'BC'D [A'BCD| A'BCD | ABCD’ 01 A'BCD’ |A'BCD [A'BCD [ABCD’
11 ABC'D’ [ABC'D | ABCD | ABCD’ 11 ABCD’ |ABC'D |ABCD [ABCD’
10 AB'C'D’ | AB’C'D) AB’CD [AB'CD" | 10 AB'C'D’ JAB'C'D [AB'CD. AAB’CD’)

a4 cC 0} D n

To use the Kmap to solve ¥ariable functions, once again groupings ba& found, which for

a 4Variable Kkmap are 16., 8, 4, 2, and 1. The larger the grouping, the fewer the terms, so
groupings of 16 are chosen over groupings of 8, groupings of 8 are chosen over groupings of 4,
groupings of 4 are chosen over groupings,&ritl groupings of 2 are chosen over groupings of

1.

The following is an example of how to use arép to solve a Boolean expression. Consider a
function f(A,B,C) has the following truth table:

Input f(A,B,C)
A B C D AND

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

DIGITAL CIRCUIT PROIX 29

Rl R R R R R R R o o o o
R R o o k| k|l o o Rl Rl o o
R o k| o k| O k|l o Rl o Rl O

R R R R o o o Rl Rl R Rk

Rl R R R o o o o B R Rk

This expression can be represented as the following spnodficts.
f(A,B,C) = E(O, ,8,12,53 14685 7)

The minimum function for this ¥nap consists of one group ®&and one group of, and

corresponds to the equatitin,B,C) = B + C.bNdte the ceino €' DoandAB Co are

used in both equations, which is rule 5 from the Boolean relationship table, X+X = X, and means
that any term in the summation can be used more than once in minimizing the circuit.

10

30 DIGITAL CIRCUIT PROS

To show that the final equation corresponds to the initial taiile, Boolean algebra can be
used. The derivation of the final equation from the DNF is left as an exercise.

255Donot care conditions

Sometimes when specifying an equation there are a number of situations where the input is not
used. If the input is not used, then any value (0 or 1) can be used, and these adecallédt c ar e
conditions For example, comder a Zsegment display which is used for many time clocks for

sporting events. The display consists of 7 segments that are used to display the 10 decimal
numbers 0..9. A-Begment displaglong with the names for each segm@ntG) is shown

below.

Each digit @9 will lights 1 or more segments to create the number. For example the digit O
would light segments A,B,C,D,E,F; the number 1 would light segments B,C; the number 2 would
light segments A,B,D,E,G; etcl hereforethere will be 7 Boolean functions, one for each

segment.

Next, knowing that 10 digits can be represented using a minimum of 4 bits, a truth table can be
created where the input 4 digits represent the decimal number, and a truth table developed for

each of th& segments making up the number. When doing this, note that input values for the

truth table must always be betweef, (o there are 6 values €16) that are not used, so those

rows in the table are never accessed. The values for the segmentsefootvwarel o n 6t car es
because they are never used; the component does not use those values, so it does not care how
they are set. This gives the result for theegment display truthtabh er e X=dondét car

which isshown below.

Input Output

A B C D A B C D E F |G
0 0 0 0 1 1 1 1 1 1 |0
0 0 0 1 0 1 1 0 0 0 |0
0 0 1 0 1 1 0 1 1 0 |1

DIGITAL CIRCUIT PROIX 31

PR R RRRIR R OOlO|O|O
RlR R R OlO|O|OIR| R IR|IR O
R R OOk R OOk R lO|ok
R O|R|O|r O Ok Ok ok
XX | X|X|X|X|R|Rr|IRr R R Ok
XX | X|X|X|X|R|Rr|r OOk
XIX|X|X|X|X|P|R|Rr R R R
XIX|X[IX| XX O|FR| O|FR |k IOk
X[X[X|X|X|X|o|l|olr|lo|lo|o

XIX| X[X|X|X| PP ORIk O
XIX|IX|IX|X[X|FP|IR|IO|Fr R KRk

The K-map for each segment now can be evaluated to give the corresponding minimum Boolean
expression The donét cares (Xs) in the map ar e
when they help us minimize an expression, and assume they are 0 otherwise. In short, we can
use them to create larger groupings,thel donot have to be used.

The K-map for segment A is the following:

ABCD | 00
o0 1
01

The result is two groupasf 8 (in redand purplg corresponding to And B and two groups of done (in
black) corresponding tBD and one (in yelloywcrossing the 4 corners of the map) m@sponding to B'C'
resulting in the following equation for segment A,

f A(AB,C,D) = A + C+ BD+BD '

2.6 Conclusion

Boolean algebra, or functions where the values are binary or two digit values, is the basis for the
circuits that will be presented in thisxt. Boolean functions can always be represented in a truth
table, and then translated directly into DNF. Thus any Boolean function can be written using
only AND, OR, and NOT operations.

To instantiate these functions into hardware for a computerjtsingill be used. For a number

of reasons, including making the circuit faster and decreasing the amount of electricity used and
the amount of heat generated, it is of interest to designers to make the circuits as small as
possible, and to make the cirtsucontain the fewest gates possidBNF seldom represents the
smallest possible circuit, and Boolean algebra is introduced as a way to simplify a circuit.

m

32 DIGITAL CIRCUIT PROS

It is difficult to know if a circuit has been redudeda minimum using just DNF, gshe concept
of a K-map was introduced which is a mechanical way to ensure minimum circuits.

2.7 Exercises
1. DeMorganods Law:

a. Show t hat LBvweidborreg fomvdosvariables (A6B6) 6 by usingBs
truth table

b. Does DeMorgands Law hold for 3 variables?

2. Simplify the following Boolean expressions using Boolean algebra

a. A+AB

b. A + AOB

c. B6C6 + ABCO

d. AC + AC6 + Ad6B + Ad6BO

3. The operations AND, OR, and NOT are universdhat any Boolean function can be
implemented using just these three gates.

a. Prove by construction that the NAND gate is universal by creating AND, OR, and
NOT gates using only the NAND gate.

b. Prove by construction that the NOR gate is alsiversal.

c. Why are the AND and OR gate not universal? (e.g. what simple operation cannot be
created with just an AND or OR gate?)

4. Forinputs A and B, show how to use an XOR gate to create a NOT gate if Bis 1, and a
buffer if B is 0.

5. XORi s sometimes called an Aoddo function bec:
of 16s the minterm ivs ,oAdd, the xor i s 1, ot h
variable XOR functions,e.g.& " $§ #h AT A ' § " § # § $8

DIGITAL CIRCUIT PROIX

6. For the bllowing truth table:

a. Give the DNF equation for the table.

b. Minimize theequation using a Hnap.

c. Show that the DNF is equivalent to the minimum representation using Boolean
algebra.

F(A,B,C)

Rl R R | O O of o] >
Rl R o o | | O O
Rl ol r| o | o k| o O
o| r| r| o o r| r| ©

7. For the following truth table

a. Give the DNF equation for the table.

b. Minimize the equation using a-Kap.

c. Show that the DNF is equivalent to the minimum representation using Boolean
algebra.

F(A,B,C)

Rl R R R O O of o] >
Rl R o O | Rl O O W
Rl ol r| o r| o | O O
Rl ol r| O k| k| R

8. For the following truth table

a. Give the DNF equation for the table.
b. Minimize the equation using a-Kap.

34 DIGITAL CIRCUIT PROS

c. Show that the DNF is equivalent to the minimum representation using Boolean
algebra.

F(A,B,C)

Rl R P | O O o of »
R k| O O | k| O Ol W
Rl ol ,r| o r| o | o O
Rl ol o r| | o of

9. Solve the /segment displagroblem for segments b, d, and f.

DIGITAL CIRCUIT PROIX 35

Chapter 3 Getting started

3.1 Introduction

There is an old adage, AA journey of 1000 mi
any project is getting started. | had taught Computer Organization for years but had always used
virtual circuitsto describe the components presented intéxis That meant using pictures,

drawings, and eventually tools such as Logisim. Though | knew the circuits in this book, | was
afraid to actually touch the hardware. From my conversations with others, this is not an
uncommon feeling even among compgeientists. Like so many people in so much of life, |

was afraid of the beginning.

Thebeginning, when all the fears about the project are apparent. Do | really know enough to do
the project? Will it take a lot longer than | think? What happehiiifa problem that | cannot
solve? Too often these fears take over, and useful projects just fail to get started. But once the
project is started, the unknowns become known and can be dealt with. The complexity becomes
manageable. Incremental progreas be achieved, and each success builds on the last. The
trick is to start very simple, and to allow the complexity to evolve. This is the approach of this
text.

This text starts as simply as possible. To begin studying circuits, the first stemaetstand

that digital circuits take electricity into the circuit, and convert it to an output. In our case, the
input will always be a switch, and output will always a LED light. So the first project is a circuit
which has a switch which turns on ahlig

3.2 Logisim circuit to turn on alight

In this text, all circuits are first created in Logisim to allow the reader to see the logic
implemented by the circuit. This is important for a number of reasons. First, it is much easier to
build the circuit in Logisim. No wires need to be cut anghséd, and there are no physical
problems like loose connections or other problems to debug. The circuit is virtual and it always
behaves as it is coded.

Second, Logisim will represent the circuit as a series of logic gates, which closely represent the
Boolean expressions used to create the circuit. When the circuit is implemented using the
breadboard and chips, and all the chips look the same so visualizing the circuit is difficult.
Logisim makes it easier to understand the circuit, and then to tearnsiab hardware.

Third, implementing the circuit requires as much concentration on the pin configurations on the
chips as the actual gates that are used to implement the logic. Using Logisim allows the reader
to understand the logic of the circuit wotlt worrying about extraneous implementation details.

Fourth circuits in Logisim are easier to modify, so problems in implementing the circuit can be
more quickly addressed and fixed. Different types of designs for the circuits, inputs to the
circuits, etc., can be tried in a much more forgiving environment.

Finally, the circuits which are implemented are more easily saved and shared using Logisim.
Most of the circuits in this book will have a Logisim implementation which can be downloaded
from http://chuckkann.com

For the first circuit, a Logisim implementation is shown below. The first circuit implemented

http://www.chuckkann.com./

36 DIGITAL CIRCUIT PROS

turns a light on/off. The following list is a stdyy-step guide to creating this circuit in Logisim.
If you are new to Logisim, you might want to start with the tutorials found at the Logisim site.

Logisim: main of Untitled

v Untitled*
4 main
» Wiring
4| | 3
Pin
Faci... |[East
Out... [No
Dat... |1
100% i
Figure 3-1: Logisim circuit to turn on light.
1. Make sure the arrow icon is selected.
2. Select the input pin anglace it on the board.
3. Select an output pin, and place it on the board,
4. Connect the right side of the input pin to the left side of the output pin by holding the right

mouse button and drawing a line from the input pin to the output pin.

The circuit isnow complete. Select the hand icon to run the circuit.

Clicking on the input pin changes its value from 0 to 1 and back. Since it is directly
connected to the output pin, you will also change the output pin.

oo

This circuit will now be implemented irsing a breadboard, resistety@It battery, switch, and
led light.
3.3 Implementing the switch circuit to turn on a light

In this project you will connect the breadboard to the power supply, then wire the positive and
negative side strips. You will then put a switch on the board, and connect the switch to a led so

DIGITAL CIRCUIT PROIX 37

that the switch can turn the led on and off. This will catepthe project.

3.3.1 The breadboard

This section describes the breadboard in your lab kits. For more information about breadboards
please see the following link:

http://en.wikipedia.org/wiki/Breadboard

The following is a picture of a typical breadboard

Figure 3-2: Typical breadboard

On the breadboard there are two long strips, calleg] raihning along the side. The red rail is
normally connected to a positive (+5 volts) power supply, and the blue rail is normally connected
to ground (0 volts). Note that rails must be connected to a battery or other power source to
power them.

Thereare a number of 10 hole rows in the board, separated by a center empty column. In a row,
groups of 5 holes on each side of the empty column are connected. There is no connection
between the rows.

This wiring of the breadboard is shown in the Figu& F-or the positive and ground rails a

wire runs the length of the board which connects the holes in the positive and negative rails.
Note that the rails on opposite sides of the breadboard are not connected. Powering one side of
the rails does not powepth sides, and the rails must be connected to fully power the board.

This will bedone as part of the circuit created in this chapter.

http://en.wikipedia.org/wiki/Breadboard

38 DIGITAL CIRCUIT PROS

0O0000—000OQ0 fksinredane

blue columns are

O'O'O'O‘O_O'O'O'O'O connected

Holes in rows
are connected

0,0,0,0,0.00,0,0,0,0
0020,02000,0,020,0

Figure 3-3: Breadboard layout

This breadboard layoatiso shows that the groups of 5 holes in each row are also connected,
though the top and bottom groups of 5 holes are not. Normally the holes in these groups of 5 on
the two sides of the board will be kept separate. This will makgeswhen chips are installed

and used.

The groups of five holes are numbered 1 to 60 on each side of the breadboard. Each group of
five holes are wired together, so two wires which are placed in holes in the same group on a row
are connected. Thisilwbe used to wire the circuits.

3.3.2 Stripping wires

To make contact with the holes in the breadboard, the insulation must be removed from the ends
of the wires. To do this wire strippers will be used. Typical wire strippers arenshdie

following figure. Wire stripperare sharp and can easily cut the wire we are using here by

placing the wire in the lower part of the clippers (1), and closing théoweverthe notches in

the wire strippers are places evb there is a predetermined distance between the two blades
which is just the size of the copper wire inside of our insulation. By placing the wire in the notch
labeled 22 AWG (or .60 mm) (2), the insulation is cut but the wire is not. Then by sinlipig pu

the wire from the strippers there is a clean end to the wire that no longer is insulated. This is

DIGITAL CIRCUIT PROIX 39

what will be placed in the holes in the breadboard. When stripping the wires, you should strip
off about 1/4 to 1/2 an inch of insulation. The hatethe breadboard witjrab the wires when

they are placed inside and make a good contact. If you strip too little insulation off of the wire
the connection to the breadboard will probably be poor, and your circuits will not work. If you
strip too muchnsulation off, the circuit will have the possibility of short circuiting. So strip
enough insulation so that the wires are grabbed in the hole, but not too much more.

Figure 3-4: Wire strippers

The end othe wire strippers (3) can be used as pliers, and is helpful to bend the end of the wire.
This is useful if you implement the circuits so that the wires run flush along the board, as they
will do in this book. If you cut your wires very long and runnthabove the board, as many
students do, you do not want to bend the end of the wire. Running wires flush along the board
makes the circuit neater and easier to read, but it makes the circuit harder to wire, and takes
much more time to implement.

DIGITAL CIRCUIT PROIS

Figure 3-5: A stripped wire

3.3.3 Powering the Circuit

You are now ready to implement the circuit. The steps in creating the circuit will be as follows.
1. Power will be provided to the breadboard.
2. A switch will be insertednto the breadboard.
3. The output from the switch will be sent to the LED, which will complete the circuit.

The first step is to provide power to the breadboard. Pictures of how to power the breadboard
are shown in the FigureBand Figure ®@. These figres contains numbers corresponding to the
stepby-step instructions below. As was mentioned earlier, wires in this circuit that always carry
a positive voltage aned, ground wires arblack and wires that can take on either value are
yellow.

1) Findthe 7805 voltageegulator (shown in Figure 3.6). The 7805 voltage regulator will take
the input of 9 volts from the battery and convert it to 5 volts needed by the chips which will
be used in the circdit Place the 7805 voltage regulator so that it straddles rows 1, 2, and 3
on the breadboard as shown in Figue 3The fit may be tight, so be careful to push it in
gently so as to not bend the legs.

2) The input to pin 1 (the pin in row 1 of the breadtl)af the 7805 is the positive 9 volts from
the battery. In the figure a red wire is used to indicate this is wire is always connected to
positive input. Connect a wire to any hole on the first row, leaving one end not connected to
anything. This willbe connected to the positive lead of the battery when the breadboard is
powered.To test if this is correct, connect the long leg of an led to the positive output of the
7805 regulator, and the short end to the ground, as shown in Figur®ake surehte
battery is new and strong, or you might now get power across the 7805 regulator.

® Chips used in circuits generally use either 5 volts or 3.3 volts. The chips used in this book will all work with 5
volts, so the circuits will be powered at 5 volts.

DIGITAL CIRCUIT PROIX 41

Figure 3-6: 7805 voltage regulator

Figure 3-7: Powering the breadboard

3) The input to the 780pin 2 (the pin in row 2 of the breadboard) is now connected to the
ground coming from the 9 volt battery. In the figure a black wire is used to indicate this is
wire is always connected to ground. Connect a wire to any hole on the second row, leaving

42

4)

5)

6)

DIGITAL CIRCUIT PROIS

one end not connected to anything. This will be connected to the negative lead of the battery
when the breadboard is powered

Connect the ground rail of the breadboard to row 2. The ground rail is the blue column which
runs down the side of the boaNbtethat row 2 has three connection, the input ground from
the battery, the middle pin on the 7805 chip, and the output wire to the blue ground side rail.

The 5 volt output from the 7805 is the pin in row 3. To power the board, connect row 3 to
the positive ail of the breadboard. The positive rail is the red column which runs down the
side of the board.

The left half of the board is ready to be connected to the battery. Put a 9 volt battery in the
battery snap, and connect the leads from the battery #ncetlack wires from steps 3 and

4. (Be sure to connect positive wire to positive input, and negative wire to negative input!)
The board should now have power. This can be checked by placing an LED between the
positive and negative rails on the boahbte that the LED has two legs, and one is longer
than the other, as shown in Figur8.3Make sure to place the positive (long) leg in the
positive (red) rail, and the short leg in the ground (blue) rail. The light should come on. Ifit
does not, you éve a debugging problem. Here are some things to try:

a) Make sure that the battery is connected correctly, positive to positive and negative to
negative. If itis not, your 7805 chip will quickly start to become hot. If this happens,
disconnect the battgiand allow the chip to cool. When the chip is cool, reconnect the
battery correctly.

b) Make sure the LED is properly oriented. This simple mistakes often causes confusion,
and so when using an LED always make sure to orient it correctly.

c) Make sure the bary and the snap are ok by putting the LED directly into the 9 volt
battery clip. If the LED lights, move to step d.

d) Make sure that current is getting to the board correctly. Connect the battery to your
positive and negative leads (to power the boand)@dace the LED between rows 1 and 2
of the board to make sure that you have a good connection with the leads. If the LED
lights, move to step e.

e) Make sure you have current coming from the 7805 by connecting the LED between rows
3 and 2. If the LED doesot light, something is wrong with the 7805. Check that you
have installed it correctly (not backwards for instance).

Figure3-8: LED

DIGITAL CIRCUIT PROIX 43

7) The left half of the bread board should now have powered, bugthtehalf is still not
connected. To connect the right half of the breadboard, go to the last row with the blue and
red rails. Run a wire from the left red rail (the outside left rail) to the right red rail (the inside
right rail) as shown in Figure 3. Do the same for the blue rail. This should power the rails
on the right side of the breadboard. You can test that both rails are now powered by using the
LED between the blue and red rails on the right side of the breadboard as in step 6 above.

The bredboard is now powered.

3.3.4 Installing the switch

This purpose of this first circuit was to have a switch turn on/off a light. This section will
describe how to install the switch. The instructions below refer to Figlite 3

0. The switch to be installed is shown in Figur&@ There are two nuts and two washers
on the switch. These will not be used in the circuits in this book, and make the switch
harder to use. Remove them. You may want to save them in case you evex use th
switch in a different circuit.

1. To install the switch, insert it across 5 rows of the breadboard. In this picture, the switch
is placed across rows1B. Only the 1st (row 9), 3rd (row 11), and 5th (row 13) rows
will be connected to the switch.

Figure 3-9: Toggle switch

2. The first pin is the positive input. Connect the first pin (&wn the switch to the
positive rail.

