2009

Radiocarbon Date List XI: Radiocarbon Dates from Marine Sediment Cores of the Iceland, Greenland, and Northeast Canadian Arctic Shelves and Nares Strait

U. Quillmann

J.T. Andrews

A.E. Jennings

See next page for additional authors

Follow this and additional works at: https://cupola.gettysburg.edu/esfac

Part of the Environmental Sciences Commons, Geology Commons, and the Sedimentology Commons

Share feedback about the accessibility of this item.

This is the publisher’s version of the work. This publication appears in Gettysburg College's institutional repository by permission of the copyright owner for personal use, not for redistribution. Cupola permanent link: https://cupola.gettysburg.edu/esfac/5

This open access article is brought to you by The Cupola: Scholarship at Gettysburg College. It has been accepted for inclusion by an authorized administrator of The Cupola. For more information, please contact cupola@gettysburg.edu.
Radiocarbon Date List XI: Radiocarbon Dates from Marine Sediment Cores of the Iceland, Greenland, and Northeast Canadian Arctic Shelves and Nares Strait

Abstract
Radiocarbon Date List XI contains an annotated listing of 178 AMS radiocarbon dates on samples from marine (169 samples) and lake (9 samples) sediment cores. Marine sediment cores, from which the samples for dating were taken, were collected on the Greenland Shelf, Baffin Bay, and the Eastern Canadian Arctic shelf. About 80% of the marine samples for dating were collected on the SW to N Icelandic shelf. The lake sediment cores were collected in northwestern Iceland. For dating of the marine samples, we submitted molluscs (117 samples), benthic and planktic foraminifera (45 samples), plant macrofauna (3 samples), and one serpulid worm. For dating of the lake cores, we submitted wood (8 samples) and one peat sample. The Conventional Radiocarbon Ages range from 294±9114C yr BP to 34,600±640 14C yr BP. The dates have been used to address a variety of research questions. The dates constrain the timing of high northern latitude late Quaternary environmental fluctuations, which include glacier extent, sea level history, isostatic rebound, sediment input, and ocean circulation. The dates also allowed assessment of the accuracy of commonly used reservoir correction. The samples were submitted by INSTAAR and affiliated researchers.

Keywords
radiocarbon dates, marine sediment core, lake sediment core, Icelandic shelf

Disciplines
Environmental Sciences | Geology | Sedimentology

Comments

Authors

This article is available at The Cupola: Scholarship at Gettysburg College: https://cupola.gettysburg.edu/esfac/5
Radiocarbon Date List XI:

Radiocarbon Dates from Marine Sediment Cores of the
Iceland, Greenland, and Northeast Canadian Arctic
Shelves and Nares Strait

Compiled by U. Quillmann, J. T. Andrews, and A. E. Jennings

Contributors:
J. T. Andrews
J. Bendle
A. E. Jennings
H. Jónsdóttir
G. B. Kristjánsdóttir
J. Lloyd
S. Ólafsdóttir
S. Principato
U. Quillmann

Institute of Arctic and Alpine Research
University of Colorado at Boulder, Boulder, Colorado 80309-0450

Occasional Paper 59

2009

INSTAAR/OP-59
ISSN 0069-6145
TABLE OF CONTENTS

ABSTRACT ... iv
ACKNOWLEDGMENTS .. 1
PREFACE .. 2
INTRODUCTION .. 3
DISTRIBUTION AND MAPS OF CORES ... 3
 Figure 1. Regional Distribution of Core Locations ... 3
 Figure 2. Map of the Labrador Sea, Greenland shelf, Baffin Bay, and Nares Strait 4
 Figure 3. Map of the Icelandic Shelf ... 5
 Figure 4. Map of Northwest Iceland .. 6
 Figure 5. Distribution of Reported Radiocarbon Ages and Material 8
ORGANIZATION AND GUIDE TO DATE LIST .. 8
 Marine Core Names .. 9
 Table 1. Suffixes in Marine Core Names .. 9
 Presentation of Radiocarbon Dates in Parts 1 and 2 .. 10
 Figure 6. Guide to Radiocarbon Date List XI .. 11
 Table 2. Abbreviations of Radiocarbon Dating Laboratories 12
PART I: MARINE .. 13
 Greenland and Canadian Arctic .. 13
 East Greenland Shelf ... 13
 Core: MD99-2317 ... 13
 West Greenland Shelf .. 14
 Core: 343300 GC .. 14
 Core: 343390 GC .. 15
 Labrador Shelf .. 16
 Core: MD99-2236 ... 16
 Baffin Island Shelf ... 20
 Core: HU90023-022 LCF .. 20
 Baffin Bay ... 21
 Core: HE0006-4-2PC ... 21
 Core: HE0006-4-2TC ... 22
 Nares Strait ... 22
 Core: HLY0301-05GC .. 22
 Iceland .. 23
 Southwest Iceland Shelf .. 23
 Core: MD99-2258 .. 23
 Core: MD99-2259 .. 24
 Core: B997-350PC ... 25
 Core: MD99-2256 .. 26
 Northwest Iceland Shelf ... 30
 Core: MD99-2266 .. 30
 Core: B997-338PC ... 33
 Core: B997-339PC2 ... 34
 Core: B997-311GGC .. 35
 Core: B997-341PC3 .. 36
Abstract

Radiocarbon Date List XI contains an annotated listing of 178 AMS radiocarbon dates on samples from marine (169 samples) and lake (9 samples) sediment cores. Marine sediment cores, from which the samples for dating were taken, were collected on the Greenland Shelf, Baffin Bay, and the Eastern Canadian Arctic shelf. About 80% of the marine samples for dating were collected on the SW to N Icelandic shelf. The lake sediment cores were collected in northwestern Iceland. For dating of the marine samples, we submitted molluscs (117 samples), benthic and planktic foraminifera (45 samples), plant macrofauna (3 samples), and one serpulid worm. For dating of the lake cores, we submitted wood (8 samples) and one peat sample. The Conventional Radiocarbon Ages range from 294±91^{14}C yr BP to 34,600±640^{14}C yr BP. The dates have been used to address a variety of research questions. The dates constrain the timing of high northern latitude late Quaternary environmental fluctuations, which include glacier extent, sea level history, isostatic rebound, sediment input, and ocean circulation. The dates also allowed assessment of the accuracy of commonly used reservoir correction. The samples were submitted by INSTAAR and affiliated researchers.
Acknowledgments

The National Science Foundation funded the majority of the radiocarbon dates. Dates were provided primarily from National Science grants NSF-ATM-0502515, ATM-9531397, OCE-9809001, NSF-0713755, and NSF-0823535. Some additional radiocarbon dates were funded through student grants, including the Geological Survey of America, the Department of Geological Sciences at the University of Colorado at Boulder, and Beverly Sears Student Grants. We also appreciate the support of Dr. Timothy Jull of the University of Arizona AMS Facility and Drs. Scott Lehman and Jocelyn Turnbull in the INSTAAR Radiocarbon Laboratory (NSRL). Larry Bowlds, the editor of the Arctic, Antarctic, and Alpine Research (AAAR) journal at INSTAAR, contributed to the editing, layout, and printing of this publication.
Preface

Occasional Paper 59 is the latest in a series of radiocarbon date publications compiled by INSTAAR for the Arctic and Antarctic regions. This is Date List XI and contains dates from marine sediments of the Greenland Shelf regions, the Baffin area, the Nares Strait, and the Icelandic Shelf, as well as some lake sediments. The dates help to constrain environmental changes in the Arctic, a key region currently undergoing rapid change. Placing the present changes into the context of the past is critical for our understanding of the future. Cold regions contain the largest, and arguably least understood feedbacks in the climate system, and thus improving our understanding of environmental change in cold regions, particularly the timing of events, is of immediate and great concern.

The date list follows protocols established by the National Science Foundation for data archiving. This date list is available in paper form, and at http://instaar.colorado.edu.

The dates were compiled by Ursula Quillmann. John Andrews and Anne Jennings supervised the Micropaleontology Lab. INSTAAR congratulates them all, their colleagues, students, and collaborators on a job well done.

James W. C. White
Director, INSTAAR
Professor, Department of Geological Sciences and of Environmental Studies
Introduction

This Radiocarbon Date List is the eleventh in a series that reports radiocarbon analyses obtained by researchers at the University of Colorado at Boulder, Institute of Arctic and Alpine Research (INSTAAR). The samples were submitted for dating by Drs. John T. Andrews and Anne E. Jennings, their students, and colleagues.

The radiocarbon dates in this Date List reflect a concentration on marine sediments (97%) (Fig. 1). The remaining 3%, terrestrial radiocarbon dates, come from Iceland. The majority of the samples are from the Icelandic Shelf (72%), followed by Labrador Shelf (12%), and Greenland Shelf (10%). The locations are shown in Figures 2, 3, and 4.

Figure 1. Regional distribution of core locations in this Date List.
Figure 2. Core locations in the Labrador Shelf, Greenland shelf, Baffin Bay, and Nares Strait. Close-up views of the Iceland shelf core locations (in black square) are shown in Figures 3 and 4.
Figure 3 Core locations on the Icelandic shelf. The Northwest Icelandic marine and terrestrial core locations (in black square) are shown in detail in Figure 4.
Figure 4. Northwest Icelandic marine and terrestrial core locations.
The focus on Holocene paleoclimate records by the Marine Paleoclimate group at INSTAAR is reflected in the distribution of radiocarbon ages in this current Date List. Only 8 of the 178 dates reported are older than Holocene age. Figure 5 summarizes the materials submitted for radiocarbon dating. The majority of samples were mollusc, followed by foraminifera. In the latter case we strove to date single species of planktic or benthic foraminifera at abundance peaks. Mixed species samples were submitted only if single species dates were not possible. For the terrestrial samples wood samples were submitted.

As in previous date lists, this Date List presents two types of radiocarbon ages—reported and ocean reservoir corrected ages. The radiocarbon laboratories report radiocarbon ages following the approach by Stuiver and Pollach (1977). In this approach the samples are run with standards to correct for background contamination. The δ^{13}C fractionation is measured in all samples and is normalized to $-25\%_{oo}$ PBD, the mean value of terrestrial wood.

The reported radiocarbon age does not correct for marine-reservoir effects. In this Date List, we present the reported radiocarbon age by subtracting the estimated marine reservoir effect from the conventional radiocarbon age. The marine reservoir effect varies regionally and temporally.
Figure 5. Distribution of reported radiocarbon ages and material dated as reported in this Date List.

Organization and Guide to Date List

Part 1 presents radiocarbon dates from marine sediment cores and Part 2 from terrestrial sediment cores. Within each part, the dates are arranged as follows:

1. By region and area, generally from southwest to northeast.
2. Within the region with the dates listed by core number or site name.
3. Location information presented only once for each core or site, including latitude and longitude (Universe Transverse Mercator Grid) and water depth for marine sites, and site elevation for terrestrial sites.
4. By depth from top to bottom if more than one core was collected at the same site.

We present abbreviated date lists in three appendices, sorted by (1) laboratory number, (2) region, and (3) reported radiocarbon age.

Marine Core Names

Most marine core identifications contain the abbreviation for the cruise, including the name of the research vessel, the year the core was collected, and the type of corer used. The prefix usually identifies the cruise and the research vessel. For example, core identification names starting with HU90 were collected onboard the CCGS *Hudson* in 1990 and HE006 on the USCGS *Healy* in 2006. The suffix contained in most marine core names describes the coring methods, which Table 1 summarizes.

Table 1. Suffixes in most marine core names describe the coring methods. In this radiocarbon date list the following types of cores were used:

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>box core</td>
</tr>
<tr>
<td>GC</td>
<td>gravity core</td>
</tr>
<tr>
<td>GGC</td>
<td>giant gravity core</td>
</tr>
<tr>
<td>SGC</td>
<td>short gravity core (B997-cruise)</td>
</tr>
<tr>
<td>LCF</td>
<td>large-diameter long covering facility piston core</td>
</tr>
<tr>
<td>PC</td>
<td>piston core</td>
</tr>
<tr>
<td>TC</td>
<td>trigger weight core</td>
</tr>
</tbody>
</table>
Cores collected in the MD114/IMAGES V cruise onboard the R/V Marion Dusfresne in 1999 have no core suffixes; all but two of the cores were cored by the Calypso giant corer. Cores MD99-2263 and MD99-2258 are box cores.

Presentation of Radiocarbon Dates in Parts 1 and 2

For each date, we report the following, if applicable (Fig. 6):

- Reported radiocarbon date and analytical uncertainty (in radiocarbon years BP)
- Radiocarbon laboratory number (Table 2)
- Corrected radiocarbon age
- GRL numbers assigned by the Sedimentology Laboratory at INSTAAR
- Field ID number provided by contributor
- Collection type
- The researcher(s) who provided the sample for dating and contributed it to the Radiocarbon Date List XI
- Sample depth in core
- Type of material dated
- Species and genus
- Sample weight, in mg
- Whether the δ^{13}C was measured or assumed
- Measured δ^{13}C value, where applicable
- Sample notes and pretreatment, including a detailed list for foraminifera samples, description of sample preservation, and preparation. Foraminiferal samples, unless otherwise noted, were freeze-dried, washed over a 63 µm sieve, and picked from air-dried >106 µm fraction.
- Stratigraphic relations (geologic context)
- Significance of sample
- Core summary (any interpretative discussion)
- References
The samples in Part 1 and Part 2 are organized by location shown on the maps (Pages)

GRL number: Laboratory numbers assigned by the INSTAAR Sedimentology Laboratory.

Laboratory identification numbers given by the radiocarbon dating facilities (Table 1)

Weight (mg) of the sample submitted for radiocarbon dating.

The **Conventional Radiocarbon Age** is the 14C age (BP) given by the radiocarbon dating laboratory. Since the mid-70s, most labs report the "conventional radiocarbon dates" (Stuiver and Pollach, 1977) with a sample measurement uncertainty of ± 1 standard deviation. The Conventional Radiocarbon Age is converted for background contamination and normalized to a $\delta^{13}C$ (measured) value fractionation and normalized to a standard of -25%. The **corr. age** (corrected age) includes the localized reservoir effect in

The **Contributor** or contributors obtained the date for their research and made it available in the radiocarbon data base.

PART 1: MARINE SAMPLES
NORTH ICELAND SHELF

<table>
<thead>
<tr>
<th>Core: MD99-2269</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Iceland Iceland Shelf Reykjafjardarall</td>
</tr>
<tr>
<td>Lat.: 66°37.53'</td>
</tr>
<tr>
<td>Lab ID: AA54594</td>
</tr>
<tr>
<td>Age: 9477±88</td>
</tr>
<tr>
<td>Weight (mg): 5.5</td>
</tr>
<tr>
<td>$\delta^{13}C$: Measured $\delta^{13}C$ (%):** -2.01</td>
</tr>
</tbody>
</table>

Sample notes: Mixed benthic foraminifera: 180 Cassidulina neoteretis, 140 Melonis barleeanus, 90 Islandiella norcrossi, 48 Globobulimina, 39 N. labradoricum, 1 Elphidium excavatum f. clavata, 1 Cibicides lobatus.
Pretreatment: Washed with H2O. Within the Saksunarvatn tephra peak. Base of tephra is at 2121 cm. This was the closest sample with well preserved foraminifera to date.
Significance: Core MD99-2269 is located in a critical area on the Iceland shelf where the warm iminger Current and the cold East Iceland Current meet. Modern water temperature fluctuations over the site exceed 5°C.

Cores are alphabetically listed under each location and detailed location and latitude and longitude (Universe Transverse Mercator Grid UTM) and water depth
Latitude and Longitude and **water depth** (m) of core site
Depth (cm) in core where sample was taken
Material used for radiocarbon dating. In this example foraminifera were used. The material is when possible identified at **genus** and **species** level. In this case mixed benthic foraminifera were used and the submitted assemblage is listed under **sample notes**.
Additional information on the cores and material.

If more than one sample per core is presented, the samples are arranged by depth (core top to bottom).

Figure 6. Guide to Radiocarbon Date List XI.
Table 2. Abbreviations of radiocarbon dating laboratories.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>NSF-University of Arizona AMS Facility</td>
</tr>
<tr>
<td>AAR</td>
<td>University of Aarhus, Denmark</td>
</tr>
<tr>
<td>BETA</td>
<td>Beta Analytical Inc.</td>
</tr>
<tr>
<td>CAMS</td>
<td>Center for AMS at Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>CURL</td>
<td>INSTAAR Laboratory for AMS Radiocarbon Preparation and Research, samples run at University of California (UC) Irvine</td>
</tr>
<tr>
<td>KCCAMS</td>
<td>Keck-Carbon Cycle AMS Facility at the UC, Irvine</td>
</tr>
<tr>
<td>NSRL</td>
<td>INSTAAR Laboratory for AMS Radiocarbon Preparation and Research, samples run at the UC Irvine or Woods Hole Oceanographic Institution</td>
</tr>
</tbody>
</table>
Greenland and Canadian Arctic

East Greenland Shelf

<table>
<thead>
<tr>
<th>Location:</th>
<th>Greenland Shelf Basin</th>
<th>Greenland Shelf</th>
<th>East Greenland Shelf Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.:</td>
<td>68°6.18′</td>
<td></td>
<td>-27°51.69′</td>
</tr>
<tr>
<td>Long.:</td>
<td></td>
<td></td>
<td>-536</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core: MD99-2317</th>
<th>Depth (cm):</th>
<th>391-397</th>
<th>Location:</th>
<th>East Greenland Shelf Basin</th>
<th>Greenland Shelf</th>
<th>East Greenland Shelf Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab ID:</td>
<td>AA57064</td>
<td>GRL-1699-S</td>
<td></td>
<td>Depth (cm):</td>
<td>391-397</td>
<td>Location:</td>
</tr>
<tr>
<td>Age:</td>
<td>4,840±120</td>
<td>Corr. Age: 4,290±120</td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>2.9 mg</td>
<td>Genus:</td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>δ¹³C (%): -0.92</td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
<tr>
<td>Contributor:</td>
<td>Anne E. Jennings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
</tbody>
</table>

| Sample notes: | Mixed planktic and benthic species. |

<table>
<thead>
<tr>
<th>Core: MD99-2317</th>
<th>Depth (cm):</th>
<th>453-457</th>
<th>Location:</th>
<th>East Greenland Shelf Basin</th>
<th>Greenland Shelf</th>
<th>East Greenland Shelf Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab ID:</td>
<td>AA57062</td>
<td>GRL-1697-S</td>
<td></td>
<td>Depth (cm):</td>
<td>453-457</td>
<td>Location:</td>
</tr>
<tr>
<td>Age:</td>
<td>5,986±70</td>
<td>Corr. Age: 5,346±70</td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>3.0 mg</td>
<td>Genus:</td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>δ¹³C (%): -0.77</td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
<tr>
<td>Contributor:</td>
<td>Anne E. Jennings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
</tbody>
</table>

| Sample notes: | Mixed planktic and benthic species. |

<table>
<thead>
<tr>
<th>Core: MD99-2317</th>
<th>Depth (cm):</th>
<th>453-457</th>
<th>Location:</th>
<th>East Greenland Shelf Basin</th>
<th>Greenland Shelf</th>
<th>East Greenland Shelf Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab ID:</td>
<td>AA57063</td>
<td>GRL-1698-S</td>
<td></td>
<td>Depth (cm):</td>
<td>453-457</td>
<td>Location:</td>
</tr>
<tr>
<td>Age:</td>
<td>5,795±40</td>
<td>Corr. Age: 5,245±40</td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>6.4 mg</td>
<td>Genus:</td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
<tr>
<td>δ¹³C (‰):</td>
<td>2.8</td>
<td>Specie:</td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
<tr>
<td>Contributor:</td>
<td>Anne E. Jennings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
</tbody>
</table>

| Sample notes: | Mixed planktic and benthic species. |

<table>
<thead>
<tr>
<th>Core: MD99-2317</th>
<th>Depth (cm):</th>
<th>453-457</th>
<th>Location:</th>
<th>East Greenland Shelf Basin</th>
<th>Greenland Shelf</th>
<th>East Greenland Shelf Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab ID:</td>
<td>AA</td>
<td>GRL-1702-S</td>
<td></td>
<td>Depth (cm):</td>
<td>453-457</td>
<td>Location:</td>
</tr>
<tr>
<td>Age:</td>
<td>5,630±100</td>
<td>Corr. Age: 5,080±100</td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>1.2 mg</td>
<td>Genus: Cibicides</td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
<tr>
<td>δ¹³C (‰):</td>
<td>1.33</td>
<td>Specie: lobatulus</td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
<tr>
<td>Contributor:</td>
<td>Anne E. Jennings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
</tbody>
</table>

| Sample notes: | Mixed planktic and benthic species. |

<table>
<thead>
<tr>
<th>Core: MD99-2317</th>
<th>Depth (cm):</th>
<th>1293-1295</th>
<th>Location:</th>
<th>East Greenland Shelf Basin</th>
<th>Greenland Shelf</th>
<th>East Greenland Shelf Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab ID:</td>
<td>AA61215</td>
<td>GRL-1745-S</td>
<td></td>
<td>Depth (cm):</td>
<td>1293-1295</td>
<td>Location:</td>
</tr>
<tr>
<td>Age:</td>
<td>10,090±110</td>
<td>Corr. Age: 9,540±110</td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>2.8</td>
<td>Genus:</td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
<tr>
<td>δ¹³C (‰):</td>
<td>-8.02</td>
<td>Specie:</td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
<tr>
<td>Contributor:</td>
<td>Anne E. Jennings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Location:</td>
</tr>
</tbody>
</table>

| Sample notes: | Mixed planktic and benthic species. |
Sample notes: Mixed benthic forams: 1265 S. feylingi, 51 C. reniforme, 5 S. concava, 11 M. barleeanus, 5 Bolivina pseudopunctata, 60 I. norcrossi. Sample washed over sieve with distilled water and air-dried.

COMMENTS (AEJ): This core is from the Grivel Basin of the East Greenland shelf on the north side of the Denmark Strait. It is near the site of JM96-1205 (Smith and Licht, 2000). Many of the dates from this core have been published in the previous date list (Dunhill et al., 2004) and in Jennings et al. (2006). This core extends to basal till on the East Greenland shelf and contains a full deglaciation through Holocene sediment sequence. The dates reported here augment the dating control on the Holocene section of the core.

West Greenland Shelf

<table>
<thead>
<tr>
<th>Core: 343300 GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: SW entrance to Disko Bugt</td>
</tr>
<tr>
<td>Lat.: 68°28.311'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA81304</th>
<th>GRL-1811-S</th>
<th>Depth (cm): 190-192</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 3,248±44</td>
<td>Corr. Age: 2,848±44</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 20.4</td>
<td>Genus: Yoldia</td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (‰): 0.7</td>
<td></td>
</tr>
<tr>
<td>Contributor: Anne E. Jennings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes: Paired shells, excellent condition.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA81307</th>
<th>GRL-1822-S</th>
<th>Depth (cm): 340-342</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 5,822±57</td>
<td>Corr. Age: 5,422±57</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 5</td>
<td>Genus: Foraminifera</td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>Species:</td>
<td></td>
</tr>
<tr>
<td>Contributor: Anne E. Jennings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes: Benthic species: 63 Globobulimina auriculata, 82 Nonionellina labradorica</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA81305</th>
<th>GRL-1812-S</th>
<th>Depth (cm): 655-657</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 9,473±57</td>
<td>Corr. Age: 9,073±57</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 25.7</td>
<td>Genus: Yoldia</td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (‰): 1.5</td>
<td></td>
</tr>
<tr>
<td>Contributor: Anne E. Jennings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes: Paired valves (seen on X-radiographs) that broke when probed for sampling. Somewhat chalky.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA81306</th>
<th>GRL-1813-S</th>
<th>Depth (cm): 775-777</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 9,593±58</td>
<td>Corr. Age: 9,193±58</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 5</td>
<td>Genus: Mollusc</td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>Species:</td>
<td></td>
</tr>
<tr>
<td>Contributor: Anne E. Jennings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>31.2</td>
<td>Genus:</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$\delta^{13}C$:</td>
<td>Measured</td>
<td>$\delta^{13}C$ (%):</td>
</tr>
<tr>
<td>Contributor:</td>
<td>Anne E. Jennings</td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Paired valves (seen on X-radiographs) in good condition.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>AA81308</th>
<th>GRL-1814-S</th>
<th>Depth (cm):</th>
<th>940-942</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>9,706±65</td>
<td>Corr. Age:</td>
<td>9,306 ±65</td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>46.2</td>
<td>Genus:</td>
<td>Yoldia</td>
<td>Species:</td>
</tr>
<tr>
<td>$\delta^{13}C$:</td>
<td>Measured</td>
<td>$\delta^{13}C$ (%):</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>Anne E. Jennings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Paired valves (seen on X-radiographs) in good condition.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>Beta234922</th>
<th>GRL-NA</th>
<th>Depth (cm):</th>
<th>1,019-1,021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>10,090±60</td>
<td>Corr. Age:</td>
<td>9,690±60</td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>46.2</td>
<td>Genus:</td>
<td>Yoldia</td>
<td>Species:</td>
</tr>
<tr>
<td>$\delta^{13}C$:</td>
<td>Measured</td>
<td>$\delta^{13}C$ (%):</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>Jerry Lloyd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Bivalve collected on board ship.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS (AEJ): This 11.4-m-long core was collected in 2007 on cruise MSM 05/03 of the R/V *Maria S. Merian*. The core is from a deep elongated basin named Egedesminde Dyb at the SW entrance to Disko Bugt. The core contains a full Holocene sediment sequence. It is being studied to gain an understanding of the West Greenland Current and its role in the climate and glacial history of Disko Bugt and Jakobshavns Isbrae.

| **Core: 343390 GC** |
|---|---|---|---|---|
| **Location:** | Greenland | Greenland Shelf | SW Disko Bugt |
| **Lat.:** | 70°13.176′ | **Long.:** 53°3.194′ | **Depth (mwd):** -537.6 |

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>AA82362</th>
<th>GRL-1833-S</th>
<th>Depth (cm):</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>1,308±36</td>
<td>Corr. Age:</td>
<td>908±38</td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>67.7</td>
<td>Genus:</td>
<td>Yoldia</td>
<td>Species:</td>
</tr>
<tr>
<td>$\delta^{13}C$:</td>
<td>Measured</td>
<td>$\delta^{13}C$ (%):</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>Anne E. Jennings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Hinge only</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>AA82361</th>
<th>GRL-1832-S</th>
<th>Depth (cm):</th>
<th>281-283</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>1,447±38</td>
<td>Corr. Age:</td>
<td>1,047±38</td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>20</td>
<td>Genus:</td>
<td>Nucula</td>
<td>Species:</td>
</tr>
<tr>
<td>$\delta^{13}C$:</td>
<td>Measured</td>
<td>$\delta^{13}C$ (%):</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>Anne E. Jennings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Paired shells, excellent condition. 1 valve sent for dating.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Lab ID: | AA82363 | GRL-1834-S | Depth (cm): | 498-500 |
Age: 2,352±37
Corr. Age: 1,952±37
Material: Mollusc

Weight (mg): 71.5
Genus: Turritella
Species: polaris

δ¹³C: Measured
δ¹³C (‰): -0.7

Contributor: Anne E. Jennings

Sample notes: Chalky on exterior, but solid beneath surface. Small gastropod in sandy lens of sediment.

COMMENTS (AEJ): This 5.05-m-long core was collected in 2007 on cruise MSM 05/03 of the R/V Maria S. Merian. The core was raised from the NW-SE trending channel of the Vaigat, a major export route for icebergs leaving Disko Bay. The core contains IRD throughout. The dates are concentrated near the base. They suggest rapid sedimentation and IRD in the Vaigat over the last 2,000 ¹⁴C years.

Labrador Shelf

Core: MD99-2236

<table>
<thead>
<tr>
<th>Location: Canada</th>
<th>Cartwright Saddle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.: 54°37′</td>
<td>Long.: -56°10.57′</td>
</tr>
<tr>
<td>Lab ID: AA70937</td>
<td>GRL-1777-S</td>
</tr>
<tr>
<td>Age: 1,057±36</td>
<td>Corr. Age: 607±36</td>
</tr>
<tr>
<td>Weight (mg): 4.4</td>
<td>Genus:</td>
</tr>
<tr>
<td></td>
<td>δ¹³C (‰): -0.3</td>
</tr>
<tr>
<td>Contributor: Anne E. Jennings</td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: Mixed benthic species: N. labradorica, Melonis barleeanus, Buccella frigida, Islandiella islandica, Globobulimina. Freeze-dried sediment was sieved with distilled water on a 63 μm screen. The forams were picked with a brush.

<table>
<thead>
<tr>
<th>Lab ID: AA59572</th>
<th>GRL-1735-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 1,775±35</td>
<td>Corr. Age: 1,375±35</td>
</tr>
<tr>
<td>Weight (mg): 42</td>
<td>Genus:</td>
</tr>
<tr>
<td></td>
<td>δ¹³C (‰):</td>
</tr>
<tr>
<td>Contributor: Anne E. Jennings</td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: Shell fragments, thin but chalky.

<table>
<thead>
<tr>
<th>Lab ID: AA70938</th>
<th>GRL-1778-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 2,370±40</td>
<td>Corr. Age: 1,920±40</td>
</tr>
<tr>
<td>Weight (mg): 6.7</td>
<td>Genus:</td>
</tr>
<tr>
<td></td>
<td>δ¹³C (‰): 0.1</td>
</tr>
<tr>
<td>Contributor: Anne E. Jennings</td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: Mixed benthic species: Globobulimina auricula arctica, Islandiella islandica, Buccella spp., Melonis barleeanus, Nonionellina labradorica from three
adjacent samples. Freeze-dried sediment was sieved with distilled water on a 63 µm screen. The forams were picked with a brush.

<table>
<thead>
<tr>
<th>Lab ID: AA59573</th>
<th>GRL-1736-S</th>
<th>Depth (cm): 249.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 6,577±42</td>
<td>Corr. Age: 6,177±42</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 91</td>
<td>Genus:</td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (%): 1</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>Anne E. Jennings</td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Large umbo fragment with well-developed teeth—photograph available.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA59574</th>
<th>GRL-1737-S</th>
<th>Depth (cm): 431.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 7,700±200</td>
<td>Corr. Age: 7,250±200</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 7</td>
<td>Genus: Nuculana</td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (%): -0.22</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>Anne E. Jennings</td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Small intact valve—photo available.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA59575</th>
<th>GRL-1738-S</th>
<th>Depth (cm): 467.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 7,816±63</td>
<td>Corr. Age: 7,366±63</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 40</td>
<td>Genus:</td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (%): 0.54</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>Anne E. Jennings</td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Large fragment, lustrous interior—photo available.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA70935</th>
<th>GRL-1775-S</th>
<th>Depth (cm): 1-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (mg): 3.9</td>
<td>Genus:</td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (%): -0.6</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>Anne E. Jennings</td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Mixed benthic foraminifers: N. labradorica, Melonis barleeanus, Buccella frigida, Lagena sp, Angulogerina angulosa, Globobulimina auriculata arctica. Freeze-dried sediment was sieved with distilled water on a 63 µm screen. The forams were picked with a brush.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA70936</th>
<th>GRL-1776-S</th>
<th>Depth (cm): 10-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 1,082±37</td>
<td>Corr. Age: 632±48</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 5.7</td>
<td>Genus:</td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (%): 0</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>Anne E. Jennings</td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Mixed benthic species: N. labradorica, Melonis barleeanus, Buccella frigida, Islandiella islandica, Globobulimina. Freeze-dried sediment was sieved with distilled water on a 63 µm screen. The forams were picked with a brush.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA58959</th>
<th>GRL-1721-S</th>
<th>Depth (cm): 890</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (mg)</td>
<td>Genus</td>
<td>Species</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>62.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td></td>
<td>Bathyarca</td>
</tr>
</tbody>
</table>

| δ¹³C: | Measured | δ¹³C (%): | |
|-------|----------|-----------|
| 0.85 | | |
| 1.89 | | 0.9 |

<table>
<thead>
<tr>
<th>Contributor</th>
<th>Anne E. Jennings</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample notes</th>
<th>Gastropod.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7</td>
<td></td>
<td>Nucula?</td>
</tr>
</tbody>
</table>

| δ¹³C: | Measured | δ¹³C (%): | |
|-------|----------|-----------|
| 2.0 | | 0.9 |

<table>
<thead>
<tr>
<th>Contributor</th>
<th>Anne E. Jennings</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample notes</th>
<th>Single well preserved valve.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.4</td>
<td></td>
<td>Nucula</td>
</tr>
</tbody>
</table>

| δ¹³C: | Measured | δ¹³C (%): | |
|-------|----------|-----------|
| 2.0 | | 0.9 |

<table>
<thead>
<tr>
<th>Contributor</th>
<th>Anne E. Jennings</th>
</tr>
</thead>
</table>

| Sample notes | Paired shells in bed of life position shells seen on x-radiographs. Freeze-dried sediment, sieved with distilled water, sieved at 63 µm, air dried. Significance: This sample is submitted to check whether the age model defined by the surrounding dates is valid. |

<table>
<thead>
<tr>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| δ¹³C: | Measured | δ¹³C (%): | |
|-------|----------|-----------|
| -1.4 | | -0.8 |

<table>
<thead>
<tr>
<th>Contributor</th>
<th>Anne E. Jennings</th>
</tr>
</thead>
</table>

| Sample notes | Lustrous sharp angular fragments. Photo available. Another date obtained on 9686±90. |

<table>
<thead>
<tr>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| δ¹³C: | Measured | δ¹³C (%): | |
|-------|----------|-----------|
| -0.8 | | |

<table>
<thead>
<tr>
<th>Contributor</th>
<th>Anne E. Jennings</th>
</tr>
</thead>
</table>

| Sample notes | Mixed benthic species: Islandiella helena and norcrossi—276; C. reniforme—197; Buccella frigida—24; E. excavatum clavata—165; C. lobatulus—15; Stainforthia feylingi—8. Freeze-dried sediment, sieved with distilled water, sieved at 63 µm, forams picked with brush. |

<table>
<thead>
<tr>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| δ¹³C: | Measured | δ¹³C (%): | |
|-------|----------|-----------|
| -0.8 | | |

<table>
<thead>
<tr>
<th>Contributor</th>
<th>Anne E. Jennings</th>
</tr>
</thead>
</table>

| Sample notes | Foraminifera |

<table>
<thead>
<tr>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| δ¹³C: | Measured | δ¹³C (%): | |
|-------|----------|-----------|
| -0.8 | | |

<table>
<thead>
<tr>
<th>Contributor</th>
<th>Anne E. Jennings</th>
</tr>
</thead>
</table>

| Sample notes | Mixed benthic species: Islandiella helena and norcrossi—276; C. reniforme—197; Buccella frigida—24; E. excavatum clavata—165; C. lobatulus—15; Stainforthia feylingi—8. Freeze-dried sediment, sieved with distilled water, sieved at 63 µm, forams picked with brush. |

<table>
<thead>
<tr>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| δ¹³C: | Measured | δ¹³C (%): | |
|-------|----------|-----------|
| -0.8 | | |

<table>
<thead>
<tr>
<th>Contributor</th>
<th>Anne E. Jennings</th>
</tr>
</thead>
</table>

| Sample notes | Mixed benthic species: Islandiella helena and norcrossi—276; C. reniforme—197; Buccella frigida—24; E. excavatum clavata—165; C. lobatulus—15; Stainforthia feylingi—8. Freeze-dried sediment, sieved with distilled water, sieved at 63 µm, forams picked with brush. |
Significance: This sample is submitted to check whether the age model defined by the surrounding dates is valid.

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL</th>
<th>Depth (cm)</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA82360</td>
<td>GRL-1837-S</td>
<td>1,351-1,352</td>
<td>Foraminifera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age: 9,777±54</td>
<td>Age: 9,327±54</td>
<td>Material:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 7</td>
<td>Weight (mg): 90</td>
<td>Species:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (%): -0.6</td>
<td>Species:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor: Anne E. Jennings</td>
<td>Sample notes: Islandiella helenae and norcrossi—365; Cibicides lobatulus—18; Buccella frigida—18; Buccella tenerrima—13; Haynesina orbiculare—8. Freeze-dried sediment, sieved with distilled water, sieved at 63 µm, forams picked with brush.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significance: Sample chosen to constrain the onset age of a detrital carbonate event.

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL</th>
<th>Depth (cm)</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA58963</td>
<td>GRL-1725-S</td>
<td>1,513</td>
<td>Mollusc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age: 10,025±67</td>
<td>Age: 9,575±67</td>
<td>Material:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 90</td>
<td>Weight (mg): 9.2</td>
<td>Species:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (%): 1.3</td>
<td>Species:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor: Anne E. Jennings</td>
<td>Sample notes: Shell fragments but shells thin and delicate and fragments are angular suggesting breaking during coring and/or extraction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL</th>
<th>Depth (cm)</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA58964</td>
<td>GRL-1726-S</td>
<td>1,708</td>
<td>Mollusc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age: 10,379±58</td>
<td>Age: 9,929±58</td>
<td>Material:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 9.2</td>
<td>Weight (mg): 9.2</td>
<td>Species:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (%): -1.3</td>
<td>Species:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor: Anne E. Jennings</td>
<td>Sample notes: Fragments of umbo areas—photo available.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL</th>
<th>Depth (cm)</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA58965</td>
<td>GRL-1727-S</td>
<td>1,839</td>
<td>Mollusc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age: 10,473±50</td>
<td>Age: 10,023±50</td>
<td>Material:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 39.2</td>
<td>Weight (mg): 39.2</td>
<td>Species:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (%): -0.5</td>
<td>Species:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL</th>
<th>Depth (cm)</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA58966</td>
<td>GRL-1728-S</td>
<td>1,868</td>
<td>Mollusc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age: 10,769±51</td>
<td>Age: 10,319±51</td>
<td>Material:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 183</td>
<td>Weight (mg): 183</td>
<td>Species:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (%): -1.7</td>
<td>Species:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor: Anne E. Jennings</td>
<td>Sample notes: Sharp angular thin fragments. Periostracum attached. Another date obtained of 10769±49.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COMMENTS (AEJ): This 20.96-m-long Calypso core was collected during leg 2 of the IMAGES IV cruise which had the objective of obtaining high resolution Holocene records from the North Atlantic. The core lies in Cartwright Saddle on the Labrador Shelf. It contains a very detailed record of ice discharge events and associated hydrographic impacts during the Laurentide Ice Sheet deglaciation in Hudson Bay and Hudson Strait. The core extends beyond the Holocene into sediments associated with deglaciation of Labrador.
<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>AA</th>
<th>GRL-NA</th>
<th>Depth (cm):</th>
<th>159</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>5,230±60</td>
<td>Corr. Age:</td>
<td>4,780±60</td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>Measured</td>
<td>Genus:</td>
<td>Species:</td>
<td></td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>δ¹³C (%):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>J. Stravers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Paired Yoldia.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>AA</th>
<th>GRL-NA</th>
<th>Depth (cm):</th>
<th>357</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>8,195±65</td>
<td>Corr. Age:</td>
<td>7,745±65</td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>Measured</td>
<td>Genus:</td>
<td>Species:</td>
<td></td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>δ¹³C (%):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>J. Stravers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Paired Clinocardium ciliatum</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>AA</th>
<th>GRL-NA</th>
<th>Depth (cm):</th>
<th>673</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>9,890±85</td>
<td>Corr. Age:</td>
<td>9,440±85</td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>Measured</td>
<td>Genus:</td>
<td>Species:</td>
<td></td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>δ¹³C (%):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>J. Stravers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Paired Yoldia.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS (JTA): This core was worked on initially by Dr J. Stravers and graduates at the University of Northern Illinois. More recently it is being studied for changes in the non-clay and clay mineralogy.

Baffin Bay

Core: HE0006-4-2PC

<table>
<thead>
<tr>
<th>Location:</th>
<th>Greenland</th>
<th>West Greenland</th>
<th>West Greenland Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.:</td>
<td>71°13.163’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long.:</td>
<td>-61°29.526’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>KCCAMS50860</th>
<th>GRL-1829-S</th>
<th>Depth (cm):</th>
<th>25-27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>9,730±550</td>
<td>Corr. Age:</td>
<td>9,280±550</td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>0.4 mg</td>
<td>Genus:</td>
<td>Neogloboquadrina</td>
<td>Species: pachyderma</td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>δ¹³C (%):</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>Anne E. Jennings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>167 Neogloboquadrina pachyderma (sin)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significance: This small sample was part of a project to develop a technique for dating 100 microgram samples at UC Irvine. Maurine Davis prepared and analyzed the sample. This date from glacial marine mud overlying a thick sequence of hemipelagic mud and sediment gravity flows gives a minimum age of deglaciation of the adjacent West Greenland shelf.
Lab ID: AA82697 GRL-1831-S Depth (cm): 315-317
Age: 21,440±140 Corr. Age: 20,990±140 Material: Foraminifera
Weight (mg): 7.6 mg Genus: Neogloboquadrina Species: pachyderma
δ¹³C: Measured δ¹³C (%oo): 0.28
Contributor: Anne E. Jennings
Sample notes: Only two levels in this piston core had enough NPS for a date.
Significance: This sample from 316 cm was the deeper of the two levels. The sediments are hemipelagic mud that is associated with sediment gravity flow deposits interpreted to record glacier ice on the continental shelf during the last glaciation.

Core: HE0006-4-2TC
Location: Greenland West Greenland
Lat.: 71°13.163′ Long.: -61°29.526′ Depth (mwd): -1829

Lab ID: AA82698 GRL-1828-S Depth (cm): 35-37
Age: 10,102±56 Corr. Age: 9,652±56 Material: Foraminifera
Weight (mg): 4.1 mg Genus: Neogloboquadrina Species: pachyderma
δ¹³C: Measured δ¹³C (%oo): 0.9
Contributor: Anne E. Jennings
Sample notes: 899 Neogloboquadrina pachyderma sinistral

Lab ID: KCCAMS50859 GRL-1830-S Depth (cm): 45-47
Age: 10,240±250 Corr. Age: 9,790±250 Material: Foraminifera
Weight (mg): 1 mg Genus: Neogloboquadrina Species: pachyderma
δ¹³C: Measured δ¹³C (%oo): 0.28
Contributor: Anne E. Jennings
Sample notes: 227 Neogloboquadrina pachyderma sinistral
Significance: This small sample was part of a project to develop a technique for dating 100 microgram samples at UC Irvine. Maurine Davis prepared and analyzed the sample.

Nares Strait

Core: HLY0301-05GC
Location: Nares Strait
Lat.: 81°37.286′ Long.: 63°15.467′ Depth (mwd): -797

Lab ID: AA81309 GRL-1823-S Depth (cm): 0-2
Age: 530±52 Corr. Age: 80±52 Material: Mollusc
Weight (mg): 3.2 Genus: Arca Species: glacialis
δ¹³C: Measured δ¹³C (%oo):
Contributor: Anne E. Jennings
Sample notes: Small mollusc found in core top.
Iceland

Southwest Iceland Shelf

<table>
<thead>
<tr>
<th>Location:</th>
<th>Iceland Shelf Jokuldjup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.:</td>
<td>63°57.83′</td>
</tr>
<tr>
<td>Long.:</td>
<td>-24°26.58′</td>
</tr>
<tr>
<td>Depth (mwd):</td>
<td>355</td>
</tr>
</tbody>
</table>

Core: MD99-2258

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>NSRL15950</th>
<th>GRL-1825-S</th>
<th>Depth (cm): 27.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (mg):</td>
<td>15</td>
<td>Genus: Astarte</td>
<td>Species: borealis</td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>δ¹³C (%): 1.8</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>John T. Andrews</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Articulated.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>NSRL15951</th>
<th>GRL-1826-S</th>
<th>Depth (cm): 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>2,655±15</td>
<td>Corr. Age: 2,265±15</td>
<td>Material: Mollusc</td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>20</td>
<td>Genus: Astarte</td>
<td>Species: borealis</td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>δ¹³C (%): 2.9</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>John T. Andrews</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Articulated.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>NSRL15952</th>
<th>GRL-1827-S</th>
<th>Depth (cm): 69-72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>3,180±20</td>
<td>Corr. Age: 2,780±20</td>
<td>Material: Mollusc</td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>20</td>
<td>Genus: Dentalia</td>
<td>Species:</td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>δ¹³C (%): 1.1</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>John T. Andrews</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS (AEJ): This core was collected from Hall Basin at the northern end of Nares Strait during a 2003 cruise of the USCGC *Healy* (Kelly Falkner, Chief Scientist). We are studying the foraminifers, mineralogy, stable isotopes, Mg/Ca paleotemperatures of this core to learn about the deglaciation of Nares Strait and the timing of the opening of its connection between Baffin Bay and the Arctic Ocean.
COMMENTS (JTA): This 72-cm-long box core is being studied in detail as part of an ongoing investigation into late Holocene conditions in an area generally not influenced by sea ice. It will also form part of an investigation into Holocene conditions where it will be combined with data from MD99-2259 (see below).

<table>
<thead>
<tr>
<th>Location: Iceland</th>
<th>Core: MD99-2259</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iceland Shelf</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>Lat.: 63°57.79'</td>
<td>Depth (mwd): -385</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA81065</th>
<th>GRL-1817-S</th>
<th>Depth (cm): 22-23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 766±43</td>
<td>Genus: scaphopod</td>
<td>Material: Mollusc</td>
</tr>
<tr>
<td>Weight (mg): 13.3</td>
<td>δ^{13}C (%): 2.6</td>
<td>Species:</td>
</tr>
<tr>
<td>δ^{13}C: Measured</td>
<td>Contributor: Ursula Quillmann</td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: Whole scaphopod, broke in two halves when taken out of the core. Both halves were submitted.

Stratigraphic context: Shell in Holocene mud.

<table>
<thead>
<tr>
<th>Lab ID: AA81066</th>
<th>GRL-1818-S</th>
<th>Depth (cm): 44-45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 2,535±45</td>
<td>Genus: Astarte</td>
<td>Material: Mollusc</td>
</tr>
<tr>
<td>Weight (mg): 0.109</td>
<td>δ^{13}C (%): 3.1</td>
<td>Species: undulatum</td>
</tr>
<tr>
<td>δ^{13}C: Measured</td>
<td>Contributor: Ursula Quillmann</td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: Articulated shell. We are breaking shell and sending 1/2 for ¹⁴C dating and storing the second half.

Stratigraphic context: Shell in Holocene mud.

<table>
<thead>
<tr>
<th>Lab ID: AA81067</th>
<th>GRL-1819-S</th>
<th>Depth (cm): 84-85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 4,950±57</td>
<td>Genus: Astarte</td>
<td>Material: Mollusc</td>
</tr>
<tr>
<td>Weight (mg): 0.907</td>
<td>δ^{13}C (%): 2.6</td>
<td>Species: undulatum</td>
</tr>
<tr>
<td>δ^{13}C:Measured</td>
<td>Contributor: Ursula Quillmann</td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: 2 halves of the shell were found, half at 84-85 cm (submitted) and other half at 85-86 cm. In the 84-85 cm section we also found 1 scaphopod plus scaphopod fragments.

Stratigraphic context: Shell in Holocene Mud.

<table>
<thead>
<tr>
<th>Lab ID: AA81068</th>
<th>GRL-1820-S</th>
<th>Depth (cm): 130-131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 1,287±44</td>
<td>Genus: scaphopod</td>
<td>Material: Mollusc</td>
</tr>
<tr>
<td>Weight (mg): 0.049</td>
<td>δ^{13}C (%): 2.6</td>
<td>Species:</td>
</tr>
<tr>
<td>δ^{13}C: Measured</td>
<td>Contributor: Ursula Quillmann</td>
<td></td>
</tr>
</tbody>
</table>

Stratigraphic context: Shell in Holocene mud.
Significance: This age is much younger than expected (expected ~9000 yrs). (1) We checked x-radiographs and saw the shell that we submitted at the correct depth (12/16/08) (2) We are now logging the core and comparing record to MD99-2256 to see if there are any disturbances in the core.

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL-1821-S</th>
<th>Depth (cm): 461-462</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 2,869±54</td>
<td>Corr. Age: 2,469±54</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 0.13</td>
<td>Genus: scaphopod</td>
<td></td>
</tr>
<tr>
<td>$\delta^{13}C$: Measured</td>
<td>$\delta^{13}C$ (%): 2.6</td>
<td></td>
</tr>
<tr>
<td>Contributor: Ursula Quillmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stratigraphic context: Shell in Holocene mud.

Significance: This age is much younger than expected (expected ~10,000-11,000 yrs). (1) We checked x-radiographs and saw the shell that we submitted at the correct depth. (2) We are now logging the core and comparing record to MD99-2256 to see if there are any disturbances in the core.

COMMENTS (UQ): Core MD99-2259 represents the deglacial and Holocene environments on the SW Iceland shelf. The core top is assumed to be 1000 cal yr BP based on a preliminary age model. The basal reservoir-corrected radiocarbon age is 12,390 yrs (15,100±440 cal yr BP). Two tephra layers have been identified so far, the Saksunarvarn tephra at 412-418 cm (10,200 cal yr BP) and the Vedde tephra at 603 cm (11,500 cal yr BP). Sedimentation rate between the core top and 178 cm (10,100±160 cal yr BP) is 1 cm in 45 years and between 178 cm and core base 1 cm in ~2.5 years.

Core: B997-350PC

<table>
<thead>
<tr>
<th>Location: Iceland</th>
<th>Iceland Shelf</th>
<th>Jokuldjup, W Iceland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.: 64°16.479'</td>
<td>Long.: -24°1.389'</td>
<td>Depth (mwd): -239</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA66845</th>
<th>GRL-NA</th>
<th>Depth (cm): 0-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 2,818±39</td>
<td>Corr. Age: 2,418±39</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 10</td>
<td>Genus: mixed benthic</td>
<td></td>
</tr>
<tr>
<td>$\delta^{13}C$: Measured</td>
<td>$\delta^{13}C$ (%): -0.3</td>
<td></td>
</tr>
<tr>
<td>Contributor: James Bendle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference: Bendle (2003, p. 113, Table 4.2).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA55120</th>
<th>GRL-NA</th>
<th>Depth (cm): 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 645±36</td>
<td>Corr. Age: 245±36</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 55</td>
<td>Genus: Ditrupa</td>
<td></td>
</tr>
<tr>
<td>$\delta^{13}C$: Measured</td>
<td>$\delta^{13}C$ (%): 1.9</td>
<td></td>
</tr>
<tr>
<td>Contributor: James Bendle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference: Bendle (2003, p. 113, Table 4.2).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA53100</th>
<th>GRL-NA</th>
<th>Depth (cm): 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 9,713±60</td>
<td>Corr. Age: 9,313±60</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 55</td>
<td>Genus: Ditrupa</td>
<td></td>
</tr>
<tr>
<td>$\delta^{13}C$: Measured</td>
<td>$\delta^{13}C$ (%): 1.9</td>
<td></td>
</tr>
<tr>
<td>Contributor: James Bendle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference: Bendle (2003, p. 113, Table 4.2).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Weight (mg): 58.7 Genus: *Acanthocardia* Species: *cf. aculeate*

δ^{13}C: Measured δ^{13}C (%): 1.3

Contributor: James Bendle
Sample notes: Outer 20% removed by HCL.
Reference: Bendle (2003, p. 113, Table 4.2).

Lab ID: AA53101
Age: 10,698±75
Weight (mg): 22.6
Genus: *Yordiella*
δ^{13}C: Measured
δ^{13}C (%): -1.1

Contributor: James Bendle
Reference: Bendle (2003, p. 113, Table 4.2).

Lab ID: AA53103
Age: 10,916±63
Weight (mg): 22.5
Genus: *Opisthobranch*
δ^{13}C: Measured
δ^{13}C (%): -1.1

Contributor: James Bendle
Reference: Bendle (2003, p. 113, Table 4.2).

Lab ID: AA53104
Age: 11,537±66
Weight (mg): 162.2
Genus:
δ^{13}C: Measured
δ^{13}C (%): 0.2

Contributor: James Bendle
Sample notes: Outer 20% removed by HCL.
Reference: Bendle (2003, p. 113, Table 4.2).

Lab ID: AA53105
Age: 11,966±87
Weight (mg): 106.3
Genus:
δ^{13}C: Measured
δ^{13}C (%): -1.8

Contributor: James Bendle
Sample notes: Outer 20% removed by HCL.
Reference: Bendle (2003, p. 113, Table 4.2).

Core: MD99-2256

Location: Iceland
Lat.: 64°18.19’
Long.: -24°12.4’
Depth (mwd): -246

Lab ID: AA58402
Age: 652±36
Weight (mg): 73
Genus:
δ^{13}C: Measured
δ^{13}C (%): 1.8

Contributor: John T. Andrews

Sample notes: Tooth shell. Well-preserved.
References: Principato et al. (2005).

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL-1710-S</th>
<th>Depth (cm)</th>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA58403</td>
<td></td>
<td>37-38</td>
<td>1,466±38</td>
<td>1,066±38</td>
<td>Mollusc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg)</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C (‰): 1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor</td>
<td>John T. Andrews</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL-1711-S</th>
<th>Depth (cm)</th>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA58404</td>
<td></td>
<td>47-48</td>
<td>2,154±38</td>
<td>1,754±38</td>
<td>Mollusc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg)</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C (‰): 2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor</td>
<td>John T. Andrews</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: Well preserved.

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL-1779-S</th>
<th>Depth (cm)</th>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA70939</td>
<td></td>
<td>80-82</td>
<td>2,910±40</td>
<td>2,510±40</td>
<td>benthic forams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg)</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C (‰): 0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor</td>
<td>Anne E. Jennings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: *Uvigerina mediterranea*. 134 specimens picked from >106 µm fraction washed with distilled water and air dried. Boreal benthic species.

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL-1761-S</th>
<th>Depth (cm)</th>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA65331</td>
<td></td>
<td>113-114</td>
<td>3,840±39</td>
<td>3,224±39</td>
<td>Foraminifera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg)</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C (‰): -0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor</td>
<td>Anne E. Jennings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: 262—*Hyalinea balthica* and 70—*Uvigerina mediterranea*.

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL-1712-S</th>
<th>Depth (cm)</th>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA58405</td>
<td></td>
<td>123-124</td>
<td>3,624±41</td>
<td>3,224±41</td>
<td>Mollusc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg)</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C (‰): 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor</td>
<td>John T. Andrews</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: Tooth shell—well preserved.

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL-1780-S</th>
<th>Depth (cm)</th>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA70940</td>
<td></td>
<td>140-142</td>
<td>4,568±44</td>
<td>4,168±44</td>
<td>benthic forams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg)</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C (‰): 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor</td>
<td>Anne E. Jennings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References: Principato et al. (2005).
Sample notes: 2 benthic foraminiferal species: *Uvigerina mediterranea* and *Globobulimina auriculata arctica*. 2 benthic species picked from >106 µm fraction washed with distilled water and air dried.

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL</th>
<th>Depth (cm)</th>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
<th>δ¹³C</th>
<th>Measured</th>
<th>δ¹³C (%)</th>
<th>Contributor</th>
<th>Sample notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA65331</td>
<td>GRL-1762-S</td>
<td>163-164</td>
<td>5,636±39</td>
<td>5,336±39</td>
<td>Foraminifera</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td></td>
<td>0</td>
<td>0</td>
<td>Anne E. Jennings</td>
<td>Planktic foraminifers. 230 Globigerina bulloides & 176 Neogloboquadridina pachyderma (dextral).</td>
</tr>
<tr>
<td>AA70941</td>
<td>GRL-1781-S</td>
<td>180-182</td>
<td>6,200±56</td>
<td>5,800±56</td>
<td>Benthic forams</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>Anne E. Jennings</td>
<td>2 benthic foraminiferal species: Uvigerina mediterranea and Globobulimina auriculata arctica. 2 benthic species picked from >106 µm fraction washed with distilled water and air dried.</td>
</tr>
<tr>
<td>CURL7757</td>
<td>GRL-1763-S</td>
<td>197-198</td>
<td>7,095±25</td>
<td>6,695±25</td>
<td>Foraminifera</td>
<td>6.8</td>
<td>-</td>
<td>-</td>
<td></td>
<td>4.2</td>
<td>4.2</td>
<td>Anne E. Jennings</td>
<td>3 benthic species: Bulimina marginata, Uvigerina mediterranea and Melonis barleanus. 3 benthic species picked from >106 µm fraction, washed with distilled water and air dried.</td>
</tr>
<tr>
<td>AA70942</td>
<td>GRL-1782-S</td>
<td>240-242</td>
<td>8,379±51</td>
<td>7,979±51</td>
<td>Benthic forams</td>
<td>8.1</td>
<td>Melonis</td>
<td>barleanus</td>
<td></td>
<td>-0.3</td>
<td>-0.3</td>
<td>Anne E. Jennings</td>
<td>Single benthic species—247 specimens. 1 benthic species picked from >106 µm fraction, washed with distilled water and air dried. Significance: Likely early Holocene.</td>
</tr>
<tr>
<td>AA70943</td>
<td>GRL-1783-S</td>
<td>280-282</td>
<td>8,978±53</td>
<td>8,573±53</td>
<td>Benthic forams</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td></td>
<td>0</td>
<td>0</td>
<td>Anne E. Jennings</td>
<td>3 benthic species: Bulimina marginata, Uvigerina mediterranea and Melonis barleanus. 3 benthic species picked from >106 µm fraction, washed with distilled water and air dried.</td>
</tr>
<tr>
<td>Lab ID</td>
<td>GRL</td>
<td>Depth (cm)</td>
<td>Age</td>
<td>Corr. Age</td>
<td>Material</td>
<td>Weight (mg)</td>
<td>Genus</td>
<td>Species</td>
<td>δ¹³C: Measured</td>
<td>δ¹³C (‰):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA58406</td>
<td>GRL-1713-S</td>
<td>315-316</td>
<td>9,393±66</td>
<td>8,939±66</td>
<td>Mollusc</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AA58407</td>
<td>GRL-1714-S</td>
<td>343-344</td>
<td>9,424±48</td>
<td>9,024±48</td>
<td>Mollusc</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AA58408</td>
<td>GRL-1715-S</td>
<td>389-390</td>
<td>9,555±74</td>
<td>9,155±74</td>
<td>Mollusc</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>-0.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AA58409</td>
<td>GRL-1716-S</td>
<td>413-414</td>
<td>9,734±50</td>
<td>9,334±50</td>
<td>Mollusc</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AA58970</td>
<td>GRL-1732-S</td>
<td>448</td>
<td>9,735±51</td>
<td></td>
<td>Mollusc</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AA58410</td>
<td>GRL-1717-S</td>
<td>529-530</td>
<td>10,075±57</td>
<td>9,675±57</td>
<td>Mollusc</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Sample notes:
- Well preserved.
- Identification not 100%. A number of small, intact, well preserved valves.
- Number of small, fragile valves that are difficult to identify.
- Well preserved valve.
- Well preserved gastropod.
COMMENTS (AEJ): Core MD99-2256 is located close to core 93030-006 LCF (Jennings et al., 2000). The difference between the two cores is that MD99-2256 penetrates into glacial diamicton but 93030-006 ends just above the diamicton (Principato et al., 2005). A date of 13,790±80 BP was obtained just above the diamicton in core MD99-2256, giving a minimum date for the deglaciation of the SW Iceland shelf. As a whole, the core provides a record of the late glacial transition through the Holocene.

References: Jennings et al. (2000); Principato et al. (2005).

Northwest Iceland Shelf

<table>
<thead>
<tr>
<th>Location:</th>
<th>Iceland</th>
<th>Iceland Shelf</th>
<th>Isafjardardjup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.:</td>
<td>66°13.7′</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long.:</td>
<td>-23°15.93′</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lab ID:	AA67746	GRL-1770-S	Depth (cm): 9.5-10.5
Age:	822±67	422±67	Material: Mollusc
Weight (mg):	Measured	Macoma	Species: calcarea
δ¹³C:	Measured	δ¹³C (%o): 1	

Contributor: J. T. Andrews

Sample notes: This shell was pulverized and milled in Patterson’s lab at the University of Alberta in Canada. The left-over sample is submitted for radiocarbon dating and is pulverized.

Stratigraphic context: in Holocene mud

Reference: Quillmann (2003); Quillmann (2006); Andrews et al. (2008).

Lab ID:	CURL8022	GRL-1765-s	Depth (cm): 22-23
Age:	830±15	430±15	Material: Mollusc
Weight (mg):	Measured		Species:
δ¹³C:	Measured	δ¹³C (%o): 2.9	

Contributor: Unidentified mollusc fragment.

Stratigraphic context: in Holocene mud

References: Andrews et al. (2002); Quillmann (2003, 2006).

Lab ID:	AA67747	GRL-1771-S	Depth (cm): 24-25
Age:	746±61	346±61	Material: Mollusc
Weight (mg):	Measured	Thyasira	Species: flexuosa
δ¹³C:	Measured	δ¹³C (%o): -1.4	

Contributor: This sample was milled and pulverized by Bill Patterson at the University of Alberta in Canada. The left-over sample (pulverized) is submitted for radiocarbon dating.

Stratigraphic context: in Holocene mud.
<table>
<thead>
<tr>
<th>Lab ID: AA58537</th>
<th>GRL-1718-S</th>
<th>Depth (cm): 34.5-35.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (mg): 50.6</td>
<td>Genus: Nuculana</td>
<td>Species: tenuisulcata</td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (%): 1.01</td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, Ursula Quillmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratigraphic context: in Holocene mud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes: Photo available. Soaked in water, brushed off.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: CURL7633</th>
<th>GRL-1755-S</th>
<th>Depth (cm): 113</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (mg): 13</td>
<td>Genus: Dentalium</td>
<td>Species: -</td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (%):</td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, Ursula Quillmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes: One intact valve, species in the Yoldia family--might be Portlandia arctica.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratigraphic context: In Holocene mud.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA58536</th>
<th>GRL-1720-S</th>
<th>Depth (cm): 139-141</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 1,640±33</td>
<td>Corr. Age: 1,240±33</td>
<td>Material: Mollusc</td>
</tr>
<tr>
<td>Weight (mg): 130.5 mg</td>
<td>Genus: Dentalium</td>
<td>Species:</td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (%): 0</td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, Ursula Quillmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes: Photo available. Soaked in water, brushed off.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratigraphic context: in Holocene mud</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA58538</th>
<th>GRL-1719-S</th>
<th>Depth (cm): 195-196</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 2,126±34</td>
<td>Corr. Age: 1,726±34</td>
<td>Material: Mollusc</td>
</tr>
<tr>
<td>Weight (mg): 112.1 mg</td>
<td>Genus: Thyasira</td>
<td>Species:</td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (%): -2.68</td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, Ursula Quillmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes: Photo available, articulated shell, 1/2 uncut left in sample. Soaked in water, brushed off.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratigraphic context: in Holocene mud</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA58971</th>
<th>GRL-1733-S</th>
<th>Depth (cm): 240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 2,664±33</td>
<td>Corr. Age: 2,264±33</td>
<td>Material: Mollusc</td>
</tr>
<tr>
<td>Weight (mg): 500 mg</td>
<td>Genus: Yoldi??</td>
<td>Species:</td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
<td>δ¹³C (%): 1.2</td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, Ursula Quillmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes: Photo available. Large valve. Piece broken off for ¹⁴C dating. Soaked in water, brushed off. The original depth of 90 cm probably refers to the depth in a u-channel.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stratigraphic context: in Holocene mud
Reference: Quillmann (2006).

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL ID</th>
<th>Depth (cm)</th>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
<th>δ¹³C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA58972</td>
<td>GRL-1734-S</td>
<td>372</td>
<td>3,424±35</td>
<td>3,024±35</td>
<td>Mollusc</td>
<td>Thyasira</td>
<td></td>
<td>-4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contributor:</td>
<td>John T. Andrews, Ursula Quillmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sample notes:</td>
<td>Photo available. One valve sent to W. Patterson for isotopes. Soaked in water, brushed off. The original depth of 222 m probably refers to depth in a u-channel. The sample has been corrected by adding 150 cm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stratigraphic context: in Holocene mud
Reference: Quillmann (2006).

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL ID</th>
<th>Depth (cm)</th>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
<th>δ¹³C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURL7613</td>
<td>GRL-1754-S</td>
<td>1,398.5</td>
<td>6,790±20</td>
<td>6,379±20</td>
<td>Mollusc</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contributor:</td>
<td>Ursula Quillmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Significance:</td>
<td>GSA graduate student grant (uq): Detecting the 8.2 event using foraminiferal Mg/Ca and δ¹⁸O.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stratigraphic context:</td>
<td>in Holocene mud</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL ID</th>
<th>Depth (cm)</th>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
<th>δ¹³C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURL7903</td>
<td>GRL-1759-S</td>
<td>1,736.5</td>
<td>7,640±30</td>
<td>7,240±30</td>
<td>Mollusc</td>
<td>Nucluna</td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contributor:</td>
<td>Ursula Quillmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sample notes:</td>
<td>Half of bivalve intact, other half archived.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Significance:</td>
<td>GSA graduate student grant: Detecting the 8.2 event using foraminiferal Mg/Ca and δ¹⁸O.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stratigraphic context:</td>
<td>in Holocene mud</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL ID</th>
<th>Depth (cm)</th>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
<th>δ¹³C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURL7756</td>
<td>GRL-1760-S</td>
<td>1,784.5</td>
<td>7,780±25</td>
<td>7,380±25</td>
<td>Mollusc</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contributor:</td>
<td>Ursula Quillmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sample notes:</td>
<td>Mollusc fragment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stratigraphic context:</td>
<td>in Holocene mud</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Significance:</td>
<td>GSA graduate student grant: Detecting the 8.2 event using foraminiferal Mg/Ca and δ¹⁸O.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lab ID: NSRL13920
GRL-1754-S
Depth (cm): 1,790
Age: 7,755±20
Corr. Age: 7,355±20
Material: Mollusc
Weight (mg): 13
Genus: Dentalium
Species: -
δ¹³C: Measured
δ¹³C (%o):
Contributor: John T. Andrews
Sample notes: One intact valve, species in the Yoldia family--might be Portlandia arctica. Stratigraphic context: In Holocene mud.

Lab ID: CURL7903
GRL-1764-S
Depth (cm): 2,236.5-2,238.5
Age: 8,285±15
Corr. Age: 7,825±15
Material: mollusk
Weight (mg):
Genus: Gastropod
Species:
δ¹³C: Measured
δ¹³C (%o): 3
Contributor:
Sample notes: Well-preserved Gastropod, photographed. GSA graduate student grant: Detecting the 8.2 event using foraminiferal Mg/Ca and δ¹⁸O.
Stratigraphic context: in Holocene mud.

COMMENTS (UQ): Rock and paleomagnetic data from this core are reported in Andrews et al. (2008). Core MD99-2266 contains over 38 m of Holocene sediment. Sediment accumulation rates are highest between 10,180 and 5,500 cal yrs BP. The sediment is mainly silty clay with faint to prominent laminations and a near basal date of 9,804 ± 70 BP. MD99-2266 contains an abundance of foraminifera and articulated bivalves.
References: Quillmann (2003, 2006); Andrews et al. (2008); Quillmann et al. (in press).

<table>
<thead>
<tr>
<th>Location</th>
<th>Core: B997-338PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW Iceland</td>
<td>Iceland Shelf</td>
</tr>
<tr>
<td>Lat.: 66°35.3′</td>
<td>Long.: -23°58.6′</td>
</tr>
<tr>
<td>Depth (mwd): -209</td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: AA57068
GRL-1701-S
Depth (cm): 193-195
Age: 13,507±78
Corr. Age: 13,107±78
Material: Mollusc
Weight (mg): 10.3
Genus:
Species:
δ¹³C: Measured
δ¹³C (%o): -12.72
Contributor: John T. Andrews

Lab ID: AA57067
GRL-1700-S
Depth (cm): 209-211
Age: 13,235±62
Corr. Age: 12,835±62
Material: Mollusc
Weight (mg): 3.2
Genus:
Species:
δ¹³C: Measured
δ¹³C (%o): -0.52
Contributor: John T. Andrews
Sample notes: See video pictures. Well preserved.

Lab ID: AA32968
GRL-1496-S
Depth (cm): 412
Age: 34,600±640
Corr. Age: 34,200±640
Material: Foraminifera
Comments (JTA): This site was selected on the basis of 3.5 kHz data taken in 1996 (JM96-cruise) and the B997 cruise. The site is close to JM96-1234. The seismic data suggests that this site would recover "old" sediments as it stratigraphically lies beneath sediments recovered at sites B997-335 and 336 (Helgadóttir, 1997). The dates from this site and JM96-1234 confirm this hypothesis. New data (Chesley, 2005) suggests that the "old" dates are probably reworked. Two silica-rich tephras have been noted in the interval ca 13 ka BP (Chesley, 2005).

References: Helgadóttir (1997); Andrews et al. (2002); Geirsdóttir et al. (2002); Chesley (2005).

Core: B997-339PC2

<table>
<thead>
<tr>
<th>Location: Iceland</th>
<th>Iceland Shelf</th>
<th>Skotufjordur, NW Iceland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.: 66°1.1056'</td>
<td>Long.: -22°48.038'</td>
<td>Depth (mwd): -104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA60140</th>
<th>GRL-1740-S</th>
<th>Depth (cm): 35-36.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 3,600±38</td>
<td>Corr. Age: 3,200±38</td>
<td>Material: Mollusc</td>
</tr>
<tr>
<td>Weight (mg): 21</td>
<td>Genus: Thyasira</td>
<td>Species:</td>
</tr>
<tr>
<td>$\delta^{13}C$: Measured</td>
<td>$\delta^{13}C$ (%): -2.2</td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, Ursula Quillmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: Soaked in water, brushed off and dried at room temperature. Photograph available.

Stratigraphic context: in Holocene mud.

Reference: Quillmann (2006); Andrews et al. (2008).

<table>
<thead>
<tr>
<th>Lab ID: AA60141</th>
<th>GRL-1741-S</th>
<th>Depth (cm): 101.25-102.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 6,583±41</td>
<td>Corr. Age: 6,183±41</td>
<td>Material: Mollusc</td>
</tr>
<tr>
<td>Weight (mg): 10.5</td>
<td>Genus: Nuculana</td>
<td>Species: tenuisulcata</td>
</tr>
<tr>
<td>$\delta^{13}C$: Measured</td>
<td>$\delta^{13}C$ (%): -1.1</td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, Ursula Quillmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: Fragment, 3*1.45 cm, sharp edges, periostracum intact. Soaked in water, brushed off and dried at room temperature. Photograph available.

Stratigraphic context: in Holocene mud.

<table>
<thead>
<tr>
<th>Lab ID: AA60139</th>
<th>GRL-1739-S</th>
<th>Depth (cm): 263.75-265</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 9,876±50</td>
<td>Corr. Age: 9,476±50</td>
<td>Material: Mollusc</td>
</tr>
<tr>
<td>Weight (mg): 80</td>
<td>Genus: Nuculana</td>
<td>Species: tenuisulcata</td>
</tr>
<tr>
<td>$\delta^{13}C$: Measured</td>
<td>$\delta^{13}C$ (%): -0.77</td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, Ursula Quillmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: Soaked in water, brushed off and dried at room temperature. Photograph available.
| Lab ID: AA60142 | GRL-1742-S | Depth (cm): 348.75-350 |
| Lab ID: AA60143 | GRL-1743-S | Depth (cm): 418.75-420 |

Age: 10,021±51 **Corr. Age:** 9,621±51 **Material:** Mollusc fragment
Weight (mg): 83 **Genus:**
δ¹³C: Measured **δ¹³C (‰):** -1.09
Contributor: John T. Andrews, Ursula Quillmann
Sample notes: Fragment, 1.5*1.5 cm, sharp edges, periostracum intact. Soaked in water, brushed off and dried at room temperature. Photograph available.

| Lab ID: AA60143 | GRL-1743-S | Depth (cm): 418.75-420 |
| Lab ID: AA60143 | GRL-1743-S | Depth (cm): 418.75-420 |

Age: 10,313±52 **Corr. Age:** 9,913±52 **Material:** Mollusc
Weight (mg): 21.9 **Genus:**
δ¹³C: Measured **δ¹³C (‰):** 0.49
Contributor: John T. Andrews, Ursula Quillmann
Sample notes: Fragment, 2*2 cm, sharp edges, periostracum intact. Soaked in water, brushed off and dried at room temperature. Photograph available.
Stratigraphic context: ???below the Saksunarvatn tephra found at 170 cm depth with a calibrated age of 10,180±120 ~9,000±80 conventional radiocarbon age.

Comments (UQ): Glacial marine conditions existed around ~10,200 cal yr BP, coinciding with the deposition of the Saksunarvatn tephra layer (at 170 cm), as recorded at the inner fjord site in relatively heavy and variable stable oxygen isotopes and in the foraminiferal assemblages, in which ~80% is composed of arctic species, *Elphidium excavatum* forma *clavata* and *Cassidulina reniforme*, and high mass accumulation rates. Ice-raftered debris is present and mass magnetic susceptibility is high. The site records a lowering of the relative sea level in its foraminiferal assemblage, when *Cibicides lobatulus*, *Astronion gallowayi*, and *Elphidium albiumbilicatum*, species interpreted as high bottom current indicators, represent over 50% of the species present. The change in energy is also recorded in the X-radiographs. The early Holocene warming was terminated ~9,000 cal yr BP, which suggests that fjord water overturning had set in. Despite the inflow of warm Atlantic water, the foraminiferal assemblages consist of arctic fauna. Environmental magnetic data reported in Andrews et al. (2008).
References: Quillmann (2003, 2006); Andrews et al. (2008); Quillmann et al. (in press).
Lab ID: AA56741 GRL-1695-S Depth (cm): 61-63.5
Age: 2,418±45 Corr. Age: 2,018±45 Material: Mollusc
Weight (mg): 143 Genus:
δ13C: Measured δ13C (%): 1.57 Species:
Contributor: John T. Andrews
Sample notes: Large fragment—periostracum intact.

Core: B997-341PC3
Location: Iceland Iceland Shelf Jokulfirdir, NW Iceland

Lab ID: CURL7634 GRL-1756-S Depth (cm): 66.25
Age: 1,620±15 Corr. Age: 1,220±15 Material: Mollusc
Weight (mg): 27 Genus:
δ13C: Measured δ13C (%): 2.3 Species:
Contributor: John T. Andrews
Sample notes: Large shell fragment with periostracum, species unclear.
Significance: The sediment accumulation rate averages 85 cm/1,000 yr
Stratigraphic context: In Holocene mud.

Core: B997-342PC
Location: Iceland Iceland Shelf Jokulfirdir, NW Iceland

Lab ID: AA56295 GRL-1684-S Depth (cm): 10-12
Age: 1,857±33 Corr. Age: 1,457±33 Material: Mollusc
Weight (mg): 52 Genus: Nuculana Species: minuta
δ13C: Measured δ13C (%): -4.49
Contributor: John T. Andrews
Sample notes: Date will check correlation between this core and MD99-2265 from the same fjord.

Lab ID: AA56294 GRL-1683-S Depth (cm): 184-186
Age: 5,408±40 Corr. Age: 5,008±40 Material: Mollusc
Weight (mg): 23 Genus: Thyasira ?? Species:
δ13C: Measured δ13C (%): -0.18
Contributor: John T. Andrews
Sample notes: Date will check correlation with MD99-2265 (Ólafsdóttir, in prep.) from the same fjord.

Core: B997-314SGC
Location: Iceland Iceland Shelf Djupall
Lat.: 66°41.1’ Long.: -24°10.8’ Depth (mwd): -243
<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Material</th>
<th>Depth (cm)</th>
<th>Age</th>
<th>Corr. Age</th>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
<th>δ(^{13})C: Measured</th>
<th>δ(^{13})C (‰):</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA56299</td>
<td>GRL-1688-S</td>
<td>0-1.5</td>
<td>1,130±120</td>
<td>730±120</td>
<td>5</td>
<td></td>
<td></td>
<td>-2.05</td>
<td></td>
</tr>
<tr>
<td>AA56300</td>
<td>Sea weed and Foraminifera</td>
<td>0-1.5</td>
<td>2,015±65</td>
<td>1,615±65</td>
<td>n/a</td>
<td></td>
<td></td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>AA56298</td>
<td>GRL-1687-S</td>
<td>18.5-19</td>
<td>1,465±39</td>
<td>1,065±39</td>
<td>5</td>
<td></td>
<td></td>
<td>1.42</td>
<td></td>
</tr>
<tr>
<td>AA56527A</td>
<td>GRL-1693-S</td>
<td>19-20</td>
<td>1,026±32</td>
<td>826±32</td>
<td>12</td>
<td></td>
<td></td>
<td>-19.6</td>
<td></td>
</tr>
<tr>
<td>AA56527B</td>
<td>GRL-1693-S</td>
<td>19-20</td>
<td>1,005±57</td>
<td>805±57</td>
<td>10</td>
<td></td>
<td></td>
<td>-0.02</td>
<td></td>
</tr>
</tbody>
</table>

Sample notes:
- Small bivalves with stained periostracum. Check on the age at ca 20 cm based on foraminifera.
- Organic matt with some foraminifera.
- Small articulated bivalves and *Dentalium*. Check on the age at ca 20 cm based on foraminifera.
- (A) seaweed?? and (B) embedded foraminifera and sponge spicules.
- (A) seaweed and (B) embedded foraminifera and sponge spicules.
Core: B997-315PC

<table>
<thead>
<tr>
<th>Location:</th>
<th>Iceland Shelf</th>
<th>Long.:</th>
<th>Djupall</th>
<th>Depth (mwd):</th>
<th>-220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.:</td>
<td>66°43.96’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab ID:</td>
<td>NSRL15187</td>
<td>GRL-1784-S</td>
<td>Depth (cm):</td>
<td>0-2</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td>2,985±20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corr. Age:</td>
<td>2,585±20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ(^{13})C:</td>
<td>Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ(^{13})C (%o):</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributors:</td>
<td>John T. Andrews, Ursula Quillmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Mixed foraminifera.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lab ID:	NSRL15290	GRL-1807-S	Depth (cm):	30-32
Age:	4,895±15			
Corr. Age:	4,495±15			
Weight (mg):	187			
Genus:	Macoma			
Species:	calcarea			
δ\(^{13}\)C:	Measured			
δ\(^{13}\)C (%o):	2.4			
Contributor:	John T. Andrews			
Sample notes:	Intact paired bivalve, although only about 2/3rds of the specimen was recovered from the core. Fresh appearance.			

Lab ID:	NSRL15289	GRL-1806-S	Depth (cm):	75
Age:	10,675±20			
Corr. Age:	10,265±20			
Weight (mg):	90			
Genus:				
Species:				
δ\(^{13}\)C:	Measured			
δ\(^{13}\)C (%o):	3.2			
Contributor:	John T. Andrews			
Sample notes:	Fairly large fragment of a bivalve. Sharp fractures and no sign of major reworking. Some periostracum intact.			

Lab ID:	NSRL15290	GRL-1808-S	Depth (cm):	196.5
Age:				
Corr. Age:				
Weight (mg):				
Genus:				
Species:				
δ\(^{13}\)C:	Measured			
δ\(^{13}\)C (%o):				
Contributor:				
Sample notes:	Scattered angular fragments in the interval ±2 cm on either side of the depth. Shell may have been fractured during coring or splitting.			

COMMENT (JTA): This core is the outermost site within the Djupall trough. Variations in the weight% of quartz and potassium feldspar are reported in Andrews et al. (2009b) and Andrews (in press).

References: Andrews et al. (2009b); Andrews (in press).

Core: MD99-2264

<table>
<thead>
<tr>
<th>Location:</th>
<th>Iceland Shelf</th>
<th>Long.:</th>
<th>Djupall</th>
<th>Depth (mwd):</th>
<th>235</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.:</td>
<td>66°40.74’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab ID:</td>
<td>NSRL15290</td>
<td>GRL-1807-S</td>
<td>Depth (cm):</td>
<td>50-52</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td>2,585±20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corr. Age:</td>
<td>2,185±20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ(^{13})C:</td>
<td>Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ(^{13})C (%o):</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributors:</td>
<td>John T. Andrews</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Mixed foraminifera.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab ID</td>
<td>GRL-1767-S</td>
<td>Depth (cm): 82-83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>3,466±48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corr. Age</td>
<td>3,066±48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 300</td>
<td>Genus: Dentalia</td>
<td>Material: Mollusc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ(^{13})C: Measured</td>
<td>δ(^{13})C (‰): 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, S. Ólafsdóttir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes: Tooth shell recovered from the u-channel in preparing sediments for XRD analyses. Sample lies between available dates as of 10/20/05.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL-1766-S</th>
<th>Depth (cm): 108-109</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>4,406±49</td>
<td></td>
</tr>
<tr>
<td>Corr. Age</td>
<td>4,006±49</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 400</td>
<td>Genus: Astarte</td>
<td>Species: striata</td>
</tr>
<tr>
<td>δ(^{13})C: Measured</td>
<td>δ(^{13})C (‰): 2</td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, S. Ólafsdóttir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes: Whole valve recovered from the u-channel in preparing sediments for XRD analyses. Sample lies between available dates as of 10/20/05.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL-1772-S</th>
<th>Depth (cm): 134-136</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>5,435±41</td>
<td></td>
</tr>
<tr>
<td>Corr. Age</td>
<td>5,035±41</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 91</td>
<td>Genus: Dentalia</td>
<td>Species:</td>
</tr>
<tr>
<td>δ(^{13})C: Measured</td>
<td>δ(^{13})C (‰): 2.1</td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, S. Ólafsdóttir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes: Tooth shell recovered from the u-channel in preparing sediments for XRD analyses. Sample lies between available dates as of 10/20/05.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL-1773-S</th>
<th>Depth (cm): 195-196</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>7,775±46</td>
<td></td>
</tr>
<tr>
<td>Corr. Age</td>
<td>7,375±46</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 51</td>
<td>Genus:</td>
<td>Species:</td>
</tr>
<tr>
<td>δ(^{13})C: Measured</td>
<td>δ(^{13})C (‰): 1.6</td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, S. Ólafsdóttir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes: Intact and well preserved small gastropod. Sample lies between available dates as of 10/20/05.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENT (JTA): Quartz and potassium feldspar data from this core are reported in Andrews et al (2009a) and Andrews (in press). Foraminifera and stable isotope values from foraminifera are part of Ólafsdóttir (in prep.) PhD dissertation at the University of Iceland. Box core MD99-2263 (see this Date List) is from the same site.

Reference: Ólafsdóttir (2004); Andrews et al. (2009a); Andrews (in press); Ólafsdóttir (in prep.).

Core: MD99-2263

<table>
<thead>
<tr>
<th>Location:</th>
<th>Iceland Shelf</th>
<th>Djupall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.: 66°40.74’</td>
<td>Long.: 24°11.76’</td>
<td>Depth (mwd):</td>
</tr>
<tr>
<td>Lab ID:</td>
<td></td>
<td>GRL-1815-S</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>Age:</td>
<td>595±15</td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>δ^{13}C:</td>
<td>Measured</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>John T. Andrews</td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Small intact spiral gastropod.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th></th>
<th>GRL-1805-S</th>
<th>Depth (cm): 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>600±15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ^{13}C:</td>
<td></td>
<td>-3.7</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>John T. Andrews</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Whole bivalve recovered from the box core. One valve submitted. Sample lies between available dates as of 10/20/05.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th></th>
<th>GRL-1816-S</th>
<th>Depth (cm): 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>690±15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ^{13}C:</td>
<td>Measured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>John T. Andrews</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Whole intact valve of Chlamys islandicus—ca 2 cm dia.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th></th>
<th>GRL-1802-S</th>
<th>Depth (cm): 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>680±20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ^{13}C:</td>
<td>Measured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>John T. Andrews, Ursula Quillmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Whole valve recovered from the box core. Sample lies between available dates as of 10/20/05.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th></th>
<th>GRL-1803-S</th>
<th>Depth (cm): 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>850±15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ^{13}C:</td>
<td>Measured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>John T. Andrews, Ursula Quillmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Whole valve recovered from the box core. Sample lies between available dates as of 10/20/05.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th></th>
<th>GRL-1809-S</th>
<th>Depth (cm): 38.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>1,620±15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ^{13}C:</td>
<td>Measured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material: Mollusc	Species:		
-------------------	-----------		
δ^{13}C (‰):			
Measured			

| Contributor:| John T. Andrews | | |
| Reference:| Andrews et al. (in press). | | |

Material: Mollusc		
-------------------	-----------	
δ^{13}C (‰):		
Measured		

| Contributor:| John T. Andrews, Ursula Quillmann | | |
| Reference:| Andrews et al. (in press). | | |

Material: Mollusc		
-------------------	-----------	
δ^{13}C (‰):		
Measured		

| Contributor:| John T. Andrews | | |
| Reference:| Andrews et al. (in press). | | |

Material: Mollusc		
-------------------	-----------	
δ^{13}C (‰):		
Measured		

| Contributor:| John T. Andrews, Ursula Quillmann | | |
| Reference:| Andrews et al. (in press). | | |

Material: Mollusc		
-------------------	-----------	
δ^{13}C (‰):		
Measured		

| Contributor:| John T. Andrews | | |
| Reference:| Andrews et al. (in press). | | |

Material: Mollusc		
-------------------	-----------	
δ^{13}C (‰):		
Measured		

| Contributor:| John T. Andrews | | |
| Reference:| Andrews et al. (in press). | | |

Material: Mollusc		
-------------------	-----------	
δ^{13}C (‰):		
Measured		
Contributor: John T. Andrews
Sample notes: Whole bivalve recovered from the box core. One valve submitted.
Sample lies between available dates as of 10/20/05.
Reference: Andrews et al. (in press).

Lab ID: NSRL15191 GRL-1804-S Depth (cm): 45
Weight (mg): Genus:
\(\delta^{13}C \): Measured \(\delta^{13}C \) (%): 6.5

Contributor: John T. Andrews, Ursula Quillmann
Sample notes: Whole valve recovered from the box core. Sample lies between available dates as of 10/20/05.
Reference: Andrews et al. (in press).

COMMENTS (JTA): This box core is from the same site as MD99-2264 (see above). Data from the box core will be published in Andrews et al. (in press), which includes data on the sea ice biomarker IP25, foraminifera, and quartz weight%. The foraminifera from the box core will be merged with those from the piston core MD99-2264 as part of the PhD of Ólafsdóttir, University of Iceland.

North Iceland Shelf

Core: B997-330SGC

<table>
<thead>
<tr>
<th>Location</th>
<th>Iceland</th>
<th>Iceland Shelf</th>
<th>Sveinbjarnargrunn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.:</td>
<td>65°52’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long.:</td>
<td>-21°4.9’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab ID:</td>
<td>AA46531</td>
<td>GRL-1383-S</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td>610±60</td>
<td>Corr. Age: 210±60</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 2</td>
<td>Genus:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta^{13}C):</td>
<td>Measured</td>
<td>(\delta^{13}C) (%):</td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes: Foraminifera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significance: This small gravity corer was raised from the same site as 330PC (this date list) to ensure that we have captured the uppermost part of the sediment column. The radiocarbon date suggests a rate of sediment accumulation of ~1 cm/10 yr.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core: B997-324 SGC

<table>
<thead>
<tr>
<th>Location</th>
<th>Iceland</th>
<th>Iceland Shelf</th>
<th>Reykjafjardarall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.:</td>
<td>66°31.426’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long.:</td>
<td>-21°9.1325’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab ID:</td>
<td>AA56296</td>
<td>GRL-1685-S</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td>572±76</td>
<td>Corr. Age: 172±76</td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 2</td>
<td>Genus:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species:</td>
<td></td>
<td></td>
<td>l</td>
</tr>
</tbody>
</table>
δ¹³C: Measured

δ¹³C (‰): -5.88

Contributor: John T. Andrews

Sample Notes: Small molluscs and fragments.

Contributor: John T. Andrews

Sample Notes: Mat of organic fragments (seaweed) and foraminifera, plus sponge spicules.

Significance: The short gravity core from site B997-324 should have recovered the uppermost sediments from the seafloor. Overlap of the short gravity core and the upper date from B997-324 PC1 (AA-32975) indicate that both cores should have recovered the uppermost sediments from the seafloor. Sediment accumulation rates for the most recent sediments are on the order of 13 cm/1,000 yrs.

Core: B997-325GGC

<table>
<thead>
<tr>
<th>Location</th>
<th>Iceland</th>
<th>Iceland Shelf</th>
<th>Reykjafjardarall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.:</td>
<td>66°34.4’</td>
<td>Long.: -20°59.8’</td>
<td>Depth (mwd): -3450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>AA46846</th>
<th>GRL-</th>
<th>Depth (cm): 0-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>1,247±56</td>
<td>Corr. Age: 847±56</td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>10</td>
<td>Genus: mixed benthic</td>
<td></td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>δ¹³C (‰): -1.3</td>
<td></td>
</tr>
</tbody>
</table>

Contributor: James Bendle

Sample Notes: From foraminifera extracted from sediment retained in the core catcher.

Reference: Bendle (2003, p. 113, Table 4.2).

<table>
<thead>
<tr>
<th>Location</th>
<th>Iceland</th>
<th>Iceland Shelf</th>
<th>Reykjafjardarall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.:</td>
<td>66°34.4’</td>
<td>Long.: -20°59.8’</td>
<td>Depth (mwd): -3450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>AA53106</th>
<th>GRL-</th>
<th>Depth (cm): 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>4,470±47</td>
<td>Corr. Age: 4,070±47</td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>24.5</td>
<td>Genus: Lunatia</td>
<td></td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>δ¹³C (‰): 0.4</td>
<td></td>
</tr>
</tbody>
</table>

Contributor: James Bendle

Sample Notes: From foraminifera extracted from sediment retained in the core catcher.

Significance: This date indicates that the rate of sediment accumulation in the mid-section of Reykjafjardarall has averaged ca. 30 cm/ky over the last 9,000 years. This site is close to HU93030-006LCF (Jennings et al., 2000).
Core: B997-325PC

<table>
<thead>
<tr>
<th>Location:</th>
<th>Iceland Shelf Reykjafjardarall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.:</td>
<td>66°34.4’</td>
</tr>
<tr>
<td>Long.:</td>
<td>-20°59.8’</td>
</tr>
<tr>
<td>Depth (mwd):</td>
<td>-3450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>NSRL15188</th>
<th>GRL-1788-S</th>
<th>Depth (cm):</th>
<th>0-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>385±15</td>
<td></td>
<td>Corr. Age:</td>
<td>-15±15</td>
</tr>
<tr>
<td>Weight (mg):</td>
<td></td>
<td>Genus:</td>
<td>Material:</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>Species:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C (‰):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributors:</td>
<td>John T. Andrews, Ursula Quillmann</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample notes:</td>
<td>Mixed foraminifera. From foraminifera extracted from sediment retained in the core catcher.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference:</td>
<td>See Bendle (2003, p. 113, Table 4.2).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>AA53107</th>
<th>GRL-</th>
<th>Depth (cm):</th>
<th>87-88</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>6,921±72</td>
<td></td>
<td>Corr. Age:</td>
<td>6,521±72</td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>-1.5</td>
<td>Genus: mixed benthic</td>
<td>Material: Foraminifera</td>
<td></td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>δ¹³C (‰):</td>
<td>Species:</td>
<td></td>
</tr>
<tr>
<td>Contributors:</td>
<td>James Bendle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Notes:</td>
<td>Outer 20% removed by HCL. From foraminifera extracted from sediment retained in the core catcher.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference:</td>
<td>See Bendle (2003, p. 113, Table 4.2).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>AA53108</th>
<th>GRL-NA</th>
<th>Depth (cm):</th>
<th>99-101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (mg):</td>
<td>15.6</td>
<td>Genus: Thyasira</td>
<td>Material: Foram & bivalves</td>
<td></td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>δ¹³C (‰):</td>
<td>-1.6</td>
<td></td>
</tr>
<tr>
<td>Contributors:</td>
<td>James Bendle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Notes:</td>
<td>Mixed benthic foraminifera and small bivalves Thyasira cf sarsi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference:</td>
<td>See Bendle (2003, p. 113, Table 4.2).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>AA53109</th>
<th>GRL-NA</th>
<th>Depth (cm):</th>
<th>139-141</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>8,759±67</td>
<td></td>
<td>Corr. Age:</td>
<td>8,359±67</td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>23</td>
<td>Genus: Thyasira</td>
<td>Material: Foram & bivalves</td>
<td></td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>δ¹³C (‰):</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>Contributors:</td>
<td>James Bendle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Notes:</td>
<td>Table 4.2. Mixed benthic foraminifera and small bivalves Thyasira cf sarsi. From foraminifera extracted from sediment retained in the core catcher.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference:</td>
<td>See Bendle (2003, p. 113, Table 4.2).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>AA53110</th>
<th>GRL-NA</th>
<th>Depth (cm):</th>
<th>171-173</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>9,252±70</td>
<td></td>
<td>Corr. Age:</td>
<td>8,852±70</td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>17.4</td>
<td>Genus: mixed benthic</td>
<td>Material: Foraminifera</td>
<td></td>
</tr>
<tr>
<td>δ¹³C:</td>
<td>Measured</td>
<td>δ¹³C (‰):</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>Contributors:</td>
<td>James Bendle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Notes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contributor: James Bendle
Sample Notes: From foraminifera extracted from sediment retained in the core catcher.
Reference: See Bendle (2003, p. 113, Table 4.2).

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL-NA</th>
<th>Depth (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA53111</td>
<td></td>
<td>211-213</td>
</tr>
</tbody>
</table>

Age: 10,400±150 Corr. Age: 10,000±150 Material: see sample notes
Weight (mg): 23 Genus: see sample notes Species:
δ¹³C: Measured δ¹³C (%): -2.6

Contributor: James Bendle
Sample notes: Scaphopod mollusc entalis. mixed benthic foraminifera and bivalve fragments. From foraminifera extracted from sediment retained in the core catcher.
Reference: See Bendle (2003, p. 113, Table 4.2).

Core: B997-327PC

<table>
<thead>
<tr>
<th>Location</th>
<th>Iceland</th>
<th>Iceland Shelf</th>
<th>Reykjafjardarall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.:</td>
<td>66°38.485’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long.:</td>
<td>-20°51.793’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (mwd):</td>
<td>-373</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL-1752-S</th>
<th>Depth (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA64125</td>
<td></td>
<td>95</td>
</tr>
</tbody>
</table>

Age: 1,329±34 Corr. Age: 929±34 Material: Mollusc
Weight (mg): 11 Genus: see sample notes Species:
δ¹³C: Measured δ¹³C (%):
Contributor: John T. Andrews
Sample notes: Small (>2 mm) intact bivalves. Shells obtained from the >2 mm sieved fraction of GRL-15788.

Core: MD99-2269

<table>
<thead>
<tr>
<th>Location</th>
<th>Iceland</th>
<th>Iceland Shelf</th>
<th>Reykjafjardarall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.:</td>
<td>66°37.53’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long.:</td>
<td>-20°51.16’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (mwd):</td>
<td>-365</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL-1703-S</th>
<th>Depth (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA57895</td>
<td></td>
<td>351</td>
</tr>
</tbody>
</table>

Age: 1,978±35 Corr. Age: 1,578±35 Material: Mollusc
Weight (mg): 67.3 Genus: cf. Yoldia Species: glacialis
δ¹³C: Measured δ¹³C (%): -0.12
Contributor: John T. Andrews, Greta B. Kristjánsson-t
Sample notes: Shells still have organic coating. Good looking shell fragments that can be pieced together into one shell.
Stratigraphic context: In Holocene mud.

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL-1704-S</th>
<th>Depth (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA57896</td>
<td></td>
<td>562-564</td>
</tr>
</tbody>
</table>

Age: 3,017±39 Corr. Age: 2,617±39 Material: Mollusc
Weight (mg): 19.1 Genus: Yoldia Species: sp.
δ¹³C: Measured δ¹³C (%): 0.98
Contributor: John T. Andrews, Greta B. Kristjánsson-t
Sample notes: Nice looking articulated mollusk. Organic coating. Both halves sent since they are small. Another articulated shell left in sample.

Stratigraphic context: In Holocene mud.

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL</th>
<th>Depth (cm)</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA57897a</td>
<td>GRL-1705-S</td>
<td>707-708</td>
<td>Mollusc</td>
<td>Arca</td>
<td>glacialis</td>
</tr>
<tr>
<td>Age: 3,751±44</td>
<td>Corr. Age: 3,351±44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 79</td>
<td>Genus: Arca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta^{13}C): Measured</td>
<td>(\delta^{13}C) (‰):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, Greta B. Kristjánsdóttir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: 2 pieces of *Arca glacialis*. 1.5 cm long. A piece of broken half sent off.

Stratigraphic context: In Holocene mud.

Significance: According to Arizona these duplicate dates for 707-708 cm were calculated with an assumed \(\delta^{13}C\) value rather than the measured one because at the time they didn't have the measured \(\delta^{13}C\). Age 3840±33 should be used for this sample, not 3751±44.

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL</th>
<th>Depth (cm)</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA57897b</td>
<td>GRL-1705-S</td>
<td>707-708</td>
<td>Mollusc</td>
<td>Arca</td>
<td>glacialis</td>
</tr>
<tr>
<td>Age: 3,840*±33</td>
<td>Corr. Age: 3,440±33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 79</td>
<td>Genus: Arca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta^{13}C): Measured</td>
<td>(\delta^{13}C) (‰):</td>
<td>2.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, Greta B. Kristjánsdóttir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: 2 pieces of *Arca glacialis*. 1.5 cm long. A piece of broken half sent off.

Stratigraphic context: In Holocene mud. For some reason Arizona came back with duplicate analysis of this sample, here designated as 57897a and b. May 2004; according to Arizona these duplicate dates for 707-708 cm were calculated with an assumed \(\delta^{13}C\) value rather than the measured one because at the time they didn't have the measured \(\delta^{13}C\). *Age 3840±33 should be used for this sample, not 3751±44.

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL</th>
<th>Depth (cm)</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA57898</td>
<td>GRL-1706-S</td>
<td>815</td>
<td>Mollusc</td>
<td>Yoldia</td>
<td>sp.</td>
</tr>
<tr>
<td>Age: 3,949±39</td>
<td>Corr. Age: 3,549±39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 23.3</td>
<td>Genus: Yoldia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta^{13}C): Measured</td>
<td>(\delta^{13}C) (‰):</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, Greta B. Kristjánsdóttir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: Nice looking shell half. 2 broken pieces left in sample.

Stratigraphic context: In Holocene mud.

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL</th>
<th>Depth (cm)</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA57899</td>
<td>GRL-1707-S</td>
<td>1,280-1,282</td>
<td>Mollusc</td>
<td>Yoldia</td>
<td>sp.</td>
</tr>
<tr>
<td>Age: 5,826±51</td>
<td>Corr. Age: 5,426±51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (mg): 4.1</td>
<td>Genus: Yoldia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta^{13}C): Measured</td>
<td>(\delta^{13}C) (‰):</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor: John T. Andrews, Greta B. Kristjánsdóttir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: Two shell halves, probably from the same individual. Slightly etched on the outer surface (like partially bored).

Stratigraphic context: In Holocene mud.

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL</th>
<th>Depth (cm)</th>
<th>Material</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA61217</td>
<td>GRL-1747-S</td>
<td>1,410-1,412</td>
<td>Mollusc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Age: 1,410-1,412 | Corr. Age: 1,280-1,282 | | | | |
| Weight (mg): 4.1 | Genus: Yoldia | | | | |
| (\delta^{13}C): Measured | (\delta^{13}C) (‰): | 0.74 | | |
| Contributor: John T. Andrews, Greta B. Kristjánsdóttir |</p>
<table>
<thead>
<tr>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,833±81</td>
<td>6,433±81</td>
<td>Foraminifera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>δ¹³C</th>
<th>δ¹³C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>-2</td>
</tr>
</tbody>
</table>

Contributor: Anne E. Jennings

Sample notes: Mixed benthic species: 23 *Globobulimina auriculata arctica*, 103 *Nonioniella labradorica*, 59 *Melonis barleeanus*. Sediment washed over sieve with distilled water. Air dried.

Stratigraphic context: In Holocene mud.

Significance: Planktic and benthic forams dated from the same level for analysis of marine reservoir and water-column stratification.

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>GRL-1748-S</th>
<th>Depth (cm):</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA61218</td>
<td></td>
<td>1,410-1,412</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOST</td>
<td></td>
<td>Foraminifera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>δ¹³C</th>
<th>δ¹³C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td></td>
</tr>
</tbody>
</table>

Contributor: Anne E. Jennings

Sample notes: Planktic forams, 472 from > 150 µm and 265 from 106-150 µm. See assemblage data from this level for species composition. Washed over sieves in distilled water. Air dried.

Stratigraphic context: In Holocene mud.

Significance: Planktic and benthic forams dated from the same level for analysis of marine reservoir and water-column stratification.

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>GRL-1749-S</th>
<th>Depth (cm):</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA61219</td>
<td></td>
<td>1,740-1,742</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,950±120</td>
<td>8,550 ± 120</td>
<td>Foraminifera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>δ¹³C</th>
<th>δ¹³C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>-0.99</td>
</tr>
</tbody>
</table>

Contributor: Anne E. Jennings

Sample notes: Planktic forams, >150 µm: 140 NPS, 111 NPD, 48 *G. bulloides*, 228 *G. quinqueloba*, 7 *G. glutinata*. Sediment washed over sieve with distilled water. Air dried.

Stratigraphic context: In Holocene mud.

Significance: Part of a 3-part comparison between benthic and planktic dates from the same level in MD99-2269.

References: Andrews et al. (2002); Andersen et al. (2004).

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>GRL-1750-S</th>
<th>Depth (cm):</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA61220</td>
<td></td>
<td>1,740-1,742</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,572±78</td>
<td>8,172±78</td>
<td>Foraminifera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Nonionellina</td>
<td>labradorica</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>δ¹³C</th>
<th>δ¹³C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>-2.5</td>
</tr>
</tbody>
</table>

Contributor: Anne E. Jennings

Sample notes: 129 specimens. Sediment washed over sieve with distilled water. Air dried.

Stratigraphic context: In Holocene mud.

Significance: Part of a 3-part comparison between planktic and benthic dates at the same level in MD99-2269.

References: Andrews et al. (2002); Andersen et al. (2004).
Core MD99-2269

Stratigraphic context: In Holocene mud.

Significance: Part of a 3-part comparison between planktic and benthic dates at the same level in MD99-2269.

Core MD99-2269 is located in a critical area on the Iceland shelf where the warm Irminger Current and the cold East Iceland Current meet. Modern water temperature fluctuations over the site exceed 5°C.

References: Andrews et al. (2002); Andersen et al. (in prep).

```markdown
<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL ID</th>
<th>Depth (cm)</th>
<th>Age</th>
<th>Corr. Age</th>
<th>Material</th>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
<th>Contribution</th>
<th>Sample notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA61221</td>
<td>GRL-1751-S</td>
<td>1,740-1,742</td>
<td>8,609±92</td>
<td>8,209±92</td>
<td>Foraminifera</td>
<td>4.4</td>
<td><strong>Globobulimina</strong></td>
<td><strong>auriculata arctica</strong></td>
<td>Anne E. Jennings</td>
<td>53 specimens. Sediment washed over sieve with distilled water. Air dried.</td>
</tr>
<tr>
<td>AA57900a</td>
<td>GRL-1708-S</td>
<td>1,750-1,752</td>
<td>8,590*±43</td>
<td>8,190±43</td>
<td>Mollusc</td>
<td>6.4</td>
<td>-</td>
<td>-</td>
<td>John T. Andrews, Greta B. Kristjánsdóttir</td>
<td>Six very small juvenile shells.</td>
</tr>
<tr>
<td>AA57900b</td>
<td>GRL-1708-S</td>
<td>1,750-1,752</td>
<td>8,551*±47</td>
<td>8,151±47</td>
<td>Mollusc</td>
<td>6.4</td>
<td>-</td>
<td>-</td>
<td>John T. Andrews, Greta B. Kristjánsdóttir</td>
<td>Six very small juvenile shells.</td>
</tr>
<tr>
<td>AA54594</td>
<td>GRL-1682-S</td>
<td>2,100-2,102</td>
<td>9,477±88</td>
<td>9,077±88</td>
<td>Foraminifera</td>
<td>5.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
```

For some reason Arizona came back with duplicate analysis of this sample, here designated as 57900a and b. May 2004; according to Arizona these duplicate dates for 1750-1752 cm were calculated with an assumed δ¹³C value rather than the measured one because at the time they didn't have the measured δ¹³C. *Age 8590±43 should be used for this sample, not 8551±47.
Contributor: John T. Andrews, Greta B. Kristjánsdóttir

Sample notes: Mixed benthic foraminifera: 180 Cassidulina neoteretis, 140 Melonis barleeanus, 90 Islandiella norcrossi, 48 Globobulimina, 39 N. labradoricum, 1 Elphidium excavatum f. clavata, 1 Cibicides lobatulus. Washed with H2O.

Significance: Within the Saksunarvatn tephra peak. Base of tephra is at 2121 cm. This was the closest sample with well-preserved foraminifera to date

Comments (JTA, AEJ): This high-resolution core has been studied by a number of researchers using a variety of proxies for Holocene climate variability (Andrews et al., 2003a, 2003b; Andersen et al., 2004; Giraudou et al., 2004; Moros et al., 2006; Kristjánsdóttir et al., 2007a, 2007b). The latest chronology is given by Stoner et al., (2007).

References: Andrews et al. (2003a, 2003b); Andersen et al. (2004); Jennings et al. (2004); Moros et al. (2006); Kristjánsdóttir et al. (2007a, 2007b).

Core: B997-320 PC

<table>
<thead>
<tr>
<th>Location</th>
<th>Iceland Shelf</th>
<th>Eyjafjardarall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.:</td>
<td>66°20.1’</td>
<td></td>
</tr>
<tr>
<td>Long.:</td>
<td>-18°39.04’</td>
<td></td>
</tr>
<tr>
<td>Depth (mwd):</td>
<td>-388</td>
<td></td>
</tr>
<tr>
<td>Lab ID:</td>
<td>AA75151</td>
<td>GRL-1786-S</td>
</tr>
<tr>
<td>Age:</td>
<td>2,101±84</td>
<td>1,701±84</td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>1.9 mg</td>
<td></td>
</tr>
<tr>
<td>δ13C:</td>
<td>Measured</td>
<td></td>
</tr>
<tr>
<td>δ13C (%):</td>
<td>-1.4</td>
<td></td>
</tr>
<tr>
<td>Contributor:</td>
<td>John T. Andrews, Ursula Quillmann</td>
<td></td>
</tr>
</tbody>
</table>

Sample notes: Small sample size. Forams submitted are good looking, not abraded. Anne Jennings checked sample and approved submittal.

References: Kristjánsdóttir (1999); Andrews et al. (2001); Smith (2004).

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>GRL-</th>
<th>Depth (cm): 109-110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>1,545±45</td>
<td>1,145±45</td>
</tr>
<tr>
<td>Weight (mg):</td>
<td></td>
<td>Genus: Thyasira</td>
</tr>
<tr>
<td>δ13C:</td>
<td>Measured</td>
<td>Species: equalis</td>
</tr>
<tr>
<td>Contributor:</td>
<td>Greta B. Kristjánsdóttir, Helga Jónsdóttir</td>
<td></td>
</tr>
</tbody>
</table>

References: Kristjánsdóttir (1999); Jónsdóttir (2001); Andrews et al. (2001); Smith (2004).

<table>
<thead>
<tr>
<th>Lab ID:</th>
<th>GRL-</th>
<th>Depth (cm): 149-150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>1,580±50</td>
<td>1,180±50</td>
</tr>
<tr>
<td>Weight (mg):</td>
<td></td>
<td>Genus: Bathyarca</td>
</tr>
<tr>
<td>δ13C:</td>
<td>Measured</td>
<td>Species: glacialis</td>
</tr>
<tr>
<td>Contributor:</td>
<td>Greta B. Kristjánsdóttir, Helga Jónsdóttir</td>
<td></td>
</tr>
</tbody>
</table>

Reference: Kristjánsdóttir (1999); Jónsdóttir (2001); Andrews et al. (2001); Smith (2004).
Lab ID: GRL-1691-S
Age: 294±91
Corr. Age: 0±
Material: Mollusc
Genus: Species:
δ¹³C: Measured
δ¹³C (‰):
Contributor: John T. Andrews
Sample notes: Small articulated bivalve—periostracum stained by rose bengal from uppermost 1 cm slab of sediment.

Lab ID: AA56301
Age: 402±38
Corr. Age: 0±38
Material: Mollusc
Genus: Species:
δ¹³C: Measured
δ¹³C (‰): -7.2
Contributor: John T. Andrews
Sample notes: Small articulated bivalve—periostracum stained by Rose Bengal from uppermost 1 cm slab of sediment.

Lab ID: NSRL13922
Age: too small
Material: Mollusc
Genus: Species:
δ¹³C: Measured
δ¹³C (‰):
Contributor: John T. Andrews
Sample Notes: Shell fragments.
References: Kristjánssdóttir (1999); Castaneda et al. (2004).
Lab ID: NSRL13923 GRL-1758-S Depth (cm): 85-86.25
Age: 2,270±15 Corr. Age: 1,870±15 Material: Mollusc
Weight (mg): 10 Genus: Dentalium Species:
δ¹³C: Measured δ¹³C (‰): -0.463
Contributor: G. B. Kristjánsdóttir
Sample Notes: Mollusc.
Stratigraphic context: Top of soft, olive green Holocene mud.
References: Castaneda et al. (2004).

Lab ID: AA67418 GRL-1768-S Depth (cm): 175
Weight (mg): 35 Genus: Dentalium Species:
δ¹³C: Measured δ¹³C (‰): 1.5
Contributor: G. B. Kristjánsdóttir
Sample Notes: Taken from GRL# 12948 sediment sample.
References: Castaneda et al. (2004).

Lab ID: AA67419 GRL-1769-S Depth (cm): 230
Weight (mg): 2 Genus: Species:
δ¹³C: Measured δ¹³C (‰): -6.9
Contributor: G. B. Kristjánsdóttir
Sample Notes: Small shell fragments in the > 2 mm fraction.
References: Castaneda et al. (2004).

COMMENT (JTA): Tephra counts on this core (Kristjánsdóttir, 1999) have been compared with weight% estimates of volcanic glass based on quantitative X-ray diffraction analyses (Andrews et al., 2006). Quartz weight% data are included in Andrews et al. (2009a) and Andrews (in press).
References: Kristjánsdóttir (1999); Andrews et al. (2007, 2009a); Andrews (in press).

Core: JR51-GC35

<table>
<thead>
<tr>
<th>Location</th>
<th>Iceland</th>
<th>Iceland Shelf</th>
<th>North Iceland Shelf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.:</td>
<td>66°59.96’</td>
<td>-17°57.66’</td>
<td>Depth (mwd): -420</td>
</tr>
</tbody>
</table>

Lab ID: AA46847 GRL-NA Depth (cm): 0-1
Weight (mg): 9 Genus: Species:
δ¹³C: Measured δ¹³C (‰): -1.5
Contributor:
Sample notes: Mixed benthic foraminifera.

Lab ID: AA531112 GRL-NA Depth (cm): 54-55
Age: 1,417±65 Corr. Age: 1,017±65 Material: Mollusc
<table>
<thead>
<tr>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
<th>δ¹³C</th>
<th>δ¹³C (‰)</th>
<th>Contributor</th>
<th>Sample notes</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.2</td>
<td></td>
<td></td>
<td>Measured</td>
<td>0.7</td>
<td></td>
<td>Fragment and mixed foraminifera.</td>
<td>Bendle (2003); Bendle and Rosell-Mele (2007).</td>
</tr>
<tr>
<td>11.2</td>
<td>Thyasira</td>
<td>sarsi</td>
<td>Measured</td>
<td>-5.1</td>
<td></td>
<td></td>
<td>Bendle (2003); Bendle and Rosell-Mele (2007).</td>
</tr>
<tr>
<td>35.8</td>
<td>Opisthobranch</td>
<td></td>
<td>Measured</td>
<td>-0.9</td>
<td></td>
<td>Fragment.</td>
<td>Bendle (2003); Bendle and Rosell-Mele (2007).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>GRL-NA</th>
<th>Depth (cm)</th>
<th>Age</th>
<th>Corr. Age</th>
<th>Weight (mg)</th>
<th>Genus</th>
<th>Species</th>
<th>δ¹³C</th>
<th>δ¹³C (‰)</th>
<th>Contributor</th>
<th>Sample notes</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA531116</td>
<td>GRL-NA</td>
<td>276-277</td>
<td>5,541±44</td>
<td>5,141±41</td>
<td>11.2</td>
<td>Thyasira</td>
<td>sarsi</td>
<td>Measured</td>
<td>-5.1</td>
<td></td>
<td></td>
<td>Bendle (2003); Bendle and Rosell-Mele (2007).</td>
</tr>
<tr>
<td>AA531117</td>
<td>GRL-NA</td>
<td>334</td>
<td>6,537±45</td>
<td>6,137±45</td>
<td>35.8</td>
<td>Opisthobranch</td>
<td></td>
<td>Measured</td>
<td>-0.9</td>
<td></td>
<td>Fragment.</td>
<td>Bendle (2003); Bendle and Rosell-Mele (2007).</td>
</tr>
</tbody>
</table>
Part II: Terrestrial

<table>
<thead>
<tr>
<th>Site: HV-04-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Iceland near Grof</td>
</tr>
<tr>
<td>Lat.: 65°31.64′</td>
</tr>
<tr>
<td>Long.: -20°56.06′</td>
</tr>
<tr>
<td>Depth (mwd):</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: AA62441</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRL-1043-O</td>
</tr>
<tr>
<td>Depth (cm): 130</td>
</tr>
<tr>
<td>Age: 3,724±74</td>
</tr>
<tr>
<td>Corr. Age: 3,724 ± 74</td>
</tr>
<tr>
<td>Weight (mg): 16.2</td>
</tr>
<tr>
<td>Species:</td>
</tr>
<tr>
<td>Genus:</td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
</tr>
<tr>
<td>δ¹³C (‰): -22.46</td>
</tr>
<tr>
<td>Contributor: Sarah Principato</td>
</tr>
<tr>
<td>Sample notes: Presence of rhyolitic tephra layers above this basal peat.</td>
</tr>
<tr>
<td>Stratigraphic context: Peat above gravel and diamicton and below clay and upper peat layers with tephra.</td>
</tr>
<tr>
<td>Significance: Early Holocene or Younger Dryas.</td>
</tr>
<tr>
<td>Reference: Principato (2008).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site: HV-04-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Iceland Sauadalso</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site: LB-04-08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Iceland nr Grof</td>
</tr>
<tr>
<td>Lat.: 65°47’ Long.: -20°48’</td>
</tr>
<tr>
<td>Lab ID: AA62343 GRL-32-W</td>
</tr>
<tr>
<td>Age: 3,969±42 Corr. Age: 3,969 ± 42</td>
</tr>
<tr>
<td>Weight (mg): 273 Genus:</td>
</tr>
<tr>
<td>$\delta^{13}C$: Measured $\delta^{13}C$ (%): -28.65</td>
</tr>
<tr>
<td>Contributor: Sarah Principato</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site: RA-04-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Iceland nr Grof</td>
</tr>
<tr>
<td>Lat.: 65°47’ Long.: -20°48’</td>
</tr>
<tr>
<td>Lab ID: AA62344 GRL-33-W</td>
</tr>
<tr>
<td>Age: 7,940±57 Corr. Age: 7,940±57</td>
</tr>
<tr>
<td>Weight (mg): 273 Genus:</td>
</tr>
<tr>
<td>$\delta^{13}C$: Measured $\delta^{13}C$ (%): -28.65</td>
</tr>
<tr>
<td>Contributor: Sarah Principato</td>
</tr>
<tr>
<td>Sample notes: 10 cm from base of peat section.</td>
</tr>
<tr>
<td>Stratigraphic context: Below rhyolitic (Hekla) tephra layers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site: RA-05-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Iceland South of Raudkollur</td>
</tr>
<tr>
<td>Lat.: 65°28.318’ Long.: -20°28.913’</td>
</tr>
<tr>
<td>Lab ID: AA66864 GRL-34-W</td>
</tr>
<tr>
<td>Age: 7,009±45 Corr. Age: 7,009±45</td>
</tr>
<tr>
<td>Weight (mg): 170 Genus: Betula</td>
</tr>
<tr>
<td>$\delta^{13}C$: Measured $\delta^{13}C$ (%): -29.3</td>
</tr>
<tr>
<td>Contributor: Sarah Principato</td>
</tr>
<tr>
<td>Stratigraphic context: Closest to base of peat profile, associated with a tephra.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site: RA-05-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Iceland South of Raudkollur</td>
</tr>
<tr>
<td>Lat.: 65°28.318’ Long.: -20°28.913’</td>
</tr>
<tr>
<td>Lab ID: AA66864 GRL-34-W</td>
</tr>
<tr>
<td>Age: 7,009±45 Corr. Age: 7,009±45</td>
</tr>
<tr>
<td>Weight (mg): 170 Genus: Betula</td>
</tr>
<tr>
<td>$\delta^{13}C$: Measured $\delta^{13}C$ (%): -29.3</td>
</tr>
<tr>
<td>Contributor: Sarah Principato</td>
</tr>
<tr>
<td>Stratigraphic context: Closest to base of peat profile, associated with a tephra.</td>
</tr>
<tr>
<td>Site: RA-05-35</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Location:</td>
</tr>
<tr>
<td>Lat.: 65°28.318’</td>
</tr>
<tr>
<td>Depth (mwd):</td>
</tr>
<tr>
<td>Lab ID: AA66865</td>
</tr>
<tr>
<td>Age: 6,188±59</td>
</tr>
<tr>
<td>Weight (mg): 34</td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
</tr>
<tr>
<td>Contributor: John T. Andrews, Sarah Principato</td>
</tr>
<tr>
<td>Stratigraphic context: 5 cm below base of microtephra.</td>
</tr>
<tr>
<td>Reference: Principato (2008).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site: RA-05-85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
</tr>
<tr>
<td>Lat.: 65°28.318’</td>
</tr>
<tr>
<td>Depth (mwd):</td>
</tr>
<tr>
<td>Lab ID: AA66866</td>
</tr>
<tr>
<td>Age: 3,969±55</td>
</tr>
<tr>
<td>Weight (mg): 175</td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
</tr>
<tr>
<td>Contributor: Sarah Principato</td>
</tr>
<tr>
<td>Stratigraphic context: 5 cm below rhyolitic tephra/sand.</td>
</tr>
<tr>
<td>Reference: Principato (2008).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site: SN-05-35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
</tr>
<tr>
<td>Lat.: 65°30.183’</td>
</tr>
<tr>
<td>Depth (mwd):</td>
</tr>
<tr>
<td>Lab ID: AA66867</td>
</tr>
<tr>
<td>Age: 7,936±53</td>
</tr>
<tr>
<td>Weight (mg): 347</td>
</tr>
<tr>
<td>δ¹³C: Measured</td>
</tr>
<tr>
<td>Contributor: Sarah Principato</td>
</tr>
<tr>
<td>Stratigraphic context: Wood below microtephra layer.</td>
</tr>
<tr>
<td>Reference: Principato (2008).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site: SN-05-67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
</tr>
<tr>
<td>Lat.: 65°30.183’</td>
</tr>
<tr>
<td>Depth (mwd):</td>
</tr>
<tr>
<td>Lab ID: AA66868</td>
</tr>
<tr>
<td>Age: 5,653±77</td>
</tr>
<tr>
<td>Material: Wood</td>
</tr>
</tbody>
</table>
Weight (mg): 161 Genus: *Betula* Species:
$\delta^{13}C$: Measured $\delta^{13}C$ (‰): -28
Contributor: Sarah Principato
Stratigraphic Context: Peat/wood above rhyolitic tephra at 63-65 cm.
References Cited

Kristjánsdóttir, G. B., 1999: Late Quaternary climatic and environmental changes on the North Iceland shelf. MSc thesis. Department of Geosciences, University of Iceland, Reykjavík, 175 pp.

Ólafsdóttir, S., 2004: Currents and climate on the northwest shelf of Iceland during the
deglaciation: high-resolution foraminiferal research. MSc thesis. Department of
Geosciences, University of Iceland, Reykjavík, 117 pp.

variability of the North Atlantic Irminger Current: the West and NW Shelf of Iceland:
Marine Micropaleontology.

Principato, S. M., 2003: The late Quaternary history of eastern Vestfirdir, NW Iceland.
PhD thesis. Department of Geological Sciences, University of Colorado at Boulder,
Boulder, Colorado.

Quaternary glacial and deglacial history of eastern Vestfirdir, Iceland using
cosmogenic isotope (36Cl) exposure ages and marine cores. Journal of Quaternary
Science, 21: 271-285

Principato, S. M., 2008: Geomorphic evidence for Holocene glacial advances and sea
level fluctuations on eastern Vestfirdir, NW Iceland. Boreas, 37: 132-145,

Quillmann, U., 2003: Late Holocene paleoceanographic variations of Isafjardardjup, NW
Iceland. Honor’s thesis. Department of Geological Sciences, University of

Quillmann, U., 2006: Holocene environmental variability in Isafjardardjup and its
tributary fjords, NW Iceland. MS thesis. Department of Geological Sciences,

Quillmann, U, Andrews, J. T., and Jennings, A. E., in press: Reconstructing Holocene
paleoclimate and paleoceanography in Ísafjarðardjúp, Northwest Iceland from two
fjord records overprinted by relative sea level and local hydrographic changes.
Journal of Quaternary Science.

last 2500 years as described by marine sediment core retrieved from Jokulfjördir
Fjord, NW Iceland. Geological Society of America Programs with Abstracts, 35(5):
38.

Stoner, J. S., Jennings, A. E., Kristjánsdóttir, G. B., Andrews, J. T., Dunhill, G., and
Hardarðóttir, J., 2007: A paleomagnetic approach toward refining Holocene
radionuclide based chronostratigraphies: paleoceanographic records from North
Iceland (MD99-2269) and East Greenland (MD99-2322) margins.
APPENDIX 1

Comprehensive list of dates arranged by laboratory number.

<table>
<thead>
<tr>
<th>Lab ID#</th>
<th>GRL</th>
<th>Reported 14C age</th>
<th>Reservoir corrected 14C age</th>
<th>Core name</th>
<th>Collection site name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA - 32968</td>
<td>1496-S</td>
<td>34,600 ± 640</td>
<td>34,200</td>
<td>B997-338PC</td>
<td>Djupall</td>
</tr>
<tr>
<td>AA - 46531</td>
<td>1383-S</td>
<td>610 ± 60</td>
<td>210</td>
<td>B997-330SGC</td>
<td>Sveinbjarnar-grunn</td>
</tr>
<tr>
<td>AA - 46846</td>
<td>NA</td>
<td>1,247 ± 56</td>
<td>847</td>
<td>B997-325GGC</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>AA - 46847</td>
<td>NA</td>
<td>473 ± 36</td>
<td>73</td>
<td>JR51-GC35</td>
<td>North Iceland Shelf</td>
</tr>
<tr>
<td>AA - 46848</td>
<td>NA</td>
<td>9,403 ± 58</td>
<td>9,003</td>
<td>JR51-GC35</td>
<td>North Iceland Shelf</td>
</tr>
<tr>
<td>AA - 53100</td>
<td>NA</td>
<td>9,713 ± 60</td>
<td>9,313</td>
<td>B997-350PC</td>
<td>Jokuldjup, W Iceland</td>
</tr>
<tr>
<td>AA - 53101</td>
<td>NA</td>
<td>10,698 ± 75</td>
<td>10,298</td>
<td>B997-350PC</td>
<td>Jokuldjup, W Iceland</td>
</tr>
<tr>
<td>AA - 53103</td>
<td>NA</td>
<td>10,916 ± 63</td>
<td>10,596</td>
<td>B997-350PC</td>
<td>Jokuldjup, W Iceland</td>
</tr>
<tr>
<td>AA - 53104</td>
<td>NA</td>
<td>11,537 ± 56</td>
<td>11,137</td>
<td>B997-350PC</td>
<td>Jokuldjup, W Iceland</td>
</tr>
<tr>
<td>AA - 53105</td>
<td>NA</td>
<td>11,966 ± 87</td>
<td>11,566</td>
<td>B997-350PC</td>
<td>Jokuldjup, W Iceland</td>
</tr>
<tr>
<td>AA - 53106</td>
<td>NA</td>
<td>4,470 ± 47</td>
<td>4,070</td>
<td>B997-325GGC</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>AA - 53107</td>
<td>NA</td>
<td>6,921 ± 72</td>
<td>6,521</td>
<td>B997-325PC</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>AA - 53108</td>
<td>NA</td>
<td>7,347 ± 66</td>
<td>6,947</td>
<td>B997-325PC</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>AA - 53109</td>
<td>NA</td>
<td>8,759 ± 67</td>
<td>8,359</td>
<td>B997-325PC</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>AA - 53110</td>
<td>NA</td>
<td>9,252 ± 70</td>
<td>8,852</td>
<td>B997-325PC</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>AA - 53111</td>
<td>NA</td>
<td>10,400 ± 150</td>
<td>10,000</td>
<td>B997-325PC</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>AA - 53121</td>
<td>NA</td>
<td>2,783 ± 39</td>
<td>2,383</td>
<td>B997-325GGC</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>AA - 54594</td>
<td>1682-S</td>
<td>9,477 ± 88</td>
<td>9,077</td>
<td>MD99-2269</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>AA - 55120</td>
<td>NA</td>
<td>645 ± 36</td>
<td>245</td>
<td>B997-350PC</td>
<td>Jokuldjup, W Iceland</td>
</tr>
<tr>
<td>AA - 56294</td>
<td>1683-S</td>
<td>5,408 ± 40</td>
<td>5,008</td>
<td>B997-342PC</td>
<td>Jokulfirdir, NW Iceland</td>
</tr>
<tr>
<td>AA - 56295</td>
<td>1684-S</td>
<td>1,857 ± 33</td>
<td>1,457</td>
<td>B997-342PC</td>
<td>Jokulfirdir, NW Iceland</td>
</tr>
<tr>
<td>AA - 56296</td>
<td>1685-S</td>
<td>572 ± 76</td>
<td>172</td>
<td>B997-324SGC</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>AA - 56298</td>
<td>1687-S</td>
<td>1,465 ± 39</td>
<td>1,065</td>
<td>B997-314SGC</td>
<td>Djupall</td>
</tr>
<tr>
<td>AA - 56299</td>
<td>1688-S</td>
<td>1,130 ± 120</td>
<td>730</td>
<td>B997-314SGC</td>
<td>Djupall</td>
</tr>
<tr>
<td>AA - 56301</td>
<td>1690-S</td>
<td>402 ± 38</td>
<td>0</td>
<td>B997-316SGC</td>
<td>Eyjafjardarall</td>
</tr>
<tr>
<td>AA - 56302</td>
<td>1691-S</td>
<td>294 ± 91</td>
<td>0</td>
<td>B997-316SGC</td>
<td>Eyjafjardarall</td>
</tr>
<tr>
<td>AA - 56470</td>
<td>1694-S</td>
<td>1,286 ± 32</td>
<td>886</td>
<td>B997-311GGC</td>
<td>Isafjarðardjúp</td>
</tr>
<tr>
<td>AA - 56471</td>
<td>1695-S</td>
<td>2,418 ± 45</td>
<td>2,018</td>
<td>B997-311GGC</td>
<td>Isafjarðardjúp</td>
</tr>
<tr>
<td>AA - 57062</td>
<td>1697-S</td>
<td>5,986 ± 70</td>
<td>5,346</td>
<td>MD99-2317</td>
<td>East Greenland Shelf</td>
</tr>
<tr>
<td>AA - 57063</td>
<td>1698-S</td>
<td>5,795 ± 40</td>
<td>5,245</td>
<td>MD99-2317</td>
<td>East Greenland Shelf</td>
</tr>
<tr>
<td>AA - 57064</td>
<td>1699-S</td>
<td>4,840 ± 120</td>
<td>4,290</td>
<td>MD99-2317</td>
<td>East Greenland Shelf</td>
</tr>
<tr>
<td>AA - 57067</td>
<td>1700-S</td>
<td>13,235 ± 62</td>
<td>12,835</td>
<td>B997-338PC</td>
<td>Djupall</td>
</tr>
<tr>
<td>AA - 57068</td>
<td>1701-S</td>
<td>13,507 ± 78</td>
<td>13,107</td>
<td>B997-338PC</td>
<td>Djupall</td>
</tr>
<tr>
<td>AA - 57895</td>
<td>1703-S</td>
<td>1,978 ± 35</td>
<td>1,578</td>
<td>MD99-2269</td>
<td>Reykjafjarðarall</td>
</tr>
<tr>
<td>AA - 57896</td>
<td>1704-S</td>
<td>3,017 ± 39</td>
<td>2,617</td>
<td>MD99-2269</td>
<td>Reykjafjarðarall</td>
</tr>
<tr>
<td>AA - 57898</td>
<td>1706-S</td>
<td>3,949 ± 39</td>
<td>3,549</td>
<td>MD99-2269</td>
<td>Reykjafjarðarall</td>
</tr>
<tr>
<td>AA - 57899</td>
<td>1707-S</td>
<td>5,826 ± 51</td>
<td>5,426</td>
<td>MD99-2269</td>
<td>Reykjafjarðarall</td>
</tr>
<tr>
<td>AA - 58402</td>
<td>1709-S</td>
<td>652 ± 36</td>
<td>252</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA - 58403</td>
<td>1710-S</td>
<td>1,466 ± 38</td>
<td>1,066</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA - 58404</td>
<td>1711-S</td>
<td>2,154 ± 38</td>
<td>1,754</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA - 58405</td>
<td>1712-S</td>
<td>3,624 ± 41</td>
<td>3,224</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA - 58406</td>
<td>1713-S</td>
<td>9,393 ± 66</td>
<td>8,939</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA - 58407</td>
<td>1714-S</td>
<td>9,424 ± 48</td>
<td>9,024</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA - 58408</td>
<td>1715-S</td>
<td>9,555 ± 74</td>
<td>9,155</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA - 58409</td>
<td>1716-S</td>
<td>9,734 ± 50</td>
<td>9,334</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA - 58410</td>
<td>1717-S</td>
<td>10,075 ± 57</td>
<td>9,675</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA - 58536</td>
<td>1720-S</td>
<td>1,640 ± 33</td>
<td>1,240</td>
<td>MD99-2266</td>
<td>Isafjarðardjúp</td>
</tr>
<tr>
<td>AA - 58537</td>
<td>1718-S</td>
<td>809 ± 30</td>
<td>409</td>
<td>MD99-2266</td>
<td>Isafjarðardjúp</td>
</tr>
<tr>
<td>AA - 58538</td>
<td>1719-S</td>
<td>2,126 ± 34</td>
<td>1,726</td>
<td>MD99-2266</td>
<td>Isafjarðardjúp</td>
</tr>
<tr>
<td>AA - 58539</td>
<td>1721-S</td>
<td>8,769 ± 48</td>
<td>8,319</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA - 58960</td>
<td>1722-S</td>
<td>8,858 ± 49</td>
<td>8,408</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA - 58961</td>
<td>1723-S</td>
<td>8,941 ± 47</td>
<td>8,491</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA - 58962</td>
<td>1724-S</td>
<td>9,728 ± 86</td>
<td>9,278</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA - 58963</td>
<td>1725-S</td>
<td>10,025 ± 67</td>
<td>9,575</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA - 58964</td>
<td>1726-S</td>
<td>10,379 ± 58</td>
<td>9,929</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA - 58965</td>
<td>1727-S</td>
<td>10,473 ± 50</td>
<td>10,023</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA - 58966</td>
<td>1728-S</td>
<td>10,769 ± 51</td>
<td>10,319</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>Lab ID#</td>
<td>GRL</td>
<td>Reported 1C age</td>
<td>Reservoir corrected 1C age</td>
<td>Core name</td>
<td>Collection site name</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------------</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>AA – 58967</td>
<td>1729-S</td>
<td>10,828 ± 71</td>
<td>10,378</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA – 58968</td>
<td>1730-S</td>
<td>11,625 ± 58</td>
<td>11,125</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA – 58969</td>
<td>1731-S</td>
<td>12,060 ± 63</td>
<td>11,610</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA – 58970</td>
<td>1732-S</td>
<td>9,735 ± 51</td>
<td>9,335</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA – 58971</td>
<td>1733-S</td>
<td>2,664 ± 33</td>
<td>2,264</td>
<td>MD99-2266</td>
<td>Isafjardarjup</td>
</tr>
<tr>
<td>AA – 58972</td>
<td>1734-S</td>
<td>3,424 ± 35</td>
<td>3,024</td>
<td>MD99-2266</td>
<td>Isafjardarjup</td>
</tr>
<tr>
<td>AA – 59572</td>
<td>1735-S</td>
<td>1,775 ± 35</td>
<td>1,375</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA – 59573</td>
<td>1736-S</td>
<td>6,577 ± 42</td>
<td>6,177</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA – 59574</td>
<td>1737-S</td>
<td>7,700 ± 200</td>
<td>7,250</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA – 59575</td>
<td>1738-S</td>
<td>7,816 ± 63</td>
<td>7,366</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA – 60139</td>
<td>1739-S</td>
<td>9,876 ± 50</td>
<td>9,476</td>
<td>B997-339PC2</td>
<td>Skotufjordur, NW Iceland</td>
</tr>
<tr>
<td>AA – 60140</td>
<td>1740-S</td>
<td>3,600 ± 38</td>
<td>3,200</td>
<td>B997-339PC2</td>
<td>Skotufjordur, NW Iceland</td>
</tr>
<tr>
<td>AA – 60141</td>
<td>1741-S</td>
<td>6,583 ± 41</td>
<td>6,183</td>
<td>B997-339PC2</td>
<td>Skotufjordur, NW Iceland</td>
</tr>
<tr>
<td>AA – 60142</td>
<td>1742-S</td>
<td>10,021 ± 51</td>
<td>9,621</td>
<td>B997-339PC2</td>
<td>Skotufjordur, NW Iceland</td>
</tr>
<tr>
<td>AA – 60143</td>
<td>1743-S</td>
<td>10,313 ± 52</td>
<td>9,913</td>
<td>B997-339PC2</td>
<td>Skotufjordur, NW Iceland</td>
</tr>
<tr>
<td>AA – 61215</td>
<td>1745-S</td>
<td>10,090 ± 110</td>
<td>9,540</td>
<td>MD99-2217</td>
<td>East Greenland shelf</td>
</tr>
<tr>
<td>AA – 61217</td>
<td>1747-S</td>
<td>6,833 ± 81</td>
<td>6,433</td>
<td>MD99-2269</td>
<td>Rejkjarfjardarhall</td>
</tr>
<tr>
<td>AA – 61218</td>
<td>1748-S</td>
<td>6,706 ± 47</td>
<td>6,240</td>
<td>MD99-2269</td>
<td>Rejkjarfjardarhall</td>
</tr>
<tr>
<td>AA – 61219</td>
<td>1749-S</td>
<td>8,950 ± 120</td>
<td>8,550</td>
<td>MD99-2269</td>
<td>Rejkjarfjardarhall</td>
</tr>
<tr>
<td>AA – 61220</td>
<td>1750-S</td>
<td>8,572 ± 78</td>
<td>8,172</td>
<td>MD99-2269</td>
<td>Rejkjarfjardarhall</td>
</tr>
<tr>
<td>AA – 61221</td>
<td>1751-S</td>
<td>8,609 ± 92</td>
<td>8,209</td>
<td>MD99-2269</td>
<td>Rejkjarfjardarhall</td>
</tr>
<tr>
<td>AA – 62342</td>
<td>31-W</td>
<td>6,148 ± 47</td>
<td>6,148</td>
<td>HV-04-10</td>
<td>Sauadalso</td>
</tr>
<tr>
<td>AA – 62343</td>
<td>32-W</td>
<td>3,969 ± 42</td>
<td>3,969</td>
<td>LB-04-08</td>
<td>near Grof</td>
</tr>
<tr>
<td>AA – 62344</td>
<td>33-W</td>
<td>7,940 ± 57</td>
<td>7,940</td>
<td>RA-04-10</td>
<td>near Grof</td>
</tr>
<tr>
<td>AA – 62441</td>
<td>1043-O</td>
<td>3,724 ± 74</td>
<td>3,724</td>
<td>HV-04-07</td>
<td>near Grof</td>
</tr>
<tr>
<td>AA – 64125</td>
<td>1752-s</td>
<td>1,329 ± 34</td>
<td>929</td>
<td>B997-327PC</td>
<td>Rejkjarfjardarhall</td>
</tr>
<tr>
<td>AA – 65331</td>
<td>1761-S</td>
<td>3,840 ± 39</td>
<td>3,440</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA – 65332</td>
<td>1762-S</td>
<td>5,636 ± 57</td>
<td>5,236</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA – 66845</td>
<td>34-W</td>
<td>7,009 ± 45</td>
<td>7,009</td>
<td>RA-05-25</td>
<td>South of Raudkollur</td>
</tr>
<tr>
<td>AA – 66865</td>
<td>35-W</td>
<td>6,188 ± 59</td>
<td>6,188</td>
<td>RA-05-35</td>
<td>South of Raudkollur</td>
</tr>
<tr>
<td>AA – 66866</td>
<td>36-W</td>
<td>3,969 ± 55</td>
<td>3,969</td>
<td>RA-05-85</td>
<td>South of Raudkollur</td>
</tr>
<tr>
<td>AA – 66867</td>
<td>37-W</td>
<td>7,936 ± 53</td>
<td>7,936</td>
<td>SN-05-35</td>
<td>Svinavatn</td>
</tr>
<tr>
<td>AA – 66868</td>
<td>38-W</td>
<td>5,653 ± 77</td>
<td>5,653</td>
<td>SN-05-67</td>
<td>Svinavatn</td>
</tr>
<tr>
<td>AA – 67416</td>
<td>1766-S</td>
<td>4,406 ± 49</td>
<td>4,006</td>
<td>MD99-2264</td>
<td>Djupall</td>
</tr>
<tr>
<td>AA – 67417</td>
<td>1767-S</td>
<td>3,466 ± 48</td>
<td>3,066</td>
<td>MD99-2264</td>
<td>Djupall</td>
</tr>
<tr>
<td>AA – 67418</td>
<td>1768-S</td>
<td>4,771 ± 90</td>
<td>4,371</td>
<td>B997-321PC</td>
<td>Eyjafjarfjardarall</td>
</tr>
<tr>
<td>AA – 67419</td>
<td>1769-S</td>
<td>4,530 ± 36</td>
<td>4,130</td>
<td>B997-321PC</td>
<td>Eyjafjarfjardarall</td>
</tr>
<tr>
<td>AA – 67746</td>
<td>1770-S</td>
<td>822 ± 67</td>
<td>422</td>
<td>MD99-2266</td>
<td>Isafjardarjup</td>
</tr>
<tr>
<td>AA – 67747</td>
<td>1771-S</td>
<td>746 ± 61</td>
<td>346</td>
<td>MD99-2266</td>
<td>Isafjardarjup</td>
</tr>
<tr>
<td>AA – 68075</td>
<td>1772-S</td>
<td>5,435 ± 41</td>
<td>5,035</td>
<td>MD99-2264</td>
<td>Djupall</td>
</tr>
<tr>
<td>AA – 68076</td>
<td>1773-S</td>
<td>7,775 ± 46</td>
<td>7,375</td>
<td>MD99-2264</td>
<td>Djupall</td>
</tr>
<tr>
<td>AA – 70935</td>
<td>1775-S</td>
<td>845 ± 48</td>
<td>395</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA – 70936</td>
<td>1776-S</td>
<td>1,082 ± 37</td>
<td>632</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA – 70937</td>
<td>1777-S</td>
<td>1,057 ± 36</td>
<td>607</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA – 70938</td>
<td>1778-S</td>
<td>2,370 ± 40</td>
<td>1,920</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA – 70939</td>
<td>1779-S</td>
<td>2,910 ± 40</td>
<td>2,510</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA – 70940</td>
<td>1780-S</td>
<td>4,568 ± 44</td>
<td>4,168</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA – 70941</td>
<td>1781-S</td>
<td>6,200 ± 56</td>
<td>5,800</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA – 70942</td>
<td>1782-S</td>
<td>8,379 ± 51</td>
<td>7,979</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA – 70943</td>
<td>1783-S</td>
<td>8,978 ± 53</td>
<td>8,573</td>
<td>MD99-2256</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA – 71515</td>
<td>1786-S</td>
<td>2,101 ± 84</td>
<td>1,701</td>
<td>B997-320</td>
<td>Eyjafjarfjardarall</td>
</tr>
<tr>
<td>AA – 81065</td>
<td>1817-S</td>
<td>766 ± 43</td>
<td>366</td>
<td>MD99-2259</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA – 81066</td>
<td>1818-S</td>
<td>2,535 ± 45</td>
<td>2,135</td>
<td>MD99-2259</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA – 81067</td>
<td>1819-S</td>
<td>4,950 ± 57</td>
<td>4,550</td>
<td>MD99-2259</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA – 81068</td>
<td>1820-S</td>
<td>1,287 ± 44</td>
<td>887</td>
<td>MD99-2259</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>AA – 81303</td>
<td>1810-S</td>
<td>9,626 ± 80</td>
<td>9,176</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA – 81304</td>
<td>1811-S</td>
<td>3,248 ± 44</td>
<td>2,848</td>
<td>343300 GC</td>
<td>SW Disko Bugt</td>
</tr>
<tr>
<td>Lab #</td>
<td>GRL</td>
<td>Reported ^{14}C age</td>
<td>Reservoir corrected ^{14}C age</td>
<td>Core name</td>
<td>Collection site name</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----------------------</td>
<td>----------------------------------</td>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>AA – 81305</td>
<td>1812-S</td>
<td>9,473 ± 57</td>
<td>9,073</td>
<td>343300 GC</td>
<td>SW Disko Bugt</td>
</tr>
<tr>
<td>AA – 81307</td>
<td>1813-S</td>
<td>9,953 ± 38</td>
<td>9,193</td>
<td>343300 GC</td>
<td>SW Disko Bugt</td>
</tr>
<tr>
<td>AA – 81308</td>
<td>1814-S</td>
<td>9,706 ± 65</td>
<td>9,306</td>
<td>343300 GC</td>
<td>SW Disko Bugt</td>
</tr>
<tr>
<td>AA – 81309</td>
<td>1823-S</td>
<td>530 ± 52</td>
<td>80</td>
<td>HLY0301-05GC</td>
<td>Nares Strait, Hall Basin</td>
</tr>
<tr>
<td>AA – 81309</td>
<td>1824-S</td>
<td>7,302 ± 61</td>
<td>6,852</td>
<td>HLY0301-05GC</td>
<td>Nares Strait, Hall Basin</td>
</tr>
<tr>
<td>AA – 81311</td>
<td>1836-S</td>
<td>9,385 ± 52</td>
<td>8,935</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA – 81312</td>
<td>1837-S</td>
<td>9,777 ± 54</td>
<td>9,327</td>
<td>MD99-2236</td>
<td>Cartwright Saddle</td>
</tr>
<tr>
<td>AA – 81313</td>
<td>1832-S</td>
<td>1,447 ± 38</td>
<td>1,047</td>
<td>343300 GC</td>
<td>SW Disko Bugt</td>
</tr>
<tr>
<td>AA – 81314</td>
<td>1833-S</td>
<td>1,308 ± 36</td>
<td>908</td>
<td>343300 GC</td>
<td>SW Disko Bugt</td>
</tr>
<tr>
<td>AA – 81315</td>
<td>1834-S</td>
<td>2,352 ± 37</td>
<td>1,952</td>
<td>343300 GC</td>
<td>SW Disko Bugt</td>
</tr>
<tr>
<td>AA - 82697</td>
<td>1831-S</td>
<td>21,440 ± 140</td>
<td>20,990</td>
<td>HE0006-4-2PC</td>
<td>West Greenland Slope</td>
</tr>
<tr>
<td>AA – 82698</td>
<td>1828-S</td>
<td>10,102 ± 56</td>
<td>9,652</td>
<td>HE0006-4-2TC</td>
<td>West Greenland Slope</td>
</tr>
<tr>
<td>AA – 531112</td>
<td>NA</td>
<td>1,417 ± 65</td>
<td>1,017</td>
<td>JR51-GC35</td>
<td>North Iceland Shelf</td>
</tr>
<tr>
<td>AA – 531113</td>
<td>NA</td>
<td>2,621 ± 58</td>
<td>2,221</td>
<td>JR51-GC35</td>
<td>North Iceland Shelf</td>
</tr>
<tr>
<td>AA – 531114</td>
<td>NA</td>
<td>3,706 ± 59</td>
<td>3,306</td>
<td>JR51-GC35</td>
<td>North Iceland Shelf</td>
</tr>
<tr>
<td>AA – 531115</td>
<td>NA</td>
<td>4,612 ± 70</td>
<td>4,212</td>
<td>JR51-GC35</td>
<td>North Iceland Shelf</td>
</tr>
<tr>
<td>AA – 531116</td>
<td>NA</td>
<td>5,541 ± 44</td>
<td>5,141</td>
<td>JR51-GC35</td>
<td>North Iceland Shelf</td>
</tr>
<tr>
<td>AA – 531117</td>
<td>NA</td>
<td>6,537 ± 45</td>
<td>6,137</td>
<td>JR51-GC35</td>
<td>North Iceland Shelf</td>
</tr>
<tr>
<td>AA – 531118</td>
<td>NA</td>
<td>8,286 ± 50</td>
<td>7,886</td>
<td>JR51-GC35</td>
<td>North Iceland Shelf</td>
</tr>
<tr>
<td>AA – 531119</td>
<td>NA</td>
<td>9,014 ± 51</td>
<td>8,614</td>
<td>JR51-GC35</td>
<td>North Iceland Shelf</td>
</tr>
<tr>
<td>AA – 56297</td>
<td>1686-S</td>
<td>1,453±24</td>
<td>1503</td>
<td>B997-324 SGC</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>AA – 56300</td>
<td>1689-S</td>
<td>2,015 ± 65</td>
<td>1615</td>
<td>B997-314SGC</td>
<td>Djupall</td>
</tr>
<tr>
<td>AA – 56300</td>
<td>1689-S</td>
<td>818 ± 65</td>
<td>481</td>
<td>B997-314SGC</td>
<td>Djupall</td>
</tr>
<tr>
<td>AA – 56527A</td>
<td>1693-S</td>
<td>1,026 ± 32</td>
<td>826</td>
<td>B997-314SGC</td>
<td>Djupall</td>
</tr>
<tr>
<td>AA – 56527B</td>
<td>1693-S</td>
<td>1,055 ± 57</td>
<td>805</td>
<td>B997-314SGC</td>
<td>Djupall</td>
</tr>
<tr>
<td>AA – 57897A</td>
<td>1705-S</td>
<td>3,751 ± 44</td>
<td>3,351</td>
<td>MD99-2269</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>AA – 57897B</td>
<td>1705-S</td>
<td>3,840 ± 33</td>
<td>3,440</td>
<td>MD99-2269</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>AA – 57900A</td>
<td>1708-S</td>
<td>8,590 ± 43</td>
<td>8,190</td>
<td>MD99-2269</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>AA – 57900B</td>
<td>1708-S</td>
<td>8,551 ± 47</td>
<td>8,151</td>
<td>MD99-2269</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>AA – 81069</td>
<td>NA</td>
<td>5,230 ± 60</td>
<td>4,780</td>
<td>H9U0023-022 LCF</td>
<td>Brevoort Basin</td>
</tr>
<tr>
<td>AA – NA</td>
<td>NA</td>
<td>9,890 ± 85</td>
<td>9,440</td>
<td>H9U0023-022 LCF</td>
<td>Brevoort Basin</td>
</tr>
<tr>
<td>AA – NA</td>
<td>NA</td>
<td>8,195 ± 65</td>
<td>7,745</td>
<td>H9U0023-022 LCF</td>
<td>Brevoort Basin</td>
</tr>
<tr>
<td>AA – NA</td>
<td>1821-S</td>
<td>2,869 ± 54</td>
<td>2,469</td>
<td>MD99-2259</td>
<td>Jokuldup</td>
</tr>
<tr>
<td>AA – NA</td>
<td>1702-S</td>
<td>5,630 ± 100</td>
<td>5,230</td>
<td>MD99-2317</td>
<td>East Greenland Shelf</td>
</tr>
<tr>
<td>Beta - 234922</td>
<td>NA</td>
<td>10,090 ± 60</td>
<td>9,690</td>
<td>343300 GC</td>
<td>SW Disko Bugt</td>
</tr>
<tr>
<td>CURL - 7613</td>
<td>1754-S</td>
<td>6,790 ± 20</td>
<td>6,390</td>
<td>MD99-2266</td>
<td>Isafjardarjup</td>
</tr>
<tr>
<td>CURL - 7633</td>
<td>1755-S</td>
<td>1,450 ± 15</td>
<td>1,050</td>
<td>MD99-2266</td>
<td>Isafjardarjup</td>
</tr>
<tr>
<td>CURL - 7634</td>
<td>1756-S</td>
<td>1,620 ± 15</td>
<td>1,220</td>
<td>B997-341PC3</td>
<td>Jokulfirdir, NW Iceland</td>
</tr>
<tr>
<td>CURL - 7756</td>
<td>1760-S</td>
<td>7,780 ± 25</td>
<td>7,380</td>
<td>MD99-2266</td>
<td>Isafjardarjup</td>
</tr>
<tr>
<td>CURL - 7757</td>
<td>1763-S</td>
<td>7,905 ± 25</td>
<td>6,695</td>
<td>MD99-2256</td>
<td>Jokuldup</td>
</tr>
<tr>
<td>CURL - 7903</td>
<td>1759-S</td>
<td>7,640 ± 30</td>
<td>7,240</td>
<td>MD99-2266</td>
<td>Isafjardarjup</td>
</tr>
<tr>
<td>CURL - 7903</td>
<td>1764-S</td>
<td>8,285 ± 15</td>
<td>7,825</td>
<td>MD99-2266</td>
<td>Isafjardarjup</td>
</tr>
<tr>
<td>CURL - 8022</td>
<td>1765-S</td>
<td>830 ± 15</td>
<td>430</td>
<td>MD99-2266</td>
<td>Isafjardarjup</td>
</tr>
<tr>
<td>KCCAMS - 50860</td>
<td>1829-S</td>
<td>9,730 ± 550</td>
<td>9,280</td>
<td>HE0006-4-2PC</td>
<td>West Greenland Slope</td>
</tr>
<tr>
<td>KCCAMS - 50859</td>
<td>1830-S</td>
<td>10,240 ± 250</td>
<td>9,790</td>
<td>HE0006-4-2TC</td>
<td>West Greenland Slope</td>
</tr>
<tr>
<td>NSRL - 13920</td>
<td>1754-S</td>
<td>7,755 ± 20</td>
<td>7,355</td>
<td>MD99-2266</td>
<td>Isafjardarjup</td>
</tr>
<tr>
<td>NSRL - 13922</td>
<td>1757-S</td>
<td>too small</td>
<td>too small</td>
<td>B997-321PC</td>
<td>Eyjafjardarall</td>
</tr>
<tr>
<td>NSRL - 13923</td>
<td>1758-S</td>
<td>2,270 ± 15</td>
<td>1,870</td>
<td>B997-321PC</td>
<td>Eyjafjardarall</td>
</tr>
<tr>
<td>NSRL - 15187</td>
<td>1784-S</td>
<td>2,985 ± 20</td>
<td>2,583</td>
<td>B997-315PC</td>
<td>Djupall</td>
</tr>
<tr>
<td>NSRL - 15188</td>
<td>1788-S</td>
<td>385 ± 15</td>
<td>-15</td>
<td>B997-325PC</td>
<td>Reykjafjardarall</td>
</tr>
<tr>
<td>NSRL - 15287</td>
<td>1805-S</td>
<td>600 ± 15</td>
<td>200</td>
<td>MD99-2263</td>
<td>Djupall</td>
</tr>
<tr>
<td>NSRL - 15288</td>
<td>1809-S</td>
<td>1,620 ± 15</td>
<td>1,220</td>
<td>MD99-2263</td>
<td>Djupall</td>
</tr>
<tr>
<td>NSRL - 15289</td>
<td>1806-S</td>
<td>10,675 ± 20</td>
<td>10,265</td>
<td>B997-315PC</td>
<td>Djupall</td>
</tr>
<tr>
<td>NSRL - 15290</td>
<td>1807-S</td>
<td>4,895 ± 15</td>
<td>4,495</td>
<td>B997-315PC</td>
<td>Djupall</td>
</tr>
<tr>
<td>NSRL - 15950</td>
<td>1825-S</td>
<td>725 ± 15</td>
<td>325</td>
<td>MD99-2258</td>
<td>Jokuldup</td>
</tr>
<tr>
<td>Lab ID#</td>
<td>GRL</td>
<td>Reported (^{14})C age</td>
<td>Reservoir corrected (^{14})C age</td>
<td>Core name</td>
<td>Collection site name</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>NSRL - 15951</td>
<td>1826-S</td>
<td>2,655 ± 15</td>
<td>2,265</td>
<td>MD99-2258</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>NSRL - 15952</td>
<td>1827-S</td>
<td>3,180 ± 20</td>
<td>2,780</td>
<td>MD99-2258</td>
<td>Jokuldjup</td>
</tr>
<tr>
<td>NSRL - 16096</td>
<td>1835-S</td>
<td>3,650 ± 29</td>
<td>3,250</td>
<td>HU90023-022 LCF</td>
<td>Brevoort Basin</td>
</tr>
<tr>
<td>NSRL - 15191</td>
<td>1804-S</td>
<td>2,165 ± 15</td>
<td>1,765</td>
<td>MD99-2263</td>
<td>Djupall</td>
</tr>
<tr>
<td>NSRL - 15189</td>
<td>1802-S</td>
<td>680 ± 20</td>
<td>280</td>
<td>MD99-2263</td>
<td>Djupall</td>
</tr>
<tr>
<td>NSRL - 15928</td>
<td>1815-S</td>
<td>595 ± 15</td>
<td>195</td>
<td>MD99-2263</td>
<td>Djupall</td>
</tr>
<tr>
<td>NSRL - 15929</td>
<td>1816-S</td>
<td>690 ± 15</td>
<td>290</td>
<td>MD99-2263</td>
<td>Djupall</td>
</tr>
<tr>
<td>NSRL - 15190</td>
<td>1803-S</td>
<td>850 ± 15</td>
<td>450</td>
<td>MD99-2263</td>
<td>Djupall</td>
</tr>
<tr>
<td>NA (depth: 109-110 cm)</td>
<td>NA</td>
<td>1,545 ± 45</td>
<td>1,145</td>
<td>B997-320PC</td>
<td>Eyjafjardarall</td>
</tr>
<tr>
<td>NA (depth: 149-150 cm)</td>
<td>NA</td>
<td>1,580 ± 50</td>
<td>1,180</td>
<td>B997-320PC</td>
<td>Eyjafjardarall</td>
</tr>
<tr>
<td>NA (depth: 249-250 cm)</td>
<td>NA</td>
<td>2,585 ± 55</td>
<td>2,185</td>
<td>B997-320PC</td>
<td>Eyjafjardarall</td>
</tr>
</tbody>
</table>
APPENDIX 2

Radiocarbon dates arranged by region.

<table>
<thead>
<tr>
<th>GRL</th>
<th>Lab ID #</th>
<th>Core number</th>
<th>Depth in core (cm)</th>
<th>Reported 14C age</th>
</tr>
</thead>
</table>

Baffin Island Shelf

1835-S	NSRL - 16096	HU90023-022 LCF	56–57	3,650 ± 29
NA	AA – NA	HU90023-022 LCF	673	9,890 ± 85
NA	AA – NA	HU90023-022 LCF	357	8,195 ± 65
NA	AA – NA	HU90023-022 LCF	159	5,230 ± 60

Greenland Shelf (East)

1697-S	AA - 57063	MD99-2317	453–457	5,986 ± 70
1698-S	AA - 57063	MD99-2317	453–457	5,795 ± 40
1699-S	AA - 57064	MD99-2317	391–397	4,840 ± 120
1702-S	AA - NA	MD99-2317	453–457	5,630 ± 100
1745-S	AA - 61215	MD99-2317	1,293–1,295	10,090 ± 110
1811-S	AA - 81304	343300 GC	190–192	3,248 ± 44

Greenland Shelf (West)

1811-S	AA - 81304	343300 GC	190–192	3,248 ± 44
1812-S	AA - 81305	343300 GC	655–657	9,473 ± 57
1813-S	AA - 81306	343300 GC	775–777	9,593 ± 58
1814-S	AA - 81308	343300 GC	940–942	9,706 ± 65
1822-S	AA - 81307	343300 GC	340–342	5,822 ± 57
1832-S	AA - 82361	343390 GC	281–283	1,447 ± 38
1833-S	AA - 82362	343390 GC	250	1,308 ± 36
1834-S	AA - 82363	343390 GC	498–500	2,352 ± 37
NA	Beta - 234922	343300 GC	1,019–1,021	10,090 ± 60
1828-S	AA - 82698	HE0006-4-2TC	35–37	10,102 ± 56
1829-S	KCCAMS -	HE0006-4-2PC	25–27	9,730 ± 550
1830-S	KCCAMS -	HE0006-4-2TC	45–47	10,240 ± 250
1831-S	AA - 82697	HE0006-4-2PC	315–317	21,440 ± 140

Iceland Shelf

<p>| 1766-S | AA - 67416 | MD99-2264 | 108–109 | 4,406 ± 49 |
| 1772-S | AA - 64075 | MD99-2264 | 82–83 | 3,466 ± 48 |
| 1777-S | AA - 68075 | MD99-2264 | 134–136 | 5,435 ± 41 |
| 1383-S | AA - 46531 | B997-330SGC | 19–20 | 610 ± 60 |
| 1495-S | AA - 32968 | B997-338PC | 412 | 34,600 ± 640 |
| 1682-S | AA - 54594 | MD99-2269 | 2,100–2,102 | 9,477 ± 88 |
| 1683-S | AA - 56294 | B997-342PC | 184–186 | 5,408 ± 40 |
| 1686-S | AA - 56296 | B997-324 SGC | 10–12 | 1,857 ± 33 |
| 1668-S | AA - 56297 | B997-324 SGC | 10–12 | 572 ± 76 |
| 1688-S | AA - 56298 | B997-314SGC | 18.5–19 | 1,465 ± 39 |
| 1689-S | AA - 56299 | B997-314SGC | 0–1.5 | 1,130 ± 120 |
| 1690-S | AA - 56300 | B997-314SGC | 0–1.5 | 818 ± 85 |
| 1691-S | AA - 56301 | B997-316 SGC | 18–19 cm | 402 ± 38 |
| 1693-S | AA - 56527a | B997-314SGC | 19–20 | 1,026 ± 32 |
| 1693-S | AA - 56527b | B997-314SGC | 19–20 | 1,005 ± 57 |</p>
<table>
<thead>
<tr>
<th>GRL</th>
<th>Lab ID #</th>
<th>Core number</th>
<th>Depth in core (cm)</th>
<th>Reported 14C age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1694-S</td>
<td>AA - 56740</td>
<td>B997-311GGC</td>
<td>0–2.5</td>
<td>1,286 ± 32</td>
</tr>
<tr>
<td>1695-S</td>
<td>AA - 56741</td>
<td>B997-311GGC</td>
<td>61–63.5</td>
<td>2,418 ± 45</td>
</tr>
<tr>
<td>1700-S</td>
<td>AA - 57067</td>
<td>B997-338PC</td>
<td>209–211</td>
<td>13,235 ± 62</td>
</tr>
<tr>
<td>1701-S</td>
<td>AA - 57068</td>
<td>B997-338PC</td>
<td>193–195</td>
<td>13,507 ± 78</td>
</tr>
<tr>
<td>1703-S</td>
<td>AA - 57895</td>
<td>MD99-2269</td>
<td>351</td>
<td>1,978 ± 35</td>
</tr>
<tr>
<td>1704-S</td>
<td>AA - 57896</td>
<td>MD99-2269</td>
<td>562–564</td>
<td>3,017 ± 39</td>
</tr>
<tr>
<td>1705-S</td>
<td>AA - 57897a</td>
<td>MD99-2269</td>
<td>707–708</td>
<td>3,751 ± 44</td>
</tr>
<tr>
<td>1705-S</td>
<td>AA - 57897b</td>
<td>MD99-2269</td>
<td>707–708</td>
<td>3,840* ± 33</td>
</tr>
<tr>
<td>1706-S</td>
<td>AA - 57898</td>
<td>MD99-2269</td>
<td>815</td>
<td>3,949 ± 39</td>
</tr>
<tr>
<td>1707-S</td>
<td>AA - 57899</td>
<td>MD99-2269</td>
<td>1,280–1,282</td>
<td>5,826 ± 51</td>
</tr>
<tr>
<td>1708-S</td>
<td>AA - 57900a</td>
<td>MD99-2269</td>
<td>1,750–1,752</td>
<td>8,590* ± 43</td>
</tr>
<tr>
<td>1708-S</td>
<td>AA - 57900b</td>
<td>MD99-2269</td>
<td>1,750–1,752</td>
<td>8,551 ± 47</td>
</tr>
<tr>
<td>1709-S</td>
<td>AA - 58402</td>
<td>MD99-2256</td>
<td>6–7</td>
<td>652 ± 36</td>
</tr>
<tr>
<td>1710-S</td>
<td>AA - 58403</td>
<td>MD99-2256</td>
<td>37–38</td>
<td>1,466 ± 38</td>
</tr>
<tr>
<td>1711-S</td>
<td>AA - 58404</td>
<td>MD99-2256</td>
<td>47–48</td>
<td>2,154 ± 38</td>
</tr>
<tr>
<td>1712-S</td>
<td>AA - 58405</td>
<td>MD99-2256</td>
<td>123–124</td>
<td>3,624 ± 41</td>
</tr>
<tr>
<td>1713-S</td>
<td>AA - 58406</td>
<td>MD99-2256</td>
<td>315–316</td>
<td>9,393 ± 66</td>
</tr>
<tr>
<td>1714-S</td>
<td>AA - 58407</td>
<td>MD99-2256</td>
<td>343–344</td>
<td>9,424 ± 48</td>
</tr>
<tr>
<td>1715-S</td>
<td>AA - 58408</td>
<td>MD99-2256</td>
<td>389–390</td>
<td>9,555 ± 74</td>
</tr>
<tr>
<td>1716-S</td>
<td>AA - 58409</td>
<td>MD99-2256</td>
<td>413–414</td>
<td>9,734 ± 50</td>
</tr>
<tr>
<td>1717-S</td>
<td>AA - 58410</td>
<td>MD99-2256</td>
<td>529–530</td>
<td>10,075 ± 57</td>
</tr>
<tr>
<td>1718-S</td>
<td>AA - 58537</td>
<td>MD99-2266</td>
<td>34.5–35.5</td>
<td>809 ± 30</td>
</tr>
<tr>
<td>1719-S</td>
<td>AA - 58538</td>
<td>MD99-2266</td>
<td>195–196</td>
<td>2,126 ± 34</td>
</tr>
<tr>
<td>1720-S</td>
<td>AA - 58536</td>
<td>MD99-2266</td>
<td>139–141</td>
<td>1,640 ± 33</td>
</tr>
<tr>
<td>1732-S</td>
<td>AA - 58970</td>
<td>MD99-2256</td>
<td>448</td>
<td>9,735 ± 51</td>
</tr>
<tr>
<td>1733-S</td>
<td>AA - 58971</td>
<td>MD99-2266</td>
<td>240</td>
<td>2,664 ± 33</td>
</tr>
<tr>
<td>1734-S</td>
<td>AA - 58972</td>
<td>MD99-2266</td>
<td>372</td>
<td>3,424 ± 35</td>
</tr>
<tr>
<td>1739-S</td>
<td>AA - 60139</td>
<td>B997-339PC2</td>
<td>263.75–265</td>
<td>9,876 ± 50</td>
</tr>
<tr>
<td>1740-S</td>
<td>AA - 60140</td>
<td>B997-339PC2</td>
<td>35–36.25</td>
<td>3,600 ± 38</td>
</tr>
<tr>
<td>1741-S</td>
<td>AA - 60141</td>
<td>B997-339PC2</td>
<td>101.25–102.5</td>
<td>6,583 ± 41</td>
</tr>
<tr>
<td>1742-S</td>
<td>AA - 60142</td>
<td>B997-339PC2</td>
<td>348.75–350</td>
<td>10,021 ± 51</td>
</tr>
<tr>
<td>1743-S</td>
<td>AA - 60143</td>
<td>B997-339PC2</td>
<td>418.75–420</td>
<td>10,313 ± 52</td>
</tr>
<tr>
<td>1747-S</td>
<td>AA - 61217</td>
<td>MD99-2269</td>
<td>1,410–1,412</td>
<td>6,833 ± 81</td>
</tr>
<tr>
<td>1748-S</td>
<td>AA - 61218</td>
<td>MD99-2269</td>
<td>1,410–1,412</td>
<td>LOST</td>
</tr>
<tr>
<td>1749-S</td>
<td>AA - 61219</td>
<td>MD99-2269</td>
<td>1,740–1,742</td>
<td>8,950 ± 120</td>
</tr>
<tr>
<td>1750-S</td>
<td>AA - 61220</td>
<td>MD99-2269</td>
<td>1,740–1,742</td>
<td>8,572 ± 78</td>
</tr>
<tr>
<td>1751-S</td>
<td>AA - 61221</td>
<td>MD99-2269</td>
<td>1,740–1,742</td>
<td>8,609 ± 92</td>
</tr>
<tr>
<td>1752-S</td>
<td>AA - 64125</td>
<td>B997-327PC</td>
<td>95</td>
<td>1,329 ± 34</td>
</tr>
<tr>
<td>1754-S</td>
<td>CURL - 7613</td>
<td>MD99-2266</td>
<td>1,398.5</td>
<td>6,790 ± 20</td>
</tr>
<tr>
<td>1755-S</td>
<td>CURL - 7633</td>
<td>MD99-2266</td>
<td>113</td>
<td>7,755 ± 20</td>
</tr>
<tr>
<td>1756-S</td>
<td>CURL - 7634</td>
<td>MD99-2266</td>
<td>66.25</td>
<td>1,620 ± 15</td>
</tr>
<tr>
<td>1757-S</td>
<td>NSRL - 13922</td>
<td>B997-321PC</td>
<td>38.75–40</td>
<td>too small</td>
</tr>
<tr>
<td>1758-S</td>
<td>NSRL - 13923</td>
<td>B997-321PC</td>
<td>85–86.25</td>
<td>2,270 ± 15</td>
</tr>
<tr>
<td>1759-S</td>
<td>CURL - 7903</td>
<td>MD99-2266</td>
<td>1,736.5</td>
<td>7,640 ± 30</td>
</tr>
<tr>
<td>1760-S</td>
<td>CURL - 7756</td>
<td>MD99-2266</td>
<td>1,784.5</td>
<td>7,780 ± 25</td>
</tr>
<tr>
<td>1761-S</td>
<td>AA - 65331</td>
<td>MD99-2256</td>
<td>113–114</td>
<td>3,840 ± 39</td>
</tr>
<tr>
<td>1762-S</td>
<td>AA - 65331</td>
<td>MD99-2256</td>
<td>163–164</td>
<td>5,636 ± 57</td>
</tr>
<tr>
<td>1763-S</td>
<td>CURL - 7757</td>
<td>MD99-2256</td>
<td>197–198</td>
<td>7,095 ± 25</td>
</tr>
<tr>
<td>1764-S</td>
<td>CURL - 7903</td>
<td>MD99-2266</td>
<td>2,236.5–2,238.5</td>
<td>8,285 ± 15</td>
</tr>
<tr>
<td>GRL</td>
<td>Lab ID #</td>
<td>Core number</td>
<td>Depth in core (cm)</td>
<td>Reported 14C age</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>1765-s</td>
<td>CURL - 8022</td>
<td>MD99-2266</td>
<td>22–23</td>
<td>830 ± 15</td>
</tr>
<tr>
<td>1768-S</td>
<td>AA - 67418</td>
<td>B997-321PC</td>
<td>175</td>
<td>4,771 ± 90</td>
</tr>
<tr>
<td>1769-S</td>
<td>AA - 67419</td>
<td>B997-321PC</td>
<td>230</td>
<td>4,530 ± 360</td>
</tr>
<tr>
<td>1770-S</td>
<td>AA - 67746</td>
<td>MD99-2266</td>
<td>9.5–10.5</td>
<td>822 ± 67</td>
</tr>
<tr>
<td>1771-S</td>
<td>AA - 67747</td>
<td>MD99-2266</td>
<td>24–25</td>
<td>746 ± 61</td>
</tr>
<tr>
<td>1779-S</td>
<td>AA - 70939</td>
<td>MD99-2256</td>
<td>80–82</td>
<td>2,910 ± 40</td>
</tr>
<tr>
<td>1780-S</td>
<td>AA - 70940</td>
<td>MD99-2256</td>
<td>140–142</td>
<td>4,568 ± 44</td>
</tr>
<tr>
<td>1781-S</td>
<td>AA - 70941</td>
<td>MD99-2256</td>
<td>180–182</td>
<td>6,200 ± 56</td>
</tr>
<tr>
<td>1782-S</td>
<td>AA - 70942</td>
<td>MD99-2256</td>
<td>240–242</td>
<td>8,379 ± 51</td>
</tr>
<tr>
<td>1783-S</td>
<td>AA - 70943</td>
<td>MD99-2256</td>
<td>280–282</td>
<td>8,978 ± 53</td>
</tr>
<tr>
<td>1784-S</td>
<td>NSRL - 15187</td>
<td>B997-315PC</td>
<td>0–2</td>
<td>2,985 ± 20</td>
</tr>
<tr>
<td>1786-S</td>
<td>AA - 75151</td>
<td>B997-320</td>
<td>0–2</td>
<td>2,101 ± 84</td>
</tr>
<tr>
<td>1788-S</td>
<td>NSRL - 15188</td>
<td>B997-325PC</td>
<td>0–5</td>
<td>385 ± 15</td>
</tr>
<tr>
<td>1802-S</td>
<td>NSRL - 15189</td>
<td>MD99-2263</td>
<td>17</td>
<td>680 ± 20</td>
</tr>
<tr>
<td>1803-S</td>
<td>NSRL - 15190</td>
<td>MD99-2263</td>
<td>25</td>
<td>850 ± 15</td>
</tr>
<tr>
<td>1804-S</td>
<td>NSRL - 15191</td>
<td>MD99-2263</td>
<td>45</td>
<td>2,165 ± 15</td>
</tr>
<tr>
<td>1805-S</td>
<td>NSRL - 15287</td>
<td>MD99-2263</td>
<td>10</td>
<td>600 ± 15</td>
</tr>
<tr>
<td>1806-S</td>
<td>NSRL - 15289</td>
<td>B997-315PC</td>
<td>75</td>
<td>10,675 ± 20</td>
</tr>
<tr>
<td>1807-S</td>
<td>NSRL - 15290</td>
<td>B997-315PC</td>
<td>30–32</td>
<td>4,895 ± 15</td>
</tr>
<tr>
<td>1809-S</td>
<td>NSRL - 15288</td>
<td>MD99-2263</td>
<td>38.5</td>
<td>1,620 ± 15</td>
</tr>
<tr>
<td>1815-S</td>
<td>NSRL - 15928</td>
<td>MD99-2263</td>
<td>7</td>
<td>595 ± 15</td>
</tr>
<tr>
<td>1816-S</td>
<td>NSRL - 15929</td>
<td>MD99-2263</td>
<td>12</td>
<td>690 ± 15</td>
</tr>
<tr>
<td>1817-S</td>
<td>AA - 81065</td>
<td>MD99-2259</td>
<td>22–23</td>
<td>766 ± 43</td>
</tr>
<tr>
<td>1818-S</td>
<td>AA - 81066</td>
<td>MD99-2259</td>
<td>44–45</td>
<td>2,535 ± 45</td>
</tr>
<tr>
<td>1819-S</td>
<td>AA - 81067</td>
<td>MD99-2259</td>
<td>84–85</td>
<td>4,950 ± 57</td>
</tr>
<tr>
<td>1820-S</td>
<td>AA - 81068</td>
<td>MD99-2259</td>
<td>130–131</td>
<td>1,287 ± 44</td>
</tr>
<tr>
<td>1821-S</td>
<td>AA - NA</td>
<td>MD99-2259</td>
<td>461–462</td>
<td>2,869 ± 54</td>
</tr>
<tr>
<td>1825-S</td>
<td>NSRL - 15950</td>
<td>MD99-2258</td>
<td>27.5</td>
<td>725 ± 15</td>
</tr>
<tr>
<td>1826-S</td>
<td>NSRL - 15951</td>
<td>MD99-2258</td>
<td>40</td>
<td>2,655 ± 15</td>
</tr>
<tr>
<td>1827-S</td>
<td>NSRL - 15952</td>
<td>MD99-2258</td>
<td>69–72</td>
<td>3,180 ± 20</td>
</tr>
<tr>
<td>31-W</td>
<td>AA - 62342</td>
<td>HV-04-10</td>
<td>130</td>
<td>6,148 ± 47</td>
</tr>
<tr>
<td>32-W</td>
<td>AA - 62343</td>
<td>LB-04-08</td>
<td>100</td>
<td>3,969 ± 42</td>
</tr>
<tr>
<td>33-W</td>
<td>AA - 62344</td>
<td>RA-04-10</td>
<td>100</td>
<td>7,940 ± 57</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 46847</td>
<td>JR51-GC35</td>
<td>0–1</td>
<td>473 ± 36</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 531112</td>
<td>JR51-GC35</td>
<td>54–55</td>
<td>1,417 ± 65</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53113</td>
<td>JR51-GC35</td>
<td>112–113</td>
<td>2,621 ± 58</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53114</td>
<td>JR51-GC35</td>
<td>168</td>
<td>3,706 ± 59</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53115</td>
<td>JR51-GC35</td>
<td>214–215</td>
<td>4,612 ± 70</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53116</td>
<td>JR51-GC35</td>
<td>276–277</td>
<td>5,541 ± 44</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53117</td>
<td>JR51-GC35</td>
<td>334</td>
<td>6,537 ± 45</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53118</td>
<td>JR51-GC35</td>
<td>384</td>
<td>8,286 ± 50</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53119</td>
<td>JR51-GC35</td>
<td>420–421.5</td>
<td>9,014 ± 51</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 46848</td>
<td>JR51-GC35</td>
<td>449–451</td>
<td>9,403 ± 58</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>B997-320PC</td>
<td>109–110</td>
<td>1,545 ± 45</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>B997-320PC</td>
<td>149–150</td>
<td>1,580 ± 50</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>B997-320PC</td>
<td>249–250</td>
<td>2,585 ± 55</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 46846</td>
<td>B997-325GGC</td>
<td>0–1</td>
<td>1,247 ± 56</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53121</td>
<td>B997-325GGC</td>
<td>9–10</td>
<td>2,783 ± 39</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53106</td>
<td>B997-325GGC</td>
<td>31</td>
<td>4,470 ± 47</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53107</td>
<td>B997-325PC</td>
<td>87–88</td>
<td>6,921 ± 72</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53108</td>
<td>B997-325PC</td>
<td>99–101</td>
<td>7,347 ± 66</td>
</tr>
<tr>
<td>GRL</td>
<td>Lab ID #</td>
<td>Core number</td>
<td>Depth in core (cm)</td>
<td>Reported 14C age</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53109</td>
<td>B997-325PC</td>
<td>139–141</td>
<td>8,759 ± 67</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53110</td>
<td>B997-325PC</td>
<td>171–173</td>
<td>9,252 ± 70</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53111</td>
<td>B997-325PC</td>
<td>211–213</td>
<td>10,400 ± 150</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53105</td>
<td>B997-350PC</td>
<td>324</td>
<td>11,966 ± 87</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53104</td>
<td>B997-350PC</td>
<td>249–250</td>
<td>11,537 ± 66</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53103</td>
<td>B997-350PC</td>
<td>196</td>
<td>10,916 ± 63</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53101</td>
<td>B997-350PC</td>
<td>88</td>
<td>10,698 ± 75</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 53100</td>
<td>B997-350PC</td>
<td>42</td>
<td>9,713 ± 60</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 55120</td>
<td>B997-350PC</td>
<td>5</td>
<td>645 ± 36</td>
</tr>
<tr>
<td>NA</td>
<td>AA - 66845</td>
<td>B997-350PC</td>
<td>0–1</td>
<td>2,818 ± 39</td>
</tr>
</tbody>
</table>

Iceland - terrestrial

<table>
<thead>
<tr>
<th>Year</th>
<th>Lab ID #</th>
<th>Core number</th>
<th>Depth in core (cm)</th>
<th>Reported 14C age</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>AA - 62344</td>
<td>RA-04-10</td>
<td>100</td>
<td>7,940 ± 57</td>
</tr>
<tr>
<td>1043</td>
<td>AA - 62441</td>
<td>HV-04-07</td>
<td>130</td>
<td>3,724 ± 74</td>
</tr>
<tr>
<td>34</td>
<td>AA - 66864</td>
<td>RA-05-25</td>
<td>25–27</td>
<td>7,009 ± 45</td>
</tr>
<tr>
<td>35</td>
<td>AA - 66865</td>
<td>RA-05-35</td>
<td>35–37</td>
<td>6,188 ± 59</td>
</tr>
<tr>
<td>36</td>
<td>AA - 66866</td>
<td>RA-05-85</td>
<td>85–87</td>
<td>3,969 ± 55</td>
</tr>
<tr>
<td>37</td>
<td>AA - 66867</td>
<td>SN-05-35</td>
<td>35</td>
<td>7,936 ± 53</td>
</tr>
<tr>
<td>38</td>
<td>AA - 66868</td>
<td>SN-05-67</td>
<td>67–69</td>
<td>5,653 ± 77</td>
</tr>
</tbody>
</table>

Labrador Shelf

<table>
<thead>
<tr>
<th>Year</th>
<th>Lab ID #</th>
<th>Core number</th>
<th>Depth in core (cm)</th>
<th>Reported 14C age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1721</td>
<td>AA - 58959</td>
<td>MD99-2236</td>
<td>890</td>
<td>8,769 ± 48</td>
</tr>
<tr>
<td>1722</td>
<td>AA - 58960</td>
<td>MD99-2236</td>
<td>902</td>
<td>8,858 ± 49</td>
</tr>
<tr>
<td>1723</td>
<td>AA - 58961</td>
<td>MD99-2236</td>
<td>1,142</td>
<td>8,941 ± 47</td>
</tr>
<tr>
<td>1724</td>
<td>AA - 58962</td>
<td>MD99-2236</td>
<td>1,181</td>
<td>9,728 ± 86</td>
</tr>
<tr>
<td>1725</td>
<td>AA - 58963</td>
<td>MD99-2236</td>
<td>1,513</td>
<td>10,025 ± 67</td>
</tr>
<tr>
<td>1726</td>
<td>AA - 58964</td>
<td>MD99-2236</td>
<td>1,708</td>
<td>10,379 ± 58</td>
</tr>
<tr>
<td>1727</td>
<td>AA - 58965</td>
<td>MD99-2236</td>
<td>1,839</td>
<td>10,473 ± 50</td>
</tr>
<tr>
<td>1728</td>
<td>AA - 58966</td>
<td>MD99-2236</td>
<td>1,868</td>
<td>10,769 ± 51</td>
</tr>
<tr>
<td>1729</td>
<td>AA - 58967</td>
<td>MD99-2236</td>
<td>1,894</td>
<td>10,828 ± 71</td>
</tr>
<tr>
<td>1730</td>
<td>AA - 58968</td>
<td>MD99-2236</td>
<td>1,950</td>
<td>11,625 ± 58</td>
</tr>
<tr>
<td>1731</td>
<td>AA - 58969</td>
<td>MD99-2236</td>
<td>2,019.5</td>
<td>12,060 ± 63</td>
</tr>
<tr>
<td>1735</td>
<td>AA - 59572</td>
<td>MD99-2236</td>
<td>118</td>
<td>1,775 ± 35</td>
</tr>
<tr>
<td>1736</td>
<td>AA - 59573</td>
<td>MD99-2236</td>
<td>249.5</td>
<td>6,577 ± 42</td>
</tr>
<tr>
<td>1737</td>
<td>AA - 59574</td>
<td>MD99-2236</td>
<td>431.5</td>
<td>7,700 ± 200</td>
</tr>
<tr>
<td>1738</td>
<td>AA - 59575</td>
<td>MD99-2236</td>
<td>467.5</td>
<td>7,816 ± 63</td>
</tr>
<tr>
<td>1775</td>
<td>AA - 70935</td>
<td>MD99-2236</td>
<td>1–4</td>
<td>845 ± 48</td>
</tr>
<tr>
<td>1776</td>
<td>AA - 70936</td>
<td>MD99-2236</td>
<td>10–13</td>
<td>1,082 ± 37</td>
</tr>
<tr>
<td>1777</td>
<td>AA - 70937</td>
<td>MD99-2236</td>
<td>17–19</td>
<td>1,057 ± 36</td>
</tr>
<tr>
<td>1778</td>
<td>AA - 70938</td>
<td>MD99-2236</td>
<td>133–136</td>
<td>2,370 ± 40</td>
</tr>
<tr>
<td>1810</td>
<td>AA - 81303</td>
<td>MD99-2236</td>
<td>1,183–1,184</td>
<td>9,626 ± 80</td>
</tr>
<tr>
<td>1836</td>
<td>AA - 82359</td>
<td>MD99-2236</td>
<td>1,143–1,145</td>
<td>9,385 ± 52</td>
</tr>
<tr>
<td>1837</td>
<td>AA - 82360</td>
<td>MD99-2236</td>
<td>1,351–1,352</td>
<td>9,777 ± 54</td>
</tr>
</tbody>
</table>

Nares Strait

<table>
<thead>
<tr>
<th>Year</th>
<th>Lab ID #</th>
<th>Core number</th>
<th>Depth in core (cm)</th>
<th>Reported 14C age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1823</td>
<td>AA - 81309</td>
<td>HLY0301-05GC</td>
<td>0–2</td>
<td>530 ± 52</td>
</tr>
<tr>
<td>1824</td>
<td>AA - 81310</td>
<td>HLY0301-05GC</td>
<td>68–70</td>
<td>7,302 ± 61</td>
</tr>
</tbody>
</table>
APPENDIX 3

Comprehensive date list arranged by radiocarbon age.

<table>
<thead>
<tr>
<th>14C age</th>
<th>Lab ID #</th>
<th>Material</th>
<th>14C age</th>
<th>Lab ID #</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>294 ± 91</td>
<td>AA - 56302</td>
<td>Mollusc</td>
<td>1,620 ± 15</td>
<td>CURL - 7634</td>
<td>Mollusc</td>
</tr>
<tr>
<td>385 ± 15</td>
<td>NSRL - 15188</td>
<td>Foraminifera</td>
<td>1,620 ± 15</td>
<td>NSRL - 15288</td>
<td>Mollusc</td>
</tr>
<tr>
<td>402 ± 38</td>
<td>AA - 56301</td>
<td>Mollusc</td>
<td>1,640 ± 33</td>
<td>AA - 58536</td>
<td>Mollusc</td>
</tr>
<tr>
<td>473 ± 36</td>
<td>AA - 46847</td>
<td>Foraminifera</td>
<td>1,775 ± 35</td>
<td>AA - 59572</td>
<td>Mollusc</td>
</tr>
<tr>
<td>530 ± 52</td>
<td>AA - 81309</td>
<td>Mollusc</td>
<td>1,857 ± 33</td>
<td>AA - 56295</td>
<td>Mollusc</td>
</tr>
<tr>
<td>572 ± 76</td>
<td>AA - 56296</td>
<td>Mollusc</td>
<td>1,978 ± 35</td>
<td>AA - 57895</td>
<td>Mollusc</td>
</tr>
<tr>
<td>595 ± 15</td>
<td>NSRL - 15928</td>
<td>Mollusc</td>
<td>2,015 ± 65</td>
<td>AA - 56300</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>600 ± 15</td>
<td>NSRL - 15287</td>
<td>Mollusc</td>
<td>2,015 ± 65</td>
<td>AA - 56300</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>610 ± 60</td>
<td>AA - 46531</td>
<td>Mollusc</td>
<td>2,101 ± 84</td>
<td>AA - 75151</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>645 ± 36</td>
<td>AA - 55120</td>
<td>Serpulid</td>
<td>2,126 ± 34</td>
<td>AA - 58538</td>
<td>Mollusc</td>
</tr>
<tr>
<td>652 ± 36</td>
<td>AA - 58402</td>
<td>Mollusc</td>
<td>2,154 ± 38</td>
<td>AA - 58404</td>
<td>Mollusc</td>
</tr>
<tr>
<td>680 ± 20</td>
<td>NSRL - 15189</td>
<td>Mollusc</td>
<td>2,165 ± 15</td>
<td>NSRL - 15191</td>
<td>Mollusc</td>
</tr>
<tr>
<td>690 ± 15</td>
<td>NSRL - 15929</td>
<td>Mollusc</td>
<td>2,270 ± 15</td>
<td>NSRL - 13923</td>
<td>Mollusc</td>
</tr>
<tr>
<td>725 ± 15</td>
<td>NSRL - 15950</td>
<td>Mollusc</td>
<td>2,352 ± 37</td>
<td>AA - 82363</td>
<td>Mollusc</td>
</tr>
<tr>
<td>746 ± 61</td>
<td>AA - 67747</td>
<td>Mollusc</td>
<td>2,370 ± 40</td>
<td>AA - 70938</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>766 ± 43</td>
<td>AA - 81065</td>
<td>Mollusc</td>
<td>2,418 ± 45</td>
<td>AA - 56741</td>
<td>Mollusc</td>
</tr>
<tr>
<td>809 ± 30</td>
<td>AA - 58537</td>
<td>Mollusc</td>
<td>2,535 ± 45</td>
<td>AA - 81066</td>
<td>Mollusc</td>
</tr>
<tr>
<td>818 ± 85</td>
<td>AA - 56300</td>
<td>Seaweed</td>
<td>2,585 ± 55</td>
<td>NA; B997-</td>
<td>Mollusc</td>
</tr>
<tr>
<td>822 ± 67</td>
<td>AA - 67746</td>
<td>Mollusc</td>
<td>2,655 ± 55</td>
<td>320PC (109-</td>
<td>Mollusc</td>
</tr>
<tr>
<td>830 ± 15</td>
<td>CURL - 8022</td>
<td>Mollusc</td>
<td>2,655 ± 55</td>
<td>110cm)</td>
<td>Seaweed</td>
</tr>
<tr>
<td>845 ± 48</td>
<td>AA - 70935</td>
<td>Foraminifera</td>
<td>2,664 ± 33</td>
<td>AA - 58971</td>
<td>Mollusc</td>
</tr>
<tr>
<td>850 ± 15</td>
<td>NSRL - 15190</td>
<td>Mollusc</td>
<td>2,783 ± 39</td>
<td>AA - 53121</td>
<td>bivalve fr &</td>
</tr>
<tr>
<td>1,005 ± 57</td>
<td>AA - 56527B</td>
<td>Plant</td>
<td>2,818 ± 39</td>
<td>AA - 66845</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>1,026 ± 32</td>
<td>AA - 56527A</td>
<td>Plant</td>
<td>2,869 ± 54</td>
<td>AA -</td>
<td>Mollusc</td>
</tr>
<tr>
<td>1,057 ± 36</td>
<td>AA - 70937</td>
<td>Foraminifera</td>
<td>2,910 ± 40</td>
<td>AA - 70939</td>
<td>benthic</td>
</tr>
<tr>
<td>1,082 ± 37</td>
<td>AA - 70936</td>
<td>Foraminifera</td>
<td>2,910 ± 40</td>
<td>AA - 70939</td>
<td>benthic</td>
</tr>
<tr>
<td>1,130 ± 120</td>
<td>AA - 56299</td>
<td>Mollusc</td>
<td>2,985 ± 20</td>
<td>NSRL - 15187</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>1,247 ± 56</td>
<td>AA - 46846</td>
<td>Foraminifera</td>
<td>3,017 ± 39</td>
<td>AA - 57896</td>
<td>Mollusc</td>
</tr>
<tr>
<td>1,286 ± 32</td>
<td>AA - 56740</td>
<td>Mollusc</td>
<td>3,180 ± 20</td>
<td>NSRL - 15952</td>
<td>Mollusc</td>
</tr>
<tr>
<td>1,287 ± 44</td>
<td>AA - 81068</td>
<td>Mollusc</td>
<td>3,248 ± 44</td>
<td>AA - 81304</td>
<td>Mollusc</td>
</tr>
<tr>
<td>1,308 ± 36</td>
<td>AA - 82362</td>
<td>Mollusc</td>
<td>3,424 ± 35</td>
<td>AA - 58972</td>
<td>Mollusc</td>
</tr>
<tr>
<td>1,329 ± 34</td>
<td>AA - 64125</td>
<td>Mollusc</td>
<td>3,466 ± 48</td>
<td>AA - 67417</td>
<td>Mollusc</td>
</tr>
<tr>
<td>1,417 ± 65</td>
<td>AA - 531112</td>
<td>Mollusc</td>
<td>3,600 ± 38</td>
<td>AA - 60140</td>
<td>Mollusc</td>
</tr>
<tr>
<td>1,447 ± 38</td>
<td>AA - 82361</td>
<td>Mollusc</td>
<td>3,624 ± 41</td>
<td>AA - 58405</td>
<td>Mollusc</td>
</tr>
<tr>
<td>1,450 ± 15</td>
<td>CURL - 7633</td>
<td>Mollusc</td>
<td>3,650 ± 29</td>
<td>NSRL - 16096</td>
<td>Mollusc</td>
</tr>
<tr>
<td>1,453 ± 25</td>
<td>AA - 56297</td>
<td>Plant</td>
<td>3,706 ± 59</td>
<td>AA - 531114</td>
<td>Mollusc</td>
</tr>
<tr>
<td>1,465 ± 39</td>
<td>AA - 56298</td>
<td>Mollusc</td>
<td>3,724 ± 74</td>
<td>AA - 62441</td>
<td>Peat</td>
</tr>
<tr>
<td>1,466 ± 38</td>
<td>AA - 58403</td>
<td>Mollusc</td>
<td>3,751 ± 44</td>
<td>AA - 57897a</td>
<td>Mollusc</td>
</tr>
<tr>
<td>1,545 ± 45</td>
<td>NA; B997-</td>
<td>Mollusc</td>
<td>3,949 ± 39</td>
<td>AA - 57898</td>
<td>Mollusc</td>
</tr>
<tr>
<td>1,580 ± 50</td>
<td>NA; B997-</td>
<td>Mollusc</td>
<td>3,969 ± 42</td>
<td>AA - 62343</td>
<td>Wood</td>
</tr>
<tr>
<td></td>
<td>320PC (149-</td>
<td>Mollusc</td>
<td>3,969 ± 55</td>
<td>AA - 66866</td>
<td>Wood</td>
</tr>
<tr>
<td></td>
<td>150cm)</td>
<td>Mollusc</td>
<td>4,406 ± 49</td>
<td>AA - 67416</td>
<td>Mollusc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mollusc</td>
<td>4,470 ± 47</td>
<td>AA - 53106</td>
<td>Gastropod</td>
</tr>
<tr>
<td>L4C age</td>
<td>Lab ID #</td>
<td>Material</td>
<td>L4C age</td>
<td>Lab ID #</td>
<td>Material</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>4,530 ± 360</td>
<td>AA - 67419</td>
<td>Mollusc</td>
<td>8,950 ± 120</td>
<td>AA - 61219</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>4,568 ± 44</td>
<td>AA - 70940</td>
<td>benthic forams</td>
<td>8,978 ± 53</td>
<td>AA - 70943</td>
<td>Benthic forams</td>
</tr>
<tr>
<td>4,612 ± 70</td>
<td>AA - 531115</td>
<td>Foraminifera</td>
<td>9,014 ± 51</td>
<td>AA - 531119</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>4,771 ± 90</td>
<td>AA - 67418</td>
<td>Mollusc</td>
<td>9,252 ± 70</td>
<td>AA - 53110</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>4,840 ± 120</td>
<td>AA - 57064</td>
<td>Foraminifera</td>
<td>9,385 ± 52</td>
<td>AA - 82359</td>
<td>Mollusc</td>
</tr>
<tr>
<td>4,895 ± 15</td>
<td>NSRL - 15290</td>
<td>Mollusc</td>
<td>9,393 ± 66</td>
<td>AA - 58406</td>
<td>Mollusc</td>
</tr>
<tr>
<td>4,950 ± 57</td>
<td>AA - 81067</td>
<td>Mollusc</td>
<td>9,403 ± 58</td>
<td>AA - 46848</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>5,230 ± 60</td>
<td>AA</td>
<td></td>
<td>9,424 ± 48</td>
<td>AA - 58407</td>
<td>Mollusc</td>
</tr>
<tr>
<td>5,408 ± 40</td>
<td>AA - 56294</td>
<td>Mollusc</td>
<td>9,473 ± 57</td>
<td>AA - 81305</td>
<td>Mollusc</td>
</tr>
<tr>
<td>5,435 ± 41</td>
<td>AA - 68075</td>
<td>Mollusc</td>
<td>9,477 ± 88</td>
<td>AA - 54594</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>5,541 ± 44</td>
<td>AA - 531116</td>
<td>Mollusc</td>
<td>9,555 ± 74</td>
<td>AA - 58408</td>
<td>Mollusc</td>
</tr>
<tr>
<td>5,630 ± 100</td>
<td>AA</td>
<td>Foraminifera</td>
<td>9,593 ± 58</td>
<td>AA - 81306</td>
<td>Mollusc</td>
</tr>
<tr>
<td>5,636 ± 57</td>
<td>AA - 65331</td>
<td>Foraminifera</td>
<td>9,626 ± 80</td>
<td>AA - 81303</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>5,653 ± 77</td>
<td>AA - 66868</td>
<td>Wood</td>
<td>9,706 ± 65</td>
<td>AA - 81308</td>
<td>Mollusc</td>
</tr>
<tr>
<td>5,795 ± 40</td>
<td>AA - 57063</td>
<td>Mollusc</td>
<td>9,713 ± 60</td>
<td>AA - 53100</td>
<td>Bivalve</td>
</tr>
<tr>
<td>5,822 ± 57</td>
<td>AA - 81307</td>
<td>Foraminifera</td>
<td>9,728 ± 86</td>
<td>AA - 58962</td>
<td>Mollusc</td>
</tr>
<tr>
<td>5,826 ± 51</td>
<td>AA - 57899</td>
<td>Mollusc</td>
<td>9,730 ± 550</td>
<td>AA - 55049</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>5,986 ± 70</td>
<td>AA - 57062</td>
<td>Foraminifera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,148 ± 47</td>
<td>AA - 62342</td>
<td>Wood</td>
<td>9,734 ± 50</td>
<td>AA - 58409</td>
<td>Mollusc</td>
</tr>
<tr>
<td>6,188 ± 59</td>
<td>AA - 66865</td>
<td>Wood</td>
<td>9,735 ± 51</td>
<td>AA - 58970</td>
<td>Mollusc</td>
</tr>
<tr>
<td>6,200 ± 56</td>
<td>AA - 70941</td>
<td>Benthic</td>
<td>9,777 ± 54</td>
<td>AA - 82360</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>6,537 ± 45</td>
<td>AA - 53117</td>
<td>Mollusc</td>
<td>9,876 ± 50</td>
<td>AA - 60139</td>
<td>Mollusc</td>
</tr>
<tr>
<td>6,577 ± 42</td>
<td>AA - 59573</td>
<td>Mollusc</td>
<td>9,890 ± 85</td>
<td>AA - 6462</td>
<td>Mollusc</td>
</tr>
<tr>
<td>6,583 ± 41</td>
<td>AA - 60141</td>
<td>Mollusc</td>
<td>10,021 ± 51</td>
<td>AA - 60142</td>
<td>Mollusc</td>
</tr>
<tr>
<td>6,790 ± 20</td>
<td>CURL - 7613</td>
<td>Mollusc</td>
<td>10,025 ± 67</td>
<td>AA - 58963</td>
<td>Mollusc</td>
</tr>
<tr>
<td>6,833 ± 81</td>
<td>AA - 61217</td>
<td>Foraminifera</td>
<td>10,075 ± 57</td>
<td>AA - 58410</td>
<td>Mollusc</td>
</tr>
<tr>
<td>6,921 ± 72</td>
<td>AA - 53107</td>
<td>Foraminifera</td>
<td>10,090 ± 110</td>
<td>AA - 61215</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>7,009 ± 45</td>
<td>AA - 66864</td>
<td>Wood</td>
<td>10,090 ± 60</td>
<td>Beta - 234922</td>
<td>Mollusc</td>
</tr>
<tr>
<td>7,095 ± 25</td>
<td>CURL - 7757</td>
<td>Foraminifera</td>
<td>10,102 ± 56</td>
<td>AA - 82698</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>7,302 ± 61</td>
<td>AA - 81310</td>
<td>Foraminifera</td>
<td>10,240 ± 250</td>
<td>KCCAMS - Foraminifera</td>
<td></td>
</tr>
<tr>
<td>7,347 ± 66</td>
<td>AA - 53108</td>
<td>Foraminifera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,640 ± 30</td>
<td>CURL - 7903</td>
<td>Mollusc</td>
<td>10,313 ± 52</td>
<td>AA - 60143</td>
<td>Mollusc</td>
</tr>
<tr>
<td>7,700 ± 200</td>
<td>AA - 59574</td>
<td>Mollusc</td>
<td>10,379 ± 58</td>
<td>AA - 58964</td>
<td>Mollusc</td>
</tr>
<tr>
<td>7,755 ± 20</td>
<td>NSRL - 13920</td>
<td>Mollusc</td>
<td>10,400 ± 150</td>
<td>AA - 53111</td>
<td>See sample comments</td>
</tr>
<tr>
<td>7,775 ± 46</td>
<td>AA - 68076</td>
<td>Mollusc</td>
<td>10,473 ± 50</td>
<td>AA - 58965</td>
<td>Mollusc</td>
</tr>
<tr>
<td>7,780 ± 25</td>
<td>CURL - 7756</td>
<td>Mollusc</td>
<td>10,675 ± 20</td>
<td>NSRL - 15289</td>
<td>Mollusc</td>
</tr>
<tr>
<td>7,816 ± 63</td>
<td>AA - 59575</td>
<td>Mollusc</td>
<td>10,698 ± 75</td>
<td>AA - 53101</td>
<td>Fragments of bivalve mussels</td>
</tr>
<tr>
<td>7,936 ± 53</td>
<td>AA - 66867</td>
<td>Wood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,940 ± 57</td>
<td>AA - 62344</td>
<td>Wood</td>
<td>10,769 ± 51</td>
<td>AA - 58966</td>
<td>Mollusc</td>
</tr>
<tr>
<td>8,195 ± 65</td>
<td>AA -</td>
<td></td>
<td>10,828 ± 71</td>
<td>AA - 58967</td>
<td>Mollusc</td>
</tr>
<tr>
<td>8,285 ± 15</td>
<td>CURL - 7903</td>
<td>Mollusc</td>
<td>10,916 ± 63</td>
<td>AA - 53103</td>
<td>Gastropod fragment</td>
</tr>
<tr>
<td>8,286 ± 50</td>
<td>AA - 531118</td>
<td>Mollusc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,379 ± 51</td>
<td>AA - 70942</td>
<td>Benthic</td>
<td>11,537 ± 66</td>
<td>AA - 53104</td>
<td>Scaphopod</td>
</tr>
<tr>
<td>8,551 ± 47</td>
<td>AA - 57900b</td>
<td>Mollusc</td>
<td>11,625 ± 58</td>
<td>AA - 58968</td>
<td>Mollusc</td>
</tr>
<tr>
<td>8,572 ± 78</td>
<td>AA - 61220</td>
<td>Foraminifera</td>
<td>11,966 ± 87</td>
<td>AA - 53105</td>
<td>Bivalve</td>
</tr>
<tr>
<td>8,609 ± 92</td>
<td>AA - 61221</td>
<td>Foraminifera</td>
<td>12,060 ± 63</td>
<td>AA - 58969</td>
<td>Mollusc</td>
</tr>
<tr>
<td>8,756 ± 67</td>
<td>AA - 53109</td>
<td>Foraminifera</td>
<td>13,235 ± 62</td>
<td>AA - 57067</td>
<td>Mollusc</td>
</tr>
<tr>
<td>8,759 ± 67</td>
<td>AA - 53109</td>
<td>Foraminifera</td>
<td>13,507 ± 78</td>
<td>AA - 57068</td>
<td>Mollusc</td>
</tr>
<tr>
<td>8,769 ± 48</td>
<td>AA - 58959</td>
<td>Mollusc</td>
<td>21,440 ± 140</td>
<td>AA - 82697</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>8,858 ± 49</td>
<td>AA - 58960</td>
<td>Mollusc</td>
<td>34,600 ± 640</td>
<td>AA - 32968</td>
<td>Foraminifera</td>
</tr>
<tr>
<td>8,941 ± 47</td>
<td>AA - 58961</td>
<td>Mollusc</td>
<td>3,840* ± 33</td>
<td>AA - 57897b</td>
<td>Mollusc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8,590* ± 43</td>
<td>AA - 57900a</td>
<td>Mollusc</td>
</tr>
</tbody>
</table>