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In Search of the Neurobiological Substrates for Social Playfulness in
Mammalian Brains

Abstract
Play behavior is a fundamental and intrinsic neurobehavioral process in the mammalian brain. Using rough-
and-tumble play in the juvenile rat as a model system to study mammalian playfulness, some of the relevant
neurobiological substrates for this behavior have been identified, and in this review this progress. A primary-
process executive circuit for play in the rat that includes thalamic intralaminar nuclei, frontal cortex and
striatum can be gleaned from these data. Other neural areas that may interact with this putative circuit include
amygdala, ventral hypothalamus, periaqueductal gray (PAG), and deep tectum, as well as ascending dopamine
systems which participate in all types of seeking urges At the neurochemical level, considerable evidence
points to specific cholinergic and dopaminergic controls, but also endogenous opioids and cannabinoids as
having a positive modulatory influence over playfulness, with all europeptides known to have aversive effects
to reduce play. Monoamines such as norepinephrine and serotonin certainly modulate play, but they influence
all psychobehavioral systems, suggesting non-specific effects. We proceed to discuss how increased insights
into the neurobiological mechanisms of play can inform our understanding of normal and abnormal
childhood development.

Keywords
play, development, rat, adolescence, review, affect, emotions, juvenile

Disciplines
Behavioral Neurobiology | Biological Psychology | Developmental Neuroscience | Neuroscience and
Neurobiology | Psychology

This article is available at The Cupola: Scholarship at Gettysburg College: https://cupola.gettysburg.edu/psyfac/27

https://cupola.gettysburg.edu/psyfac/27?utm_source=cupola.gettysburg.edu%2Fpsyfac%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages


1 

 

 

 

In Search of the Neurobiological Substrates for Social Playfulness in Mammalian Brains 

 

Stephen M. Siviy
1 

and Jaak Panksepp
2
 

 

 
 

1
Department of Psychology 

Gettysburg College 

Gettysburg, PA 17325 USA 

 

2
Department of Veterinary and Comparative Anatomy, College of Veterinary Medicine 

Washington State University  

Pullman, WA  99164-6520 USA 

 

 

 

 

Correspondence to  

Stephen M. Siviy  

Department of Psychology 

Gettysburg College 

Gettysburg, PA 17325 

USA 

 

Phone: 717-337-6180 

Fax: 717-337-6172 

e-mail: ssiviy@gettysburg.edu 

 

 

*Manuscript
Click here to view linked References

http://ees.elsevier.com/neubiorev/viewRCResults.aspx?pdf=1&docID=1188&rev=1&fileID=27497&msid={F73B9E01-791C-43C5-BE78-69F8CABBBFD6}
ssiviy
Typewritten Text
appears in: Neuroscience and Biobehavioral Reviews, 2011, vol. 35, pp. 1821-1830.



2 

 

 

Abstract 

Play behavior is a fundamental and intrinsic neurobehavioral process in the mammalian brain.  

Using rough-and-tumble play in the juvenile rat as a model system to study mammalian 

playfulness, some of the relevant neurobiological substrates for this behavior have been 

identified, and in this review this progress.  A primary-process executive circuit for play in the 

rat that includes thalamic intralaminar nuclei, frontal cortex and striatum can be gleaned from 

these data. Other neural areas that may interact with this putative circuit include amygdala, 

ventral hypothalamus, periaqueductal gray (PAG), and deep tectum, as well as ascending 

dopamine systems which participate in all types of seeking urges  At the neurochemical level, 

considerable evidence points to specific cholinergic and dopaminergic controls, but also 

endogenous opioids and cannabinoids as having a positive modulatory influence over 

playfulness, with all neuropeptides known to have aversive effects to reduce play.  Monoamines 

such as norepinephrine and serotonin certainly modulate play, but they influence all 

psychobehavioral systems, suggesting non-specific effects.  We proceed to discuss how 

increased insights into the neurobiological mechanisms of play can inform our understanding of 

normal and abnormal childhood development. 

 

Keywords: play; development; rat; adolescence; review; affect; emotions; rough-and-tumble; 

juvenile 
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1. Introduction 

 Play behavior is such a common occurrence among so many mammals and is so 

prevalent among our own species that it often seems amazing how relatively little research, until 

recently, has been directed towards identifying the brain mechanisms that mediate this social-

emotional process (for a comprehensive recent summary, see Pellis & Pellis, 2009). This was 

especially the case in the late 1970‟s when we turned our investigative and theoretical eye 

towards the play behavior of rats as part of a larger research program aimed at identifying the 

brain mechanisms of primary-process emotions (Panksepp, 1982). No neuroscientists at that time 

were studying concepts as nebulous as social emotions, let alone something seemingly as 

frivolous as play.  Although the number of labs studying play from neurobiological perspectives 

has not exactly mushroomed since then, there is increased interest in the affective lives of 

mammals, and the extent to which playfulness may have an important impact on the overall brain 

development, health and well-being of humans and other animals.  As a result, the amount of 

work on how the brain integrates playfulness has substantially increased.  

 Play not only occurs in most mammals, but has also been reported to occur in many avian 

species and even among some reptiles and invertebrates; indeed Gordon Burghardt (2005) 

devoted a whole chapter to play in reptiles. The widespread prevalence of play among a variety 

of species suggests that play as a behavioral phenotype probably evolved fairly early. Although 

rudiments of play seem to be evident in a wide range of species, social play became a major 

psychobehavioral process in mammals.  There is now good evidence that the play urge is highly 

heritable, as highlighted by robust and consistent differences in play seen among different strains 

of rats (Ferguson & Cada, 2004; Siviy et al., 1997; Siviy et al., 2003) and between rats that have 

been selectively bred on other related components such as affective vocalizations (Brunelli et al., 
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2006; Burgdorf et al., 2005) and susceptibility to amygdala kindling (Reinhart et al., 2006; 

Reinhart et al., 2004).  All of this suggests that play is a fundamental neurobehavioral process in 

mammalian brains, arising from specific neural circuits.  At present, the most efficient and 

thoroughly studied model system for identifying these brain networks lies in studies with 

domestic rats. 

 

2. Play in the rat: Historical antecedents 

 During the waning years of the 19
th

 century, the first major scientific publication on the 

play behaviors of rat appeared.  In 1898, Karl Groos (1898) published a translated version of a 

still-cited book on play in animals, followed shortly by a remarkably prescient paper describing 

the development of the young white rat from birth until 28 days of age (Small, 1899).  Willard 

Small noted that the first hints of play among infant rats began by around 18 days of age, 

increasing gradually and remaining at high levels throughout adolescence.  But not much more 

laboratory work was published about play in rats until the last quarter of the 20
th

 century, 

reflecting a shift from behaviorist learning models to increasing interests in the brain 

mechanisms of spontaneous animal behaviors using ethologial approaches.  Indeed, in mid-

century, Frank Beach (1945) lamented on the relative lack of attention by comparative and 

physiological psychologists towards understanding the play of animals and tried to provide a 

framework for better understanding.  A few years later, Schlosberg (1947) countered with a 

highly critical commentary on Beach‟s paper, suggesting that playful activity as a category “is so 

loose that it is almost useless for modern psychology” (p. 231).  Only a little work continued in 

developmental psychology, focusing on human children, of course.  Also, field workers taking 

ethological approaches also provided descriptions of play in a variety of species (Aldis, 1975; 



5 

 

Fagen, 1981). These efforts kept interest in play alive, but provided no well-controlled paradigms 

that might have encouraged neuroscientists to analyze the underlying brain mechanisms.  

It wasn‟t until the late 1970s that systematic inquiries into the behavior of play in rodents 

were initiated. Neuroscientific work had to wait for the 1980s. In the mid 1970s, a few studies 

describing the play behavior of rats and mice were reported by Poole and Fish (Poole & Fish, 

1975, 1976). Soon thereafter, a series of studies from Jane Stewart‟s lab at Concordia University 

provided detailed behavioral descriptions of play in juvenile rats in the complexities of their 

home environments, using a „focal-observation‟ approach where individual animals were targets 

of observation for set periods (Meaney & Stewart, 1981; Olioff & Stewart, 1978). 

 These early studies provided useful insights into what play in the rat looks like in a semi-

naturalistic setting. However, the experimental approaches being used still had significant 

limitations for neuroscientific inquiries. One potential obstacle at that time was the lack of clear 

and unambiguous indicator variables for playfulness in the rat.  In other words, the study of play 

was not really amenable to what we now call “high-throughput research”.  Rough-and-tumble 

activity in young rats still seemed to be about as haphazard and random as it might be in human 

children wrestling on the floor, when the mood hit them.  Closer observation of the animals, 

however, showed that indicator variables were not hard to identify and the motivation could be 

brought under tight experimental control using play-deprivation procedures, using what came to 

be known as the “paired-encounter” procedure, typically used with pairing of the same animals.  

In other words, there are certain ways in which the animals interact with one another that occur 

with relatively high frequency during bouts of what is aptly called rough-and-tumble play.  Most 

notable was the frequent occurrence of „wrestling‟ with one rat pinning the other for brief 

moments of time, with animals apparently taking turns, very unlike the aggression that was being 
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described in adult rats.  A pin is essentially when one rat is on its back and the other on top in 

what looks like a dominant posture.  Frequency of pinning is sensitive to the amount of isolation 

prior to testing (Panksepp & Beatty, 1980) and such repeated and frequent short pins, with both 

animals „taking turns‟ to describe it mildly, are generally not seen in non-playful social 

encounters, albeit in adult fighting there are sustained, infrequent pins, almost always just by 

dominant animals.  Pins with each animal scored independently are also remarkably easy to 

quantify, yielding clear developmental patterns (Panksepp, 1981a) and have high inter-rater 

reliability (Panksepp et al., 1984). Pins are often preceded by contacts directed to the nape of the 

neck so these contacts can also be used to quantify playful solicitations.  This type of "paired 

encounter" methodology has now become standard in the field.   

 Another obstacle to efficient neuroscience research was how to obtain a reasonable 

sample of play behavior in a short observation period. This problem becomes particularly acute 

when using discrete manipulations such as drug treatments, where one needs stable baselines of 

the behavioral activities being monitored.  But, as it turned out, play behavior is regulated in 

much the same way as other more traditionally studied motivated behaviors such as feeding and 

drinking.  So when young rats are housed individually, thus being prevented from engaging 

freely in play behavior, and then given only limited opportunities to interact, the amount of play 

exhibited during discrete observation periods was systematically related to the amount of prior 

social deprivation (Panksepp & Beatty, 1980). Rats isolated for 4 hours played significantly 

more than rats housed socially and 8 hrs of deprivation was even more effective, and 24 hours 

much more so. So by isolating rats prior to testing one can easily titrate the amount of play that is 

exhibited during short observation periods (e.g., 5 – 15 minutes). With these protocols in hand, 
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investigators were now in a position to begin systematically investigating the unknown brain 

mechanisms that control playfulness in rats.   

In this paper we will focus primarily on what we currently know about the 

neuroanatomical and neurochemical substrates of play in the rat.  We will also discuss how this 

work can perhaps inform us as to the putative function(s) of play.  Although most of the 

discussion will focus on laboratory rats, whose brains are remarkably playful, we will also 

consider other species for which there is some relevant evidence.  

 

3. The motivational and affective side of play 

 As mentioned above, the amount of play that occurs during a short observation period 

can be readily titrated by varying the amount of isolation, indeed specific play-deprivation, prior 

to having that opportunity to play. This suggests that young rats are intrinsically highly 

motivated to play and given how tightly regulated play is in their brains, it is likely that the lack 

of social play in young rats changes the sensitivity of relevant neural substrates such that rats will 

be sensitized to engage playfully when the opportunity presents itself.  As we describe below, 

brain dopamine systems have an important role in regulating play behavior, so changes in the 

sensitivity of dopamine systems probably provides part of the affective motivation and reward 

for play (Burgdorf et al., 2007).  

 In a preliminary experiment to evaluate this, we sought to determine whether 3 days of 

isolation housing could change the responsiveness of rats to novelty and to a moderate dose (1 

mg/kg) of amphetamine, which was one of the first drugs found to dramatically reduce play 

(Beatty et al., 1982).  Juvenile Lewis and Fischer rats were used since these 2 strains differ 

reliably in their overall levels of playfulness (Siviy, et al., 2003) and were tested in a novel open 
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field for 60 minutes, injected with amphetamine (1 mg/kg) and returned to the open field for an 

additional 90 minutes.  Rats were either socially housed or housed individually for 3 days prior 

to testing.  This amount of isolation was chosen as it has been previously shown to be sufficient 

for changing the analgesic response to morphine (Panksepp, 1980).  As can be seen in Figure 1, 

three days of isolation housing was sufficient to increase baseline activity as well as 

amphetamine-induced activity.  Interestingly, the two strains were affected to a comparable 

extent suggesting that the relative lack of play in the Fischer 344 rat is not due to a differential 

sensitivity to isolation in this strain. The response of rats from both of these inbred strains to a 

relatively acute period of isolation is similar to what has been observed in other strains with 

considerably longer periods of isolation-housing (Jones et al., 1992; Jones et al., 1990; Sahakian 

et al., 1975; Weiss et al., 2001) and, while the neurochemical specificity of this effect needs to be 

further explored, it suggests that brain dopamine systems may be sensitized following a period of 

isolation housing and, presumably, play deprivation. 

 In addition to being highly motivated, play is also fun for the participants.  While this 

statement is fairly obvious when discussing the play of human children, more objective empirical 

evidence is needed when trying to reach the same conclusion for play in the rat.  Rats will readily 

traverse a maze when an opportunity to play is the reward (Humphreys & Einon, 1981; 

Normansell & Panksepp, 1990) and will show a clear place preference for a context previously 

associated with play (Calcagnetti & Schechter, 1992; Douglas et al., 2004; Trezza et al., 2009), 

suggesting that playful experiences are indeed enjoyable to rats.  Rats will also emit short (< 0.5 

seconds) bursts of high frequency (~ 50 kHz) vocalizations when playing and when placed in a 

context where they have previously played (Knutson et al., 1998).  Similar ultrasonic 

vocalizations (USVs) have been observed in male rats when anticipating a sexual encounter 
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(McIntosh & Barfield, 1980), in contexts associated with amphetamine or morphine (Knutson et 

al., 1999), when anticipating electrical stimulation of the medial forebrain bundle (Burgdorf et 

al., 2000), and in young rats that are manually “tickled” by an experimenter (Burgdorf et al., 

2008; Burgdorf & Panksepp, 2001).  From this we can see that all of these stimuli can evoke 50 

kHz USVs and are also capable of evoking approach.  Indeed, latency of rats to run towards a 

human hand that provides tickling is inversely related to the amount of 50 kHz USVs emitted 

while being tickled (Panksepp & Burgdorf, 2000).  In other words, those rats emitting the most 

vocalizations while being tickled are also those that run fastest to the hand that tickles them.  

 In a recent preliminary study, we sought to look more closely at the acquisition of USVs 

when rats are anticipating a play bout.  In our first experiment, rats were placed individually in a 

testing chamber and 50 kHz USVs were manually counted for 2 minutes in one group before a 5 

minute opportunity to play in the same chamber (play group) and in another group that was 

returned to their home cage and did not have an opportunity to play in the test chamber (control 

group).  As can be seen in Figure 2A, USVs gradually increased over the course of 8 testing days 

in those rats that were about to play.  In a subsequent experiment, rats were either allowed to 

play with the same partner every day (as in the preceding experiment) or with a different partner 

every day.  These results are shown in Figure 2B and indicate that social familiarity had a subtle 

effect on acquisition of USVs.  In particular, those rats playing with a familiar partner every day 

were vocalizing more by the end of the 7 days of testing than those playing with a novel partner 

every day.  It is also noteworthy that psychostimulants can sensitize the underlying anticipatory 

50 kHz USV substrates of play (Panksepp et al., 2002). 

 These two experiments show that there is a steady increase in USVs as the predictive 

ability of the chamber that has been associated with play presumably increases. The results of the 
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second experiment further suggest that rats may be quicker to make that connection when their 

play partner remains the same every day. Differences in playfulness have also been reported for 

rats when playing with either familiar or unfamiliar partners, although the direction of these 

differences is dependent on both the measure of play used and the gender of the rats (Cirulli et 

al., 1996).  Duration of overall rough-and-tumble activity is higher in both males and females 

when playing with an unfamiliar partner.  However, males solicit more play when paired with a 

familiar partner while females solicit more play when paired with an unfamiliar partner. These 

data highlight not only the need for considering social familiarity when studying play but also 

the need for monitoring USVs during these playful encounters. 

 

3. Neuroanatomical substrates of play 

 One approach towards framing the neuroanatomy of play has been to use Paul 

MacLean‟s heuristic of the “triune brain” (MacLean, 1985, 1990) and this was very influential in 

guiding some of the early lesion work designed to identify relevant neural structures.  According 

to this conceptualization the most relevant neural circuitry for guiding mammalian play would 

most likely be found among older limbic structures.  The neocortex, on the other hand, should 

have minimal influence on playfulness.  In an initial paper testing this hypothesis (Murphy et al., 

1981) it was reported that complete removal of the neocortex in hamsters did not have a major 

impact on the prevalence of play exhibited as juveniles.  If the damage extended to limbic 

structures, however, play tended to decline.  With some caveats, this initial finding by 

MacLean‟s group has been confirmed in rats (Panksepp et al., 1994; Pellis et al., 1992).  For 

example, we (Panksepp, et al., 1994) found that decorticates pinned each other less than controls 

when allowed to play with other neo-decorticates, but overall rough-and-tumble play facilitated 
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overall motor activity (as monitored by stabilimeter platforms) was not reduced, since the 

animals still exhibited comparable play solicitations, as monitored with dorsal contacts 

(Normansell & Panksepp, 1984).  Likewise, play dominance of decorticates did not differ from 

controls when paired with controls.  Similarly, Pellis and colleagues (1992) reported that 

decorticates did not differ from control rats in terms of the frequency of playful nape contacts nor 

in the overall likelihood of responding to these contacts.  However, partial decortication, as with 

selective lesions of the somatosensory cortex did reduce play (Panksepp, et al., 1994) while 

selective frontal lesions increased play markedly, even if done unilaterally (Panksepp et al., 

2003). 

 Overall though, rats without a neocortex exhibit all of the elements of play behavior, 

although subtle differences among decorticate rats suggests that some type of modulation of play 

occurs at the level of the cortex.  These differences can become particularly salient when more 

detailed observations of play are made and when these observations are followed into early 

adulthood.  For example, Pellis and his colleagues have compared the play of juveniles to that of 

young adults and have characterized age-related shifts in how intact rats respond to playful 

solicitations as they mature (Pellis & Pellis, 1990; Pellis et al., 1993).  As juveniles, intact male 

rats are most likely to respond to playful solicitations by rotating completely onto their back (i.e., 

a pin) but as these rats mature, they are less likely to be pinned  since they tend to only rotate 

partially, often with their hind paws still firmly planted on the ground.  As adults, intact rats also 

modulate how they respond to playful solicitations depending upon the status of the rat that they 

happen to be playing with. When playing with a dominant male, subordinate males continue 

responding to playful contacts by allowing themselves to be pinned.  But when paired with 

another subordinate, these rats respond mostly with partial rotations.  
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 In their initial paper on play of decorticated rats, Pellis and colleagues (1992) noted that 

decorticate rats were more likely to respond to nape contacts with partial rotations both before 

and after puberty suggesting that decorticate play more closely resembled adult play in rats. 

These rats also did not modulate their responses based on the status of the partner. Subsequent 

studies from Pellis‟ group found that different areas of the cortex appear to be modulating these 

different aspects of play.  For example, rats with lesions to the motor cortex do not show age-

related changes in play tactics in that males continue to respond predominantly with complete 

rotations after puberty (Kamitakahara et al., 2007). On the other hand, rats with damage to the 

orbitofrontal cortex fail to modulate their play based on the status of the partner (Pellis et al., 

2006), while rats with damage to the medial prefrontal cortex simply use less complex play 

tactics (e.g., they are more likely to run away) when solicited (Bell et al., 2009).  While these 

studies indicate that play is modulated in fairly subtle ways by cortical processes, it is still likely 

that subcortical systems are the targets of such modulation, and the cortical regulation may 

largely be learned (an important issue to be resolved empirically).   

 A number of subcortical structures have been suggested to be particularly relevant for 

play to occur, yet no clear “play circuit” has emerged.  A role for the mesolimbic dopamine 

system in motivation and reward is well established (Alcaro et al., 2007; Berridge, 2007; 

Ikemoto & Panksepp, 1999; Robinson & Berridge, 1993) so it is likely to have a pivotal role in 

play as well. Although the definitive experiments have yet to be done, there is ample indirect 

evidence to make a case for mesolimbic involvement in at least the appetitive and/or affective 

response to play.  As mentioned earlier, rats will readily emit ultrasonic vocalizations (USVs) in 

the 50-55 kHz range both during play and when they are anticipating play (Burgdorf, et al., 
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2008; Knutson, et al., 1998) and the mesolimbic dopamine system strongly controls the 

production of 50 kHz USVs (Burgdorf, et al., 2007). 

 Given the importance of somatosensory processing during this kind of chasing and 

„wrestling‟ play (Siviy & Panksepp, 1987b) it was perhaps not surprising to find that discrete 

damage limited to subcortical areas known to process somatosensory input, such as the 

parafascicular area of the thalamus (PFA), results in a robust, long-lasting, and selective 

impairment of play (Siviy & Panksepp, 1985, 1987a), without compromising complex sensory-

motor processes such as foraging for food. The PFA, perhaps along with other components of the 

intralaminar thalamic nuclei, may then be a critical hub in an executive circuit for mammalian 

playfulness; receiving direct somatosensory input from the spinal cord and sending excitatory 

projections to areas such as the frontal cortex and striatum (Cesaro et al., 1985; Nakamura et al., 

2006; Voorn et al.,  2004).  As mentioned above, there is evidence for some modulation of play 

by the prefrontal cortex (Bell, et al., 2009; Kamitakahara, et al., 2007; Pellis, et al., 2006) and the 

striatum is likely to be important for playful behaviors as well (Gordon et al., 2002; Graham, 

2011; Pellis et al., 1993) so these areas may help transduce playful somatosensory input into the 

fluid motor sequences seen during play. Recent evidence suggesting that PFA input to the dorsal 

striatum facilitates behavioral flexibility (Brown et al., 2010) may be particularly salient in this 

regard. 

 Within the limbic system there is some evidence for amygdala involvement in play, but 

the functions remain unclear.  When social play frequency and size of amygdala were compared 

in a variety of non-human primates, it was found that the size of the amygdala predicted amounts 

of social play (Lewis & Barton, 2006) suggesting the abundance of social play is associated with 

a larger amygdala at least within a sub-set of non-human primates. A similar relationship has 
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been reported between striatum and social play (Graham, 2011).  In rats, relatively large ibotenic 

acid lesions to the amygdala on postnatal day 21 have been shown to reduce play when tested 

one week later while open field activity in these animals and other social behaviors unrelated to 

play were largely unaffected by the lesions (Daenen et al., 2002; Wolterink et al., 2001).  While 

this suggests a selective effect of these lesions on play behavior, the interpretation of these data 

remains debatable.  For instance, we have also found that large electrolytic lesions of the 

amygdala reduce play, although these animals also show deficits when required to forage for 

food (Panksepp, et al., 1984).   

Use of metabolic mapping techniques have also produced mixed results with relatively 

little overall change in c-fos mRNA activity seen as a result of play in higher brain region in rats 

except for parietal somatosensory regions, while many subcortical areas exhibited substantial 

activation--including dorsal PAG and other adjacent deep tectal areas, the inferior colliculus as 

well as both the dorsal and ventral striatum (Gordon, et al., 2002).  Increases in c-fos protein 

have also been reported for the medial amygdala of hamsters after play (Cheng et al., 2008).  

While an executive function for the amygdala in play remains unlikely, the amygdala may still 

be a recipient of information about playful activities along with reciprocal modulation of play 

expressions, perhaps via affective rewarding properties. Overall, the above data strongly support 

a subcortical locus of control for play, and affirm that the mesolimbic SEEKING system may be 

especially influential for promoting play (Burgdorf, et al., 2007).  We also note that play has 

been shown to increase the transcription of brain derived neurotrophic factor (BDNF) in the 

amygdala, as well as in the dorsolateral frontal cortex (Gordon et al., 2003), and more recently a 

host of other changes in cortical gene expressions, especially insulin-like growth factor 1 

(Burgdorf et al., 2010). 
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 Since the behavioral patterns observed with play tend to co-opt those utilized in other 

situations (e.g., reproductive behavior, defensive behavior, aggression) circuits involved in the 

execution of these behavior patterns may also be recruited and modulated by executive circuitry 

for play.  For example, the dorsal PAG is activated by play behavior in both rats and hamsters 

(Cheng, et al., 2008; Gordon, et al., 2002). The PAG has been suggested to be critical for 

switching between different behavior patterns (Sukikara et al., 2006), which is another defining 

characteristic of rough-and-tumble play and the PAG is a major recipient of activity arising from 

the medial hypothalamic defensive-fear circuit (Canteras, 2002).  

 Because of its sensory and motor complexity, identifying specific neuroanatomical 

substrates for mammalian play remains a challenge, although continued use of traditional brain 

lesion methods in tandem with careful behavioral observations that rule out general behavioral 

deficits, increased use of established metabolic mapping techniques (Cheng, et al., 2008; 

Gordon, et al., 2002) and novel molecular tools (Burgdorf et al., 2010) are likely to add to our 

understanding of how play maps onto neural networks in mammalian brain. 

   

4. Neurochemical substrates of play 

 Given the robust nature of rough-and-tumble play, disentangling the relevant 

neurochemical systems involved in modulating the behavior has also been a challenge. 

Nevertheless, several neurotransmitters have emerged as strong candidates for modulating play.  

Building off of the theoretical framework that endogenous opioids are critical for positive social 

affect (Panksepp, 1981b, 1982; Panksepp et al., 1980) it seemed logical that opioids would also 

be important for play.  Indeed, endogenous opioids are released in many brain areas during play 

(Panksepp & Bishop, 1981; Vanderschuren et al., 1995) and a number of studies have shown that 
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low doses of opioid agonists, such as morphine (i.e., 1 mg/kg and less), can reliably increase play 

in juvenile rats while opioid antagonists decrease play (Niesink & Van Ree, 1989; Panksepp et 

al., 1985; Trezza & Vanderschuren, 2008b; Vanderschuren et al., 1995a, 1995b, 1996).  

Morphine does not appear to enhance any particular component of play nor does it increase non-

playful social behaviors, which are in fact often reduced (Panksepp et al., 1979).Thus, modest 

facilitation of brain opioid activity seems to specifically promote active engagement in playful 

behaviors (Vanderschuren et al., 1995b; Vanderschuren, et al., 1996), perhaps increasing play by 

sustaining positive affective play motivation of the rat (Normansell & Panksepp, 1990; 

Panksepp, et al., 1985). These data suggest that endogenous opioids have an overall modulatory 

influence on play in juvenile rats, with mild increases in opioid activity resulting in an affective 

state that is especially compatible with playfulness, and perhaps high levels of endogenous 

opioids, just like higher doses of morphine, reducing play with a sense of satisfaction that 

enough play has been had.  

 More recent work has shown that enhancing activity in endogenous cannabinoid systems 

can also make rats more playful (Trezza & Vanderschuren, 2008a, 2008b, 2009).  In this same 

vein, administration of compounds that prolong the action of endogenous cannabinoids in active 

synapses increase play while direct cannabinoid agonists consistently decrease play.  Since 

endocannabinoids are only manufactured and released on demand (Piomelli, 2003), this suggests 

that a sub-set of synapses with CB1 receptors are activated during play and it is at these synapses 

where enhanced cannabinoid activity makes rats more playful. There also appears to be 

considerable overlap between opioid and cannabinoid involvement in play as increases with 

morphine can be blocked by both opioid and cannabinoid CB1 antagonists while increases in 

play following enhanced endocannabinoid signaling can be blocked by opioid and cannabinoid 
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CB1 antagonists.  While these data suggest that opioids and cannabinoids act on similar 

substrates to modulate play, effects associated with each can still be dissociated.  For example, 

dopamine antagonists can block increases in play due to indirect cannabinoid agonists while 

being ineffective when combined with opioid agonists (Trezza & Vanderschuren, 2008a).  In 

either case, the evidence to date points strongly towards both endogenous opioids and 

cannabinoids having a specific role in modulating play.  

 One of the earliest pharmacological studies with play behavior showed that psychomotor 

stimulants such as amphetamine and methylphenidate (Ritalin
®
) were extremely potent in 

reducing play (Beatty et al., 1984; Beatty, et al., 1982; Panksepp, 1979) suggesting that 

monoamines may be important for modulating levels of playfulness (Normansell & Panksepp, 

1985a, 1985b). More recent work has shown that the methylphenidate-induced reduction in play 

is due to enhanced release of norepinephrine (Vanderschuren et al., 2008).  In particular, these 

investigators reported that reductions in play following methyphenidate were blocked by the α2 

noradrenergic antagonist RX821002 but not by α1 or β noradrenergic antagonists nor by a 

dopamine antagonist.  The effect of methyphenidate could also be mimicked by the selective 

noradrenergic reuptake inhibitor atomoxetine but not by the dopamine reuptake inhibitor GBR-

12909. These data suggest that increased noradrenergic activity at post-synaptic α2 receptors is 

incompatible with play.  This might also suggest that the play enhancing effect of α2 

noradrenergic antagonists (Siviy et al., 1990; Siviy & Baliko, 2000) is due to blockade of this 

same population of post-synaptic receptors and that dampening noradrenergic activity is 

compatible with playfulness. It is then noteworthy that some of the more recent pharmaceuticals 

being used in the treatment of ADHD, such as atomoxetine (Straterra
®

) or the selective alpha-2 

agonist guanfacine (Intuniv
®
) act selectively on noradrenergic systems, perhaps by stimulating 
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alpha-2 receptors in the prefrontal cortex (Arnsten et al., 1996; Robbins & Arnsten, 2009). This 

also leads us to wonder whether the symptomatic benefits of these drugs in treating ADHD is, at 

least in part, due to reduction of play urges in young children. 

 Both noradrenergic and serotonergic systems have fairly extensive and diffuse 

projections throughout the forebrain and are both likely to have some modulatory involvement in 

play.  As described above, the evidence suggests that enhanced noradrenergic tone would be 

incompatible with play. Serotonin is thought to have considerable impact on a wide range of 

neurobehavioral processes including affective regulation (Dayan & Huys, 2009; Hariri & 

Holmes, 2006), establishing and maintaining dominance (Huber et al., 2001; Raleigh et al., 

1991), and defensive behavior (Blanchard et al., 1998; Graeff, 2002), to name just a few, so it is 

very likely that serotonin may also be involved in at least some aspect of play, as it is in 

practically all  behavioral processes (Panksepp, 1998a). Manipulations that can enhance 

serotonin functioning such as fluoxetine or MDMA (“Ecstasy”) reduce play when both rats are 

treated similarly (Homberg et al., 2007; Knutson et al., 1996).  Homberg and colleagues (2007) 

also reported less play among serotonin transporter knockout rats as well. Although this would 

suggest that enhanced serotonergic functioning is incompatible with play, a more complex 

pattern emerges when only one rat of a pair is treated and attention is paid to the reciprocal 

interactions between the two rats of the testing pair.  When rats were allowed to establish a 

dominance relationship such that one rat accounted for more pinning than the other (this being 

the dominant rat) the effects of either fluoxetine or serotonin depletion depended on the status of 

the rat.  Augmenting serotonin levels through fluoxetine reduced the pinning asymmetry when 

the dominant rat was treated (Knutson, et al., 1996) while depleting serotonin enhanced the 

pinning asymmetry (Knutson & Panksepp, 1997).  Treating the subordinate rat had no effect on 
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the pinning asymmetry.  Furthermore, playful solicitations were not affected in this set of 

experiments. These data suggest a more subtle role for serotonin in modulating play behavior 

that may be more sensitive to interactive cues between the play partners.  

 We have spent many years looking at the effects of the selective 5HT1A agonist 8-OH-

DPAT on play starting with a relatively simple working hypothesis that dampening serotonergic 

activity would tend to increase play.  We had then predicted that low auto-receptor selective 

doses of 8-OH-DPAT would tend to increase play.  While small increases have been observed 

from time to time, these have not been very robust nor have they been easily replicable (some of 

this work is described in Siviy, 1998).  In light of the results described above with fluoxetine and 

serotonin depletion we recently began a series of studies to assess the effects of 8-OH-DPAT 

when administered to only one rat of the testing pair.  Rather than allowing rats to establish a 

dominance/subordinate relationship, rats in this experiment played with a new partner on each 

test day. One rat of the pair was tested with each of 4 doses of (±)-8-OH-DPAT plus a vehicle 

and the untreated partner was chronically isolated while the treated rat was isolated for only 4 

hours prior to testing.  As can be seen in Figure 2 this created a natural asymmetry in dorsal 

contacts between the untreated and treated rat after vehicle presumably due to the higher 

motivation to play in the untreated, and chronically isolated, partner.  This asymmetry in dorsal 

contacts collapsed at the two lower doses of 8-OH-DPAT and returned after the higher two 

doses, presumably due to non-specific effects with these higher doses. The likelihood of a dorsal 

contact resulting in a pin was not affected by 8-OH-DPAT.   

 These data are consistent with the possibility that fluctuations in serotonergic functioning 

change the dynamics of a playful interaction between two rats when there is some baseline 

asymmetry in that interaction.  Given that the doses that produced the effects should have been 
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affecting autoreceptors this would suggest that an acute decrease in serotonergic tone through 

stimulation of autoreceptors may be accounting for these behavioral effects.  However, caution 

should be used when interpreting results from adolescent rats when using drugs that affect both 

pre-synaptic and post-synaptic receptors.  For example, we had assumed that the enhanced play 

seen with low doses of α2 antagonists was due to blocking pre-synaptic autoreceptors (Siviy, et 

al., 1990; Siviy & Baliko, 2000) whereas it is more likely to be due to blockade of post-synaptic 

receptors (Vanderschuren, et al., 2008).  Given that the relative sensitivity of autoreceptors and 

post-synaptic heteroreceptors may fluctuate over the peri-adolescent period (Spear, 2000), any 

interpretations associated with 8-OH-DPAT must remain highly tentative at present.  Definitive 

resolution of this issue would probably require the evaluation of pharmacological effects in 

animals where pre-synaptic serotonin neurons are destroyed with serotonin specific neurotoxins 

(Olivier et al., 1991).    

 Given the exuberant nature of play and the amount of positive affect associated with play 

(Burgdorf, et al., 2008; Calcagnetti & Schechter, 1992; Humphreys & Einon, 1981; Normansell 

& Panksepp, 1990) there are many a priori reasons to suppose that brain dopamine systems may 

have a role in playful behaviors.  Indeed, dopamine utilization increases during play bouts 

(Panksepp, 1993), dopamine antagonists uniformly reduce play (Beatty et al., 1984; Niesink & 

Van Ree, 1989; Siviy et al., 1996), and neonatal 6-OHDA lesions impair the sequencing of 

behavioral elements during play bouts (Pellis et al., 1993). While it has been difficult to obtain 

consistent increases in play with dopamine agonists (Beatty et al., 1984; Field & Pellis, 1994; 

Siviy et al., 1996) increases in play following alcohol, nicotine, and indirect cannabinoid 

agonists can all be blocked by silent doses of dopamine antagonists (Trezza et al., 2009; Trezza 

& Vanderschuren, 2008a). Taken together, these data suggest that play is associated with 
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increased release of dopamine (Robinson et al., 2011), and it has been suggested that an optimal 

level of dopamine functioning is necessary for play to occur (Trezza et al., 2010). 

 Dopamine may also have a preparatory, or appetitive, function in much the same way as 

it does for other motivated behaviors (Berridge, 2007; Berridge & Robinson, 1998; Ikemoto & 

Panksepp, 1996, 1999; Pfaus & Phillips, 1991).  Play can be readily dissociated between 

appetitive and consummatory components; rats will display an anticipatory increase in activity 

when placed in an environment previously associated with play and this can be attenuated with 

the dopamine antagonist haloperidol (Siviy, 1998).  As mentioned earlier, rats will also emit 

ultrasonic vocalizations in the 50-55 kHz range when placed in an environment previously 

associated with play (Burgdorf et al., 2008; Knutson et al., 1998), and it seems clear that these 

kinds of vocalizations are dopamine-mediated (Burgdorf et al., 2007).  

 Central cholinergic systems may also have a modulatory influence on play. In some of 

our earlier work we found that nicotine reduced play while blocking cholinergic receptors with 

the nicotinic antagonist mecamylamine modestly increased play (Panksepp et al., 1984). 

However, a more recent study has shown that nicotine increases play (Trezza et al., 2009) and 

that this increase was blocked by a dose of mecamylamine that had no effect in and of itself. 

While obtaining opposite results with nicotine in these two studies seems initially problematic, 

several methodological differences could readily account for these differences.  For example, the 

dose used by Trezza and colleagues (0.1 mg/kg) was lower than the lowest dose used in our work 

(0.125 mg/kg), which had a minimal effect on play. A more robust reduction in pinning only 

became apparent in our hands at higher doses that may have resulted in a non-specific 

impairment.  Another potentially important methodological difference between these two studies 

is the extent to which the rats were familiar with each other prior to testing. In almost all of our 
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pharmacological work rats have been paired with either cage-mates or with the same rat every 

day over the course of an experiment.  On the other hand, the Trezza et al. (2009) study, along 

with most other recent studies from Vanderschuren‟s group, tests rats that are unfamiliar with 

each other.  It is possible that social familiarity may be a factor in determining the nature of some 

of these pharmacological effects and is probably a variable that should be examined in more 

detail. We‟ve already seen earlier that the 50 kHz USVs emitted in anticipation of play may be 

sensitive to the familiarity of the partner and others have shown that levels of play are sensitive 

to familiarity of the play partner (Cirulli et al., 1996). 

Since both muscarinic agonists and antagonists reduce play (Wilson et al., 1986) any 

cholinergic involvement is more than likely limited to nicotinic receptors.  However, increases in 

play with nicotine are blocked by not only the nicotinic antagonist mecamylamine but also by 

opioid, cannabinoid, and dopamine antagonists (Trezza et al., 2009). Emerging from these data is 

a complex neurochemical picture that involves interactions between opioid, cannabinoid, 

dopaminergic, and cholinergic systems in the regulation of play.  Positive affect associated with 

play may be a common thread by which all of these systems modulate playfulness. As described 

earlier, play can be used as an unconditioned stimulus in a conditioned place preference (CPP) 

paradigm such that rats will spend more time in an environment that has previously been 

associated with play (Calcagnetti & Schechter, 1992).  When doses of nicotine or cocaine that 

are insufficient to yield a CPP by themselves are combined with moderate levels of play that are 

also insufficient for inducing a CPP, a robust place preference is obtained (Thiel et al., 2008, 

2009).  Drugs which act on these systems and which tend to increase play may be doing so by 

enhancing the positive affect associated with playful social interactions.  
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5. Clinical and Developmental Implications of Play Research 

 Briefly, let us consider the functions of play in brain, mind and behavioral development, 

which are bound to be many (Spinka et al., 2001). First, we should be confident that play is an 

intrinsic function of the brain, since it emerges promptly in rats in mid-adolescence even if they 

have had no previous opportunity to play (Ikemoto and Panksepp, 1992).  Hence, just like all the 

basic emotions of the brain, it is an experience expectant process that allows animals to adjust 

their behavior to facilitate survival.  It is highly likely that this anticipatory effect relates mostly 

to the emergence of social competence, a likelihood that currently has little good data at the 

animal behavioral levels (but see Van den Berg et al., 1999).  However, various human studies 

suggest such functions (Brown, 2010; Grossman, et al., 2002). These are very sensible 

approaches to this scientifically unsolved problem, but here we would briefly discuss how 

playfulness may relate to psychiatric/clinical issues.  It may have special implications for treating 

childhood disorders such as Attention Deficit Hyperactivity Disorders (ADHD) and depression 

at all ages. 

 A case has been made for the possibility that our current epidemic of childhood ADHD 

may reflect our increasing family and societal regimentation of early childhood activities, where 

free rough-and-tumble play that children themselves initiate, is often frowned on. However, in 

addition to the fact that play promotes various growth factors in the brain (Burgdorf, et al., 2010; 

Gordon, et al., 2002), it is clear that play is regulated both in terms of daily activities (Panksepp 

and Beatty, 1980) as well as the whole adolescent period of development (Panksepp, 1981a). If a 

young rat has not had play for a while during a day, or during early phases of development, it 

will exhibit an elevated desire for play later on (Ikemoto & Panksepp, 1992; Panksepp et al., 

1984).  In a well-regulated society, such urges may be deemed to be impulse-control disorders by 
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adults (Panksepp, 2007a).  Might play-starved children be more liable to be diagnosed with 

ADHD, and given psychostimulants which, as we have already seen, are very effective in 

reducing play in rats?  Since play does activate brain growth factors in frontal regions of the 

brain (Gordon et al., 2003), might play deprivation reduce the maturation of frontal executive 

areas of the brain (Panksepp, 2001)? 

 We evaluated this possibility quite simply--by preparing animals with frontal lobe 

damage that markedly increased motor activity and also playfulness (Panksepp et al., 2003). We 

then provided half of the ADHD type rats and half of the controls either very little play during 

development, or a well-controlled hour of play each day, in two 30 minute play periods, morning 

and evening, following the natural diurnal pattern of play in most mammalian youngsters. When 

given an opportunity for “play therapy”, levels of activity and playfulness in lesioned animals 

returned to control levels. These results indicated that brain damaged ADHD-type rats that had 

abundant play were better regulated than littermates who had had no play.  This, taken in 

combination with the profound ability of ADHD medications like Ritalin to reduce playfulness 

(Beatty et al., 1982; Panksepp, 1998b; Vanderschuren et al., 2008), should at least alert us to the 

fact that ADHD in our society may be as much of a social-developmental disorder as something 

that is intrinsically wrong in children's brains.  If so, it would be wise for us to establish social 

policies, perhaps "play sanctuaries” that promote childhood play (Panksepp, 2007a). 

 The other psychiatric issue where a fuller consideration of the benefits of playfulness 

needs to be considered is depression, a sustained form of psychological pain and emptiness, that 

is widely considered to arise largely from sustained life stressors, especially those arising from 

social loss (for full review, see Watt and Panksepp, 2009).  Since playfulness promotes social 

bonding, happiness and laughter (Panksepp, 2007b; Scott & Panksepp, 2003), would it be too 
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far-fetched to suggest that facilitation of playfulness might reduce depression, even in the context 

of psychotherapeutic interactions?  We think that is a reasonable possibility, and we already have 

some pre-clinical pilot data suggesting such benefits in the animal models of depression we have 

been studying (for a summary see Burgdorf et al., this issue). 

 When we consider these momentous issues for the kind of social structures we need to 

promote, we wonder why there is so little research in the developmental literature on physical- 

social playfulness in human children, without toys.  When we had already conducted over three 

decades of systematic research on the playfulness of rats, with no such work ever having been 

published for our own species, we decided to conduct the study ourselves (Scott and Panksepp, 

2003).  Boys and girls having a mean age of about 5 years old were tested for 30 minutes in 

same-gender pairings in a room with a cushioned floor but without any toys.  The children were 

shown a brief video clip of children engaged in rough-and-tumble play and simply told to enjoy 

themselves. As expected, pre-school children readily engaged in physical rough-and-tumble 

activity that was accompanied by laughter. Much like our work with rats, these children showed 

a steady decline in play and laughter over the course of the 30 minute observation period, 

perhaps reflecting satiety.  This study demonstrates that rough-and-tumble play is as easily 

quantifiable in human children as it is in the rat and will hopefully serve as a model for future 

studies as we continue to draw parallels between the rough-and-tumble worlds of the young rat 

and the human child.  

 In sum, mammalian play urges, clearly built into the nervous systems, are likely to be 

social experience-expectant processes that allow the young to learn the specific social nuances of 

their species.  Play not only helps the young to acquire and refine social skills, depending on 

ecological demands which were not built into their nervous systems by evolution, but it does so 
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in the safety of supportive adult social groups that can provide feedback on their behaviors.  The 

mock battles surely also prime their skills for social competition, and in stable social societies, 

probably allow animals to be integrated into their social structures, whether as dominant or 

submissive members, without the serious conflicts that sometime characterize social interactions 

among strange adults.  The fact that systematic play research had a slow start in behavioral 

neuroscience reflects the need for complementary perspectives that take affective processes 

seriously, as reflections of primal emotional mechanisms that facilitate survival (Panksepp, 

1998a; 1998c; Siviy, 1998).   

  



27 

 

References 

Aldis, O. (1975). Playfighting. New York, Academic Press. 

Alcaro, A., Huber, R., & Panksepp, J. (2007). Behavioral functions of the mesolimbic 

dopaminergic system: An affective neuroethological perspective. Brain Research 

Reviews, 56, 283-321. 

Aldis, O. (1975). Playfighting. New York: Academic Press. 

Arnsten, A. F. T., Steere, J. C., & Hunt, R. D. (1996). The contribution of 2-noradrenergic 

mechanisms to prefrontal cortical cognitive function: Potential significance for attention-

deficit hyperactivity disorder. Archives of General Psychiatry, 53, 448-455. 

Beach, F. A. (1945). Current concepts of play in animals. American Naturalist, 79, 523-541. 

Beatty, W. W., Costello, K. B., & Berry, S. L. (1984). Suppression of play fighting by 

amphetamine: Effects of catecholamine antagonists, agonists and synthesis inhibitors. 

Pharmacology Biochemistry and Behavior, 20, 747-755. 

Beatty, W. W., Dodge, A. M., Dodge, L. J., White, K., & Panksepp, J. (1982). Psychomotor 

stimulants, social deprivation and play in juvenile rats. Pharmacology Biochemistry and 

Behavior, 16, 417-422. 

Bell, H. C., McCaffrey, D. R., Forgie, M. L., Kolb, B., & Pellis, S. M. (2009). The role of the 

medial prefrontal cortex in the play fighting of rats. Behavioral Neuroscience, 123, 1158-

1168. 

Berridge, K. C. (2007). The debate over dopamine's role in reward: the case for incentive 

salience. Psychopharmacology, 191(3), 391-431. 

Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic 

impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309-369. 



28 

 

Blanchard, D. C., Griebel, G., Rodgers, R. J., & Blanchard, R. J. (1998). Benzodiazepine and 

serotonergic modulation of antipredator and conspecific defense. Neuroscience and 

Biobehavioral Reviews, 22(5), 597-612. 

Brown, H. D., Baker, P. M., & Ragozzino, M. E. (2010). The parafascicular thalamic nucleus 

concomitantly influences behavioral flexibility and dorsomedial striatal acetylcholine 

output in rats. Journal of Neuroscience, 30(43), 14390-14398. 

Brown, S. (2010).  Play: How it Shapes the Brain, Opens the Imagination, and Invigorates the 

Soul. New York: Avery. 

Brunelli, S. A., Nie, R., Whipple, C., Winiger, V., Hofer, M. A., & Zimmerberg, B. (2006). The 

effects of selective breeding for infant ultrasonic vocalizations on play behavior in 

juvenile rats. Physiology and Behavior, 87, 527-536. 

Burgdorf, J., Knutson, B., & Panksepp, J. (2000). Anticipation of rewarding electrical brain 

stimulation evokes ultrasonic vocalization in rats. Behavioral Neuroscience, 114, 320-

327. 

Burgdorf, J., Kroes, R. A., Beinfeld, M. C., Panksepp, J., & Moskal, J. R. (2010b). Uncovering 

the molecular basis of positive affect using rough-and-tumble play in rats: A role for 

insuslin-like growth factor I. Neuroscience, 168, 769-777. 

Burgdorf, J., Kroes, R. A., Moskal, J. R., Pfaus, J. G., Brudzynski, S. M., & Panksepp, J. (2008). 

Ultrasonic vocalizations of rats (Rattus norvegicus) during mating, play, and aggression: 

Behavioral concomitants, relationship to reward, and self-administration of playback. 

Journal of Comparative Psychology, 122(4), 357-367. 

Burgdorf, J., & Panksepp, J. (2001). Tickling induces reward in adolescent rats. Physiology and 

Behavior, 72, 167-173. 



29 

 

Burgdorf, J., Panksepp, J., Brudzynski, S. M., Kroes, R., & Moskal, J. R. (2005). Breeding for 

50-kHz positive affective vocalization in rats. Behavior Genetics, 35(1), 67-72. 

Burgdorf, J., Wood, P. L., Kroes, R. A., Moskal, J. R., & Panksepp, J. (2007). Neurobiology of 

50-kHz ultrasonic vocalizations in rats: Electrode mapping, lesion, and pharmacology 

studies. Behavioural Brain Research, 182(2), 274-283. 

Burghardt, G. M. (2005). The Genesis of Animal Play: Testing the Limits. Cambridge, MA: MIT 

Press. 

Calcagnetti, D. J., & Schechter, M. D. (1992). Place conditioning reveals the rewarding aspect of 

social interaction in juvenile rats. Physiology and Behavior, 51, 667-672. 

Canteras, N. S. (2002). The medial hypothalamic defensive system: Hodological organization 

and functional implications. Pharmacology, Biochemistry and Behavior, 71, 481-491. 

Cesaro, P., Nguyen-Legros, J., Pollin, B., & Laplante, S. (1985). Single intralaminar thalamic 

neurons project to cerebral cortex, striatum and nucleus reticularis thalami. A retrograde 

anatomical tracing study in the rat. Brain Research, 325(1-2), 29-37. 

Cheng, S. Y., Taravosh-Lahn, K., & Delville, Y. (2008). Neural circuitry of play fighting in 

golden hamsters. Neuroscience, 156(2), 247-256. 

Cirulli, F., Terranova, M. L., & Laviola, G. (1996). Affiliation in periadolescent rats: Behavioral 

and corticosterone response to social reunion with familiar or unfamiliar partners. 

Pharmacology Biochemistry and Behavior, 54, 99-105. 

Daenen, E. W. P. M., Wolterink, G., Gerrits, M. A. F. M., & Van Ree, J. M. (2002). The effects 

of neonatal lesions in the amygdala or ventral hippocampus on social behaviour later in 

life. Behavioural Brain Research, 136, 571-582. 



30 

 

Dayan, P., & Huys, Q. J. M. (2009). Serotonin in Affective Control. Annual Review of 

Neuroscience, 32(1), 95-126. 

Douglas, L.A., Varlinskaya, E.I., & Spear, L.P. (2004). Rewarding properties of social 

interactions in adolescent and adult male and female rats: Impact of social versus isolate 

housing of subjects and partners. Developmental Psychobiology, 45, 153-162. 

Fagen, R. (1981). Animal Play Behavior. New York: Oxford University Press. 

Ferguson, S. A., & Cada, A. M. (2004). Spatial learning/memory and social and nonsocial 

behaviors in the Spontaneously Hypertensive, Wistar-Kyoto and Sprague-Dawley rat 

strains. Pharmacology Biochemistry and Behavior, 77(3), 583-594. 

Field, E. F., & Pellis, S. M. (1994). Differential effects of amphetamine on the attack and defense 

components of play fighting in rats. Physiology and Behavior, 56, 325-330. 

Gordon, N. S., Burke, S., Akil, H., Watson, S. J., & Panksepp, J. (2003). Socially-induced brain 

'fertilization': play promotes brain derived neurotrophic factor transcription in the 

amygdala and dorsolateral frontal cortex in juvenile rats. Neuroscience Letters, 341, 17-

20. 

Gordon, N. S., Kollack-Walker, S., Akil, H., & Panksepp, J. (2002). Expression of c-fos gene 

activation during rough and tumble play in juvenile rats. Brain Research Bulletin, 57, 

651-659. 

Graeff, F. G. (2002). On serotonin and experimental anxiety. Psychopharmacology, 163(3-4), 

467-476. 

Graham, K. L. (2011). Coevolutionary relationship between striatum size and social play in 

nonhuman primates. American Journal of Primatology, 73, 314-322. 

Groos, K. (1898). The Play of Animals. New York: Appleton. 



31 

 

Grossman, K., Grossman, K.E., Fremmer-Bombik, E., Kindler, H., Scheuerer-Englisch, H., & 

Zimmermann, P. (2002). The uniqueness of the child-father attachment relationship: 

Fathers‟ sensitive and challenging play as a pivotal variable in a 16-year longitudinal 

study. Social Development, 11, 301-337. 

Hariri, A. R., & Holmes, A. (2006). Genetics of emotional regulation: the role of the serotonin 

transporter in neural function. Trends in Cognitive Sciences, 10, 182-191. 

Homberg, J. R., Schiepers, O. J. G., Schoffelmeer, A. N. M., Cuppen, E., & Vanderschuren, L. J. 

M. J. (2007). Acute and constitutive increases in central serotonin levels reduce social 

play behaviour in peri-adolescent rats. Psychopharmacology, 195, 175-182. 

Huber, R., Panksepp, J. B., Yue, Z., Delago, A., & Moore, P. (2001). Dynamic interactions of 

behavior and amine neurochemistry in acquisition and maintenance of social rank in 

crayfish. Brain, Behavior and Evolution, 57(5), 271-282. 

Humphreys, A. P., & Einon, D. R. (1981). Play as a reinforcer for maze-learning in juvenile rats. 

Animal Behavior, 29, 259-270. 

Ikemoto, S., & Panksepp, J. (1992). The effects of early social isolation on the motivation for 

social play in juvenile rats. Developmental Psychobiology, 25, 261-274. 

Ikemoto, S., & Panksepp, J. (1996). Dissociations between appetitive and consummatory 

responses by pharmacological manipulations of reward-relevant brain regions. 

Behavioral Neuroscience, 110, 331-345. 

Ikemoto, S., & Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated 

behavior: a unifying interpretation with special reference to reward-seeking. Brain 

Research Reviews, 31, 6-41. 



32 

 

Jones, G. H., Hernandez, T. D., Kendall, D. A., Marsden, C. A., & Robbins, T. W. (1992). 

Dopaminergic and serotonergic function following isolation rearing in rats: Study of 

behavioural responses and postmorten in vivo neurochemistry. Pharmacology 

Biochemistry and Behavior, 43, 17-35. 

Jones, G. H., Marsden, C. A., & Robbins, T. W. (1990). Increased sensitivity to amphetamine 

and reward-related stimuli following social isolation in rats: Possible disruption of 

dopamine-dependent mechanisms of the nucleus accumbens. Psychopharmacology, 102, 

364-372. 

Kamitakahara, H., Monfils, M.-H., Forgie, M. L., Kolb, B., & Pellis, S. M. (2007). The 

modulation of play fighting in rats: Role of the motor cortex. Behavioral Neuroscience, 

121(1), 164-176. 

Knutson, B., Burgdorf, J., & Panksepp, J. (1998). Anticipation of play elicits high-frequency 

ultrasonic vocalizations in young rats. Journal of Comparative Psychology, 112, 65-73. 

Knutson, B., Burgdorf, J., & Panksepp, J. (1999). High-frequency ultrasonic vocalizations index 

conditioned pharmacological reward in rats. Physiology and Behavior, 66, 639-643. 

Knutson, B., & Panksepp, J. (1997). Effects of serotonin depletion on the play of juvenile rats. 

Annals of the New York Academy of Sciences, 807, 475-477. 

Knutson, B., Panksepp, J., & Pruitt, D. (1996). Effects of fluoxetine on play dominance in 

juvenile rats. Aggressive Behavior, 22, 297-307. 

Lewis, K. P., & Barton, R. A. (2006). Amygdala size and hypothalamus size predict social play 

frequency in nonhuman primates: A comparative analysis using independent contrasts. 

Journal of Comparative Psychology, 120(1), 31-37. 



33 

 

MacLean, P. D. (1985). Brain evolution relating to family, play, and the separation call. Archives 

of General Psychiatry, 42, 405-417. 

MacLean, P. D. (1990). The Triune Brain in Evolution: Role in Paleocerebral Functions. New 

York: Plenum Press. 

McIntosh, T. K., & Barfield, R. J. (1980). The temporal patterning of 40-60 kHz ultrasonic 

vocalizations and copulation in the rat (Rattus norvegicus). Behavioral and Neural 

Biology, 29, 349-358. 

Meaney, M. J., & Stewart, J. (1981). A descriptive study of social development in the rat (Rattus 

norvegicus). Animal Behaviour, 29, 34-45. 

Murphy, M. R., MacLean, P. D., & Hamilton, S. C. (1981). Species-typical behavior of hamsters 

deprived from birth of the neocortex. Science, 213, 459-461. 

Nakamura, Y., Otake, K., & Tokuno, H. (2006). The parafascicular nucleus relays spinal inputs 

to the striatum: An electron microscope study in the rat. Neuroscience Research, 56(1), 

73-79. 

Niesink, R. J. M., & Van Ree, J. M. (1989). Involvement of opioid and dopaminergic systems in 

isolation-induced pinning and social grooming of young rats. Neuropharmacology, 28, 

411-418. 

Normansell, L., & Panksepp, J. (1984). Play in decorticate rats. Society for Neuroscience 

Abstracts, 10, 612. 

Normansell, L., & Panksepp, J. (1985a). Effects of clonidine and yohimbine on the social play of 

juvenile rats. Pharmacology, Biochemistry, And Behavior, 22(5), 881-883. 

Normansell, L., & Panksepp, J. (1985b). Effects of quipazine and methysergide on play in 

juvenile rats. Pharmacology Biochemistry and Behavior, 22, 885-887. 



34 

 

Normansell, L., & Panksepp, J. (1990). Effects of morphine and naloxone on play-rewarded 

spatial discrimination in juvenile rats. Developmental Psychobiology, 23, 75-83. 

Olioff, M., & Stewart, J. (1978). Sex differences in the play behavior of prepubescent rats. 

Physiology and Behavior, 20, 113-115. 

Olivier, B., Tulp, M. T. M., & Mos, J. (1991). Serotonergic receptors in anxiety and aggression: 

Evidence from animal pharmacology. Human Psychopharmacology, 6, S73-S78. 

Panksepp, J. (1979). The regulation of play: Neurochemical controls. Society for Neuroscience 

Abstracts, 5, 172. 

Panksepp, J. (1980). Brief social isolation, pain responsivity, and morphine analgesia in young 

rats. Psychopharmacology, 72, 111-112. 

Panksepp, J. (1981a). The ontogeny of play in rats. Developmental Psychobiology, 14, 327-332. 

Panksepp, J. (1981b). Brain opioids: A neurochemical substrate for narcotic and social 

dependence. In S. Cooper (Ed.), Progress in theory in psychopharmacology (pp. 149-

175). London: Academic Press. 

Panksepp, J. (1982). Toward a general psychobiological theory of emotions. Behavioral and 

Brain Sciences, 5(3), 407-467. 

Panksepp, J. (1993). Rough and tumble play: A fundamental brain process. In K. MacDonald 

(Ed.), Parent-Child Play (pp. 147-184). Albany: SUNY Press. 

Panksepp, J. (1998a). Affective Neuroscience: The Foundations of Human and Animal Emotions. 

New York: Oxford University Press. 

Panksepp, J. (1998b). Attention deficit hyperactivity disorders, psychostimulants, and intolerance 

of childhood playfulness: A tragedy in the making? Current Directions in Psychological 

Science, 7, 91-98. 



35 

 

Panksepp, J. (1998c). The Quest for Long-Term Health and Happiness: To Play or Not to Play, 

That Is the Question. Psychological Inquiry, 9(1), 56-66. 

Panksepp, J. (2001). The long-term psychobiological consequences of infant emotions: 

Prescriptions for the twenty-first century. Infant Mental Health Journal, 22(1-2), 132-

173. 

Panksepp, J. (2007a). Can PLAY diminish ADHD and facilitate the construction of the social 

brain? Journal of the Canadian Academy of Child and Adolescent Psychiatry, 16(2), 57-

66. 

Panksepp, J. (2007b). Neuroevolutionary sources of laughter and social joy: Modeling primal 

human laughter in laboratory rats. Behavioural Brain Research, 182(2), 231-244. 

Panksepp, J., & Beatty, W. W. (1980). Social deprivation and play in rats. Behavioral and 

Neural Biology, 30, 197-206. 

Panksepp, J., & Bishop, P. (1981). An autoradiographic map of [
3
H]diprenorphine binding in rat 

brain: effects of social interaction. Brain Research Bulletin, 7, 405-410. 

Panksepp, J., & Burgdorf, J. (2000). 50-kHz chirping (laughter?) in response to conditioned and 

unconditioned tickle-induced reward in rats: effects of social housing and genetic 

variables. Behavioural Brain Research, 115, 25-38. 

Panksepp, J., Burgdorf, J., Gordon, N., & Turner, C. (2002). Treatment of ADHD witih 

methylphenidate may sensitize brain substrates of desire. Consciousness and Emotion, 3, 

7-19. 

Panksepp, J., Burgdorf, J., Turner, C., & Gordon, N. (2003). Modeling ADHD-type arousal with 

unilateral frontal cortex damage in rats and beneficial effects of play therapy. Brain and 

Cognition, 52, 97-105. 



36 

 

Panksepp, J., Herman, B. H., Vilberg, T., Bishop, P., & DeEskinazi, F. G. (1980). Endogenous 

opioids and social behavior. Neuroscience & Biobehavioral Reviews, 4(4), 473-487. 

Panksepp, J., Jalowiec, J., DeEskinazi, F. G., & Bishop, P. (1985). Opiates and play dominance 

in juvenile rats. Behavioral Neuroscience, 99, 441-453. 

Panksepp, J., Najam, N., & Soares, F. (1979). Morphine reduces social cohesion in rats. 

Pharmacology Biochemistry and Behavior, 11, 131-134. 

Panksepp, J., Normansell, L., Cox, J. F., & Siviy, S. M. (1994). Effects of neonatal decortication 

on the social play of juvenile rats. Physiology and Behavior, 56, 429-443. 

Panksepp, J., Siviy, S. M., & Normansell, L. (1984). The psychobiology of play: Theoretical and 

methodological considerations. Neuroscience and Biobehavioral Reviews, 8, 465-492. 

Pellis, S. M., Casteneda, E., McKenna, M. M., Tran-Nguyen, L. T., & Whishaw, I. Q. (1993). 

The role of the striatum in organizing sequences of play fighting in neonatally dopamine-

depleted rats. Neuroscience Letters, 158, 13-15. 

Pellis, S. M., Hastings, E., Shimizu, T., Kamitakahara, H., Komorowska, J., Forgie, M. L., et al. 

(2006). The effects of orbital frontal cortex damage on the modulation of defensive 

responses by rats in playful and nonplayful social contexts. Behavioral Neuroscience, 

120, 72-84. 

Pellis, S. M., & Pellis, V. C. (1990). Differential rates of attack, defense, and counterattack 

during the developmental decrease in play fighting by male and female rats. 

Developmental Psychobiology, 23, 215-231. 

Pellis, S. M., & Pellis, V. C. (2009). The Playful Brain: Venturing to the Limits of Neuroscience. 

Oxford: Oneworld Publications. 



37 

 

Pellis, S. M., Pellis, V. C., & McKenna, M. M. (1993). Some subordinates are more equal than 

others: Play fighting amongst adult subordinate male rats. Aggressive Behavior, 19, 385-

393. 

Pellis, S. M., Pellis, V. C., & Whishaw, I. Q. (1992). The role of the cortex in play fighting by 

rats: Developmental and evolutionary implications. Brain, Behavior and Evolution, 39, 

270-284. 

Pfaus, J. G., & Phillips, A. G. (1991). Role of dopamine in anticipatory and consummatory 

aspects of sexual behavior in the male rat. Behavioral Neuroscience, 105, 727-743. 

Piomelli, D. (2003). The molecular logic of endocannabinoid signalling. Nature Reviews 

Neuroscience, 4(11), 873-884. 

Poole, T. B., & Fish, J. (1975). An investigation of playful behaviour in Rattus norvegicus and 

Mus musculus (Mammalia: Rodentia). Journal of Zoology (London), 175, 61-71. 

Poole, T. B., & Fish, J. (1976). An investigation of individual, age and sexual differences in the 

play of Rattus norvegicus (Mammalia: Rodentia). Journal of Zoology (London), 179, 

249-260. 

Raleigh, M. J., McGuire, M. T., Brammer, G. L., Pollack, D. B., & Yuwiler, A. (1991). 

Serotonergic mechanisms promote dominance acquisition in adult male vervet monkeys. 

Brain Research, 559, 181-190. 

Reinhart, C. J., McIntyre, D. C., Metz, G. A., & Pellis, S. M. (2006). Play fighting between 

kindling-prone (FAST) and kindling-resistant (SLOW) rats. Journal of Comparative 

Psychology, 120, 19-30. 

Reinhart, C. J., Pellis, S. M., & McIntyre, D. C. (2004). Development of play fighting in 

kindling-prone (FAST) and kindling-resistant (SLOW) rats: How does the retention of 



38 

 

phenotypic juvenility affect the complexity of play? Developmental Psychobiology, 

45(2), 83-92. 

Robbins, T. W., & Arnsten, A. F. T. (2009). The Neuropsychopharmacology of Fronto-

Executive Function: Monoaminergic Modulation. Annual Review of Neuroscience, 32(1), 

267-287. 

Robinson, D. L., Zitzman, D. L., Smith, K. J., & Spear, L. P. (2011). Fast dopamine release 

events in the nucleus accumbens of early adolescent rats. Neuroscience, in press. 

Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-

sensitization theory of addiction. Brain Research Reviews, 18, 247-291. 

Sahakian, B. J., Robbins, T. W., Morgan, M. J., & Iversen, S. D. (1975). The effects of 

psychomotor stimulants on stereotypy and locomotor activity in socially-deprived and 

control rats. Brain Research, 84, 195-205. 

Schlosberg, H. (1947). The concept of play. Psychological Review, 54, 229-231. 

Scott, E., & Panksepp, J. (2003). Rough-and-Tumble Play in Human Children. Aggressive 

Behavior, 29(6), 539-551. 

Siviy, S. M. (1998). Neurobiological substrates of play behavior: glimpses into the structure and 

function of mammalian playfulness. In M. Bekoff & J. A. Byers (Eds.), Animal Play: 

Evolutionary, Comparative, and Ecological Perspectives (pp. 221-242). Cambridge: 

Cambridge University Press. 

Siviy, S. M., Atrens, D. M., & Menendez, J. A. (1990). Idazoxan increases rough-and-tumble 

play, activity and exploration in juvenile rats. Psychopharmacology, 100, 119-123. 



39 

 

Siviy, S. M., & Baliko, C. N. (2000). A further characterization of alpha-2 adrenoceptor 

involvement in the rough-and-tumble play of juvenile rats. Developmental 

Psychobiology, 37, 24-34. 

Siviy, S. M., Baliko, C. N., & Bowers, K. S. (1997). Rough-and-tumble play behavior in Fischer-

344 and Buffalo rats: Effects of social isolation. Physiology and Behavior, 61, 597-602. 

Siviy, S. M., Fleischhauer, A. E., Kerrigan, L. A., & Kuhlman, S. J. (1996). D2 dopamine 

receptor involvement in the rough-and-tumble play behavior of juvenile rats. Behavioral 

Neuroscience, 110, 1-9. 

Siviy, S. M., Love, N. J., DeCicco, B. M., Giordano, S. B., & Seifert, T. L. (2003). The relative 

playfulness of juvenile Lewis and Fischer-344 rats. Physiology and Behavior, 80, 385-

394. 

Siviy, S. M., & Panksepp, J. (1985). Dorsomedial diencephalic involvement in the juvenile play 

of rats. Behavioral Neuroscience, 99, 1103-1113. 

Siviy, S. M., & Panksepp, J. (1987a). Juvenile play in the rat: Thalamic and brain stem 

involvement. Physiology and Behavior, 41, 103-114. 

Siviy, S. M., & Panksepp, J. (1987b). Sensory modulation of juvenile play in rats. 

Developmental Psychobiology, 20, 39-55. 

Small, W. S. (1899). Notes on the Psychic Development of the Young White Rat. The American 

Journal of Psychology, 11(1), 80-100. 

Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. 

Neuroscience and Biobehavioral Reviews, 24, 417-463. 

Spinka, M., Newberry, R. C., & Bekoff, M. (2001). Mammalian play: Training for the 

unexpected. The Quarterly Review of Biology, 76, 141-168. 



40 

 

Sukikara, M. H., Mota-Ortiz, S. R., Baldo, M. V., Felicio, L. F., & Canteras, N. S. (2006). A role 

for the periaqueductal gray in switching adaptive behavioral responses. The Journal of 

Neuroscience, 26, 2583-2589. 

Thiel, K. J., Okun, A. C., & Neisewander, J. L. (2008). Social reward-conditioned place 

preference: A model revealing an interaction between cocaine and social context rewards 

in rats. Drug and Alcohol Dependence, 96(3), 202-212. 

Thiel, K. J., Sanabria, F., & Neisewander, J. L. (2009). Synergistic interaction between nicotine 

and social rewards in adolescent male rats. Psychopharmacology, 204, 391-402. 

Trezza, V., Baarendse, P. J. J., & Vanderschuren, L. J. M. J. (2009). Prosocial effects of nicotine 

and ethanol in adolescent rats through partially dissociable neurobehavioral mechanisms. 

Neuropsychopharmacology, 34, 2560-2573. 

Trezza, V., Baarendse, P. J. J., & Vanderschuren, L. J. M. J. (2010). The pleasures of play: 

pharmacological insights into social reward mechanisms. Trends in Pharmacological 

Sciences, 31, 463-469. 

Trezza, V., Damsteegt, R., & Vanderschuren, L.J.M.J. (2009). Conditioned place preference 

induced by social play behavior: parametrics, extinction, reinstatement and disruption by 

methylphenidate. European Neuropsychopharmacology, 19, 659-669. 

Trezza, V., & Vanderschuren, L. J. M. J. (2008a). Bidirectional cannabinoid modulation of social 

behavior in adolescent rats. Psychopharmacology, 197, 217-227. 

Trezza, V., & Vanderschuren, L. J. M. J. (2008b). Cannabinoid and opioid modulation of social 

play behavior in adolescent rats: Differential behavioral mechanisms. European 

Neuropsychopharmacology, 18, 519-530. 



41 

 

Trezza, V., & Vanderschuren, L. J. M. J. (2009). Divergent effects of anandamide transporter 

inhibitors with different target selectivity on social play behavior in adolescent rats. The 

Journal of Pharmacology and Experimental Therapeutics, 328, 343-350. 

Van den Berg, C. L., Hol, T., Van Ree, J. M., Spruijt, B. M., Everts, H., & Koolhaas, J. M. 

(1999). Play is indispensable for an adequate development of coping with social 

challenges in the rat. Developmental Psychobiology, 34, 129-138. 

Vanderschuren, L. J. M. J., Niesink, R. J. M., Spruijt, B. M., & Van Ree, J. M. (1995a). µ- and κ-

opioid receptor-mediated opioid effects on social play in juvenile rats. European Journal 

of Pharmacology, 276, 257-266. 

Vanderschuren, L. J. M. J., Niesink, R. J. M., Spruijt, B. M., & Van Ree, J. M. (1995b). Effects 

of morphine on different aspects of social play in juvenile rats. Psychopharmacology, 

117, 225-231. 

Vanderschuren, L. J. M. J., Spruijt, B. M., Hol, T., Niesink, R. J. M., & Van Ree, J. M. (1996). 

Sequential analysis of social play behavior in juvenile rats: effects of morphine. 

Behavioural Brain Research, 72, 89-95. 

Vanderschuren, L. J. M. J., Stein, E. A., Wiegant, V. M., & Van Ree, J. M. (1995). Social play 

alters regional brain opioid receptor binding in juvenile rats. Brain Research, 680, 148-

156. 

Vanderschuren, L. J. M. J., Trezza, V., Griffioen-Roose, S., Schiepers, O. J. G., Van Leeuwen, 

N., De Vries, T. J., et al. (2008). Methylphenidate disrupts social play behavior in 

adolescent rats. Neuropsychopharmacology, 33, 2946-2956. 



42 

 

Voorn, P., Vanderschuren, L. J. M. J., Groenewegen, H. J., Robbins, T. W., & Pennartz, C. M. 

A. (2004). Putting a spin on the dorsal-ventral divide of the striatum. Trends in 

Neuroscience, 27, 468-474. 

Watt, D.F., & Panksepp, J. (2009). Depression: an evolutionarily conserved mechanism to 

terminate separation distress? A review of aminergic, peptidergic, and neural network 

perspectives. Neuropsychoanalysis, 11, 5-104. 

Weiss, I. C., Domeney, A. M., Heidbreder, C., Moreau, J.-L., & Feldon, J. (2001). Early social 

isolation, but not maternal separation, affects behavioral sensitization to amphetamine in 

male and female adult rats. Pharmacology Biochemistry and Behavior, 70, 397-409. 

Wilson, L. I., Bierley, R. A., & Beatty, W. W. (1986). Cholinergic agonists suppress play 

fighting in juvenile rats. Pharmacology, Biochemistry and Behavior, 24(5), 1157-1159. 

Wolterink, G., Daenen, E. W. P. M., Dubbeldam, S., Gerrits, M. A. F. M., van Rijn, R., Kruse, 

C. G., et al. (2001). Early amygdala damage in the rat as a model for neurodevelopmental 

psychopathological disorders. European Neuropsychopharmacology, 11, 51-59. 

 

 

 



43 

 

Figure captions 

 

 

Figure 1.  Distance traveled in a novel open field before (Baseline) and after an injection of 1 

mg/kg amphetamine (Post-amphetamine) in both Lewis and Fischer rats.  Rats were either 

socially housed or isolated for 3 days prior to testing.  The data from the baseline period were 

analyzed using a 2 x 6 Analysis of Variance (ANOVA) and there was found to be a significant 

time x housing interaction, F(4,140) = 5.52, p < .001.  No effects were associated with strain of 

the rat.  When the post-amphetamine data were analyzed with a 2 x 9 ANOVA there was found 

to be a significant time x strain interaction, F(8,224) = 3.23, p = .002, and a significant main 

effect of housing, F(1,28) = 4.79, p = .037.   

 

Figure 2. Panel A: Mean (± SEM) number of 50 kHz vocalizations emitted in a 2 minute period 

in rats that were returned to their home cage immediately afterwards (Control) or allowed to play 

with a same-age conspecific for 5 minutes (Play). All rats were housed individually.  At least 

several hours after testing, those rats in the control group were allowed to play with another male 

rat of the same age in a chamber that differed in size, texture of floor, and lighting.  This 

chamber was also placed in a different room from the testing chamber. Vocalizations were not 

monitored on the first two days of testing. The presence of a significant day of testing X group 

interaction, F(5,70) = 6.58, p < .001, indicated that the difference in vocalizations between the 

two groups became more pronounced as testing progressed.  Panel B: Mean (± SEM) number of 

50 kHz vocalizations emitted in a 2 minute period prior to either a 5 minute opportunity to play 

with the same partner or a different partner every day.  The presence of a significant day of 

testing X group interaction, F(6,102) = 5.03, p < .001, indicated that rats allowed to play with the 
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same partner every day were vocalizing significantly more than those that played with a different 

partner every day by the last three days of acquisition. 

 

Figure 3.  Mean (± SEM) number of dorsal contacts in rats treated with 8-OH-DPAT or vehicle.  

Untreated rats were individually housed throughout testing while the 8-OH-DPAT treated rats 

were isolated for 4 hours prior to testing.  Analysis of these data with a 2 X 5 ANOVA yielded a 

significant dose x group interaction, F(1,14) = 8.214, p = .012.  * indicates significant difference 

between the treated and untreated rats.   
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