Document Type

Article

Publication Date

9-2005

Department 1

Health Sciences

Abstract

Exercise has been found to alter pain sensitivity with a hypoalgesic response (i.e., diminished sensitivity to pain) typically reported during and/or following high intensity exercise. Most of this research, however, has involved the testing of men. Thus, the purpose of the following investigation was to examine changes in pain perception in women during and following exercise. Seventeen healthy female subjects (age 20.47±.87; VO2 peak 36.77± 4.95) volunteered to undergo pain assessment prior to, during, and after a graded exhaustive VO2 peak cycling challenge. Heart Rate (HR) and Oxygen Uptake (VO2) were monitored along with electro-diagnostic assessments of Pain Threshold (PT) and Pain Tolerance (PTOL) at: 1) baseline (B), 2) during exercise (i.e., 120 Watts), 3) at exhaustive intensity (VO2 peak), and 4) 10 minutes into recovery (R). Data were analyzed using repeated measures ANOVA to determine differences across trials. Significant differences in PT and PTOL were found across trials (PT, p = 0.0043; PTOL p = 0.0001). Post hoc analyses revealed that PT were significantly elevated at VO2 peak in comparison to B (p = 0.007), 120 Watts (p = 0.0178) and R (p = 0.0072). PTOL were found to be significantly elevated at 120 Watts (p = 0.0247), VO2 peak (p < 0.001), and R (p = 0.0001) in comparison to B. In addition, PTOL were found to be significantly elevated at VO2 peak in comparison to 120 Watts (p = 0.0045). It is concluded that exercise-induced hypoalgesia occurs in women during and following exercise, with the hypoalgesic response being most pronounced following exhaustive exercise.

Required Publisher's Statement

Reprinted from Journal of Sports Science and Medicine, Vol. 4, Drury, D., Greenwood, K., Stuempfle, K., Koltyn, K., Changes in Pain Perception in Women During and Following an Exhaustive Incremental Cycling Exercise, 215-222, Copyright (2005), with permission from the JOURNAL OF SPORTS SCIENCE AND MEDICINE.”

COinS