Document Type

Article

Publication Date

2-6-2022

Department 1

Environmental Studies

Abstract

Standardized data on large-scale and long-term patterns of species richness are critical for understanding the consequences of natural and anthropogenic changes in the environment. The North American Breeding Bird Survey (BBS) is one of the largest and most widely used sources of such data, but so far, little is known about the degree to which BBS data provide accurate estimates of regional richness. Here, we test this question by comparing estimates of regional richness based on BBS data with spatially and temporally matched estimates based on state Breeding Bird Atlases (BBA). We expected that estimates based on BBA data would provide a more complete (and therefore, more accurate) representation of regional richness due to their larger number of observation units and higher sampling effort within the observation units. Our results were only partially consistent with these predictions: while estimates of regional richness based on BBA data were higher than those based on BBS data, estimates of local richness (number of species per observation unit) were higher in BBS data. The latter result is attributed to higher land-cover heterogeneity in BBS units and higher effectiveness of bird detection (more species are detected per unit time). Interestingly, estimates of regional richness based on BBA blocks were higher than those based on BBS data even when differences in the number of observation units were controlled for. Our analysis indicates that this difference was due to higher compositional turnover between BBA units, probably due to larger differences in habitat conditions between BBA units and a higher likelihood of observing geographically restricted species. Our overall results indicate that estimates of regional richness based on BBS data suffer from incomplete detection of a large number of rare species, and that corrections of these estimates based on standard extrapolation techniques are not sufficient to remove this bias. Future applications of BBS data in ecology and conservation, and in particular, applications in which the representation of rare species is important (e.g., those focusing on biodiversity conservation), should be aware of this bias, and should integrate BBA data whenever possible.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

DOI

10.1002/ecs2.3925

Version

Version of Record

Share

COinS