Document Type

Conference Material

Publication Date

3-23-2017

Department 1

Environmental Studies

Abstract

Understanding the evolution and timing of changes in ice sheet geometry and extent in Iceland during the Last Glacial Maximum (LGM) and subsequent deglaciation continues to stimulate much active research. Though many previous studies have advanced our knowledge of Icelandic ice sheet history preserved in marine and terrestrial settings (e.g., Andrews et al., 2000; Norðdahl et al., 2008), the timing of ice margin retreat remains largely unknown in several key regions. Recently published 36Cl surface exposure ages of bedrock surfaces and moraines in the West Fjords (Brynjólfsson et al., 2015) contribute important progress in establishing more precise age control of ice recession in northwest Iceland. In another recent study, the spatial pattern and style of deglaciation in northern Iceland have been revealed through geomorphic mapping and GIS analyses of glacial landforms (Principato et al., 2016). Additional insight comes from updated numerical modeling reconstructions, which now provide a series of glaciologically plausible Icelandic ice sheet configurations from the LGM through the last deglaciation (Patton et al., 2017). However, the optimization of ice sheet model simulations relies on critical comparisons with the available empirical record of glacial-geologic evidence and chronological control, which remains relatively limited and sparsely distributed throughout Iceland. Our investigation is motivated by the need for more accurate constraints on the deglacial history in northern Iceland, where dated terrestrial records of ice margin retreat are particularly scarce. (excerpt)

Comments

This abstract was presented at the 47th International Arctic Workshop in Buffalo, NY, March 23-25 2017.

COinS