Gastric Vagal Afferent Neuropathy Following Experimental Spinal Cord Injury

Document Type


Publication Date


Department 1

Health Sciences


Dramatic impairment of gastrointestinal (GI) function accompanies high-thoracic spinal cord injury (T3-SCI). The vagus nerve contains mechano- and chemosensory fibers as well as the motor fibers necessary for the central nervous system (CNS) control of GI reflexes. Cell bodies for the vagal afferent fibers are located within the nodose gangla (NG) and the majority of vagal afferent axons are unmyelinated C fibers that are sensitive to capsaicin through activation of transient receptor potential vanilloid-1 (TRPV1) channels. Vagal afferent fibers also express receptors for GI hormones, including cholecystokinin (CCK). Previously, T3-SCI provokes a transient GI inflammatory response as well as a reduction of both gastric emptying and centrally-mediated vagal responses to GI peptides, including CCK. TRPV1 channels and CCK-A receptors (CCKar) expressed in vagal afferents are upregulated in models of visceral inflammation. The present study investigated whether T3-SCI attenuates peripheral vagal afferent sensitivity through plasticity of TRPV1 and CCK receptors.

Vagal afferent response to graded mechanical stimulation of the stomach was significantly attenuated by T3-SCI at 3-day and 3-week recovery. Immunocytochemical labeling for CCKar and TRPV1 demonstrated expression on dissociated gastric-projecting NG neurons. Quantitative assessment of mRNA expression by qRT-PCR revealed significant elevation of CCKar and TRPV1 in the whole NG following T3-SCI in 3-day recovery, but levels returned to normal after 3-weeks. Three days after injury, systemic administration of CCK-8 s showed a significantly diminished gastric vagal afferent response in T3-SCI rats compared to control rats while systemic capsaicin infusion revealed a significant elevation of vagal response in T3-SCI vs control rats.

These findings demonstrate that T3-SCI provokes peripheral remodeling and prolonged alterations in the response of vagal afferent fibers to the physiological signals associated with digestion.



Required Publisher's Statement

This article is available on the publisher's website.

This item is not available in The Cupola.